
* Corresponding author. Tel.: +01 (514) 396-8549 
E-mail:  jean-perre.kenne@etsmtl.ca 
 
© 2010 Growing Science Ltd. All rights reserved. 
doi: 10.5267/j.ijiec.2010.02.001 
  

 
 

International Journal of Industrial Engineering Computations 1 (2010) 95–120 
 

 

Contents lists available at GrowingScience
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 
 
 
 

 

 
 

Feedback optimal control of dynamic stochastic two-machine flowshop with a finite buffer 
 

Thang Diepa , Jean-Pierre Kennéa* , and Thien-My Dao a 

aDepartment of Mechanical Engineering, Ecole de Techologie Supeieure, 1100 Notre-Deme St. west, Montreal, (Quebec), H3C-1K3, Canada   

A R T I C L E I N F O                            A B S T R A C T 

Article history:  
Received 1 May 2010 
Received in revised form  
6 June 2010 
Accepted 7 June 2010  
Available online 11 June  2010 

  This paper examines the optimization of production involving a tandem two-machine system 
producing a single part type, with each machine being subject to random breakdowns and 
repairs. An analytical model is formulated with a view to solving an optimal stochastic 
production problem of the system with machines having up-downtime non-exponential 
distributions. The model developed is obtained by using a dynamic programming approach and 
a semi-Markov process. The control problem aims to find the production rates needed by the 
machines to meet the demand rate, through a minimization of the inventory/shortage cost. 
Using the Bellman principle, the optimality conditions obtained satisfy the Hamilton-Jacobi-
Bellman equation, which depends on time and system states, and ultimately, leads to a feedback 
control. Consequently, the new model enables us to improve the coefficient of variation 
(CVup/down)  to be less than one while it is equal to one in Markov model. Heuristics methods 
are used to involve the problem because of the difficulty of the analytical model using several 
states, and to show what control law should be used in each system state (i.e., including 
Kanban, feedback and CONWIP control). Numerical methods are used to solve the optimality 
conditions and to show how a machine should produce.  
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1. Introduction 
 

In this paper, we examine a tandem two-machine system producing a single part with finite-size 
internal buffers. Each machine is subject to random breakdowns and repairs. The system can have 
four different states: two machines fail; two machines work simultaneously; the upstream machine 
fails while downstream machine is working, and the downstream machine fails while upstream 
machine is working. The goal of the study is to formulate a model which consists in minimizing the 
expected discounted cost of inventory/shortage in deterministic horizon in order to find the 
production rates of a stochastic system. This section presents a literature review, the motivation for 
using the semi-Markov process, and the contribution of this paper.  

1.1 Literature review 

At a decision making level for the operation of manufacturing system, one of the most configurations 
studied is a flow-shop system or transfer line (i.e., including a specified number of machines in 
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series). Naturally, each machine is subject to random breakdowns and repairs (making them failure-
prone machines). Other states characterising a machine include setup time, changing demands, 
preventive maintenance, etc. Thus, the number of discrete states of a system will grow as the number 
of machines increases. Indeed, consider a flow-shop system consisting of M machines in which each 
machine can be in two states (up and down); we therefore have 2M distinct states, so it is difficult to 
determine the performance of the system when it is modeled as a discrete-space Markov process with 
large state spaces. In practice, the optimal production planning of stochastic manufacturing lines (i.e., 
with failure-prone machines) constitutes an extremely difficult problem Fong and Zhou (2000). 
Obviously, no exact analytical model could be obtained for a system with the length of the machines.  
On other hand, one of the characteristic features of a stochastic dynamic of a flow shop is the fact that 
the inventory of semi-processed parts in buffers between any two machines, known as internal 
buffers, must be nonnegative Dallery et al. (1989), Sethi et al. (1994). Some papers, such as  
Kimemia and Gershwin (1983), Akella and Kumar (1986), Bielecki and Kumar (1988), Perkins and 
Srikant (1997), and Shu and Perkins (2001) , have covered these features. 
The first version of the problem of production planning for a single machine producing a single part 
type with two states (up and down) was studied in Akella and Kumar (1986), Bielecki and Kumar 
(1988). Both these papers presented an exact solution which could find the production rate and a 
hedging point. The hedging point is a buffer level at which each part type must be produced with a 
rate equal to its demand rate (u(t) = d(t)). This agreement is a threshold-type that can be considered as 
a Just-In-Time (JIT) method for solving the stochastic problem by maintaining an inventory level 
equal to the hedging point. In Perkins and Srikant (1997), and Shu and Perkins (2001) they then went 
on to consider the problem of a single machine system producing multiple part types. They used the 
decomposition method, in which the multiple-part-type problem is decomposed into a two part-type 
problem, as well as a graph technique for a linear switching curve problem. 
In the case of a two-machine flowshop, some authors have conducted studies on both deterministic 
and stochastic problems. Since the optimal production planning of a stochastic manufacturing system 
is difficult, Sethi et al. (1997) studied a system with a single-part-type using a hierarchical approach: 
the idea is to carry out the uncertainty in the machine’s capacity which is averaged, and replace the 
more general stochastic problem with a limiting problem. In that paper, they show that the 
performance in the feedback control is better than in the Kanban control. In the literature, a 
hierarchical control approach was introduced in Gershwin(2002), Gershwin (1989), and Lehoczky et 
al. (1991), and was based on the frequency of occurrence of different types of events (also called the 
time-scale control). On the other hand, a deterministic problem of two-machine flowshop systems 
was studied by Fong and Zhou (2000). These authors although gave an exact solution whose 
optimality conditions satisfy the Hamilton-Jacobi-Bellman equation, they did not involve the real 
problem of manufacturing systems that is stochastic rather than deterministic.  
Bai and Gershwin (1996) used the heuristic method to obtain sub-solution controls in N-machines and 
in a single part-type system with the objective of long-term average cost minimization. Presman et al. 
(2002), and Sethi et al. (2005) studied the N-machine flow shop whose profit function is minimized 
by the average cost. As stated above, so far, there is no exact solution for failure-prone machine 
systems with the large of the transfer lines. The simulation method therefore represents a significant 
advantage in terms of analysis of the performance of the system, as can be seen in Lavoie et al. 
(2009), Kenne  and Gharbi (2001). Other papers focus on the performance parameters of transfer 
lines (i.e., lines including production rate and average buffer levels); that is the case in Dallery et al. 
(1989), Ciprut et al. (2000), Kim and Gershwin (2008, 2005), and Tan and Gershwin (2009), where 
long lines are decomposed into two-machine lines (flowshop system) in the case of identical 
machines. This technique is called the decomposition method, and through it, the system becomes 
simpler and behaves like a buffer or work-in-process inventory between upstream and downstream 
machines. 
In most of the works mentioned above, the state machines are characterized by Markov processes and 
the demand rate is constant. This feature was developed from the formalism of several pioneers such 
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as Rishel (1975) and Davis (1984). Both these authors used the Markov chain to formulate a 
stochastic model in continuous time as a Piecewise deterministic system (PDS). Moreover, the 
Markov framework with machines having exponential distributions of uptime and downtime has a 
coefficient of variation (CVup and  CVdown) equal to 1 and breakdown and repair rates equal to 
constant. As the results in Li and Meerkov (2005), and Enginarlar et al. (2005), the performance of 
the average number of parts produced (PP) by the last machine depends mostly on the CVup/down: if 
the CVup/down decreases to less than 1, the performance PP does increase and the sensibility of the PR 
assumes values within the 6% range. Indeed, the CV up/down is less than 1 if the breakdown and repair 
rates are functions of time, as indicated in Li and Meerkov (2005). That means the machine lifetime 
must obey the non-exponential distribution as in Grabsky (2003).   
 
1.2 Motivation for using the Semi-Markov process 
 
The simultaneous use of the semi-Markov process and the two-machine flowshop system is 
motivated by the following three factors. 

 

1. From a practical point of view, the lifetime of a machine is described by a more general random 
process, as stated in Grabsky (2003). That means machines often have up-down time 
distributions which could be non-exponential, and characterized by a coefficient of variation 
(CVup/down), often less than 1 (see Li and Meerkov (2005), Enginarlar et al. (2005). Thus, the 
machines may be referred to as aging over time without any restriction while using exponential 
distributions, as can be seen in the literature. 

2. The study of transfer lines is based on a two-machine line (flow-shop system) because no exact 
analytical solution exists for longer lines, and brute force numerical techniques are 
unsatisfactory with sizes of the state spaces Gershwin (2002). The performance parameters of a 
two-machine system, such as the  production rate and the average buffer levels, depend on the 
work-in-process (WIP) inventory and throughput time (lead time or cycle time), and the 
performance is good if the WIP inventory and lead time are optimized Bai and Gershwin 
(1996). That leads to an optimal production problem respecting the minimizing of the total cost 
of inventory/backlog over deterministic time. Moreover, the appreciation of the performance of 
the system influences the coefficients of variation, CVup/down (see  Enginarlar et al. (2005)) and 
as a result, an optimal production control problem with semi-Markov jumps should be 
formulated.   

3. The time and non-exponential distributions issues can be considered by extending the dynamic 
programming method using semi-Markov jumps. Hence, a unified model, including production, 
is developed in this paper and the optimality conditions obtained are then solved to obtain the 
optimal control policy.   

 
1.3 Contribution of this paper 
    
The purpose of this paper is to present a new model for the optimal stochastic control of a failure-
prone two-machine system in a finite horizon, with semi-Markov jumps and a discounted rate. This 
model is based on the dynamic programming approach, and adopts the assumptions of Rishel (1975). 
However, unlike Rishel, who generated an optimal control with Markov jumps and constant transition 
rates, we use semi-Markov jumps, whose transition rates and probabilities are time-dependent. Using 
the Bellman principle, the optimality conditions satisfy the Hamilton-Jacobi-Bellman equation which 
appears in this paper. The new model and related optimality conditions are applied to a real word 
manufacturing system involving log-normal, Weibull, and gamma distributions, which are in turn 
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used to represent the machine’s operating and down times with a CVup/down of less than one. This 
paper also proposes a solution for the new model with heuristic and numerical approaches. 
The next sections are organized as follows: Section 2 presents the problem formulation, and Section 
3, the optimality conditions. The dynamics of the system is given in Section 4. The hedging point 
policy is analyzed in Section 5. Section 6 presents the heuristic method for optimal feedback control, 
while Section 7 and 8 present two practical case studies. Finally, Section 9 presents the conclusion. 
  

2. Problem Formulation 

We consider a dynamic stochastic flow shop consisting of a tandem two-machine system devoted to 
producing a single product, as shown in Fig. 1. The machines are subject to random breakdowns and 
repairs. Each machine has a finite number of states (modes), denoted as i ∈ I = {0,…, m}. Consider 
the number of parts in the buffer between the first and the second machines, called the work-in-
process (WIP), as x1(t), and the surplus level of the finished goods as x2(t).  The number of parts in 
WIP cannot be negative and the buffers usually have limited storage capacities such as 0≤  x1(t) ≤ B; 
B is the upper bound on the WIP. If the surplus level x2(t) > 0, we have inventories; however, if x2(t) 
< 0, then we have backlogs.  

Let u1(t) and u2(t) be the production rates of the first and second machines, respectively. Accordingly, 
the maximum production capacities of these two machines are denoted as r1 and r2.  We assume a 
varying demand d(t), which is random variable, as the input.  Let χ(t) be the mode of a given machine 
at time t. It is described by a semi-Markov process with the state space I = {0,…, m} and their 
transition probabilities from state i to state j, as follows (Becker et al. (2000)):  

( ) ( ) ( )[ ]iSjStSStP nnnnij ==∩≤−= −− 11 |Pr χχ  (1)

 
where Sn is the time of the next transition and  Sn-1, the time of the last transition (with S0 = 0) with 
respect to t.  
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( )d t

1 ( )u t 2 ( )u t  

Fig. 1. Two-machine flowshop system 

The dynamics system contains two different parts; the first is the continuous part, and the second is 
the stochastic part. The dynamics of the continuous part of the process is described as follows: 
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Let S = [0, B]×ℜ1∈ℜ2 be a state constraint domain. Then, let x(t) = (x1(t), x2(t))’ ∈ S and  0 ≤ uj(t) ≤ 
rj, j = 1, 2. For simplicity: xj(t) = xj  for j = 1,2, and x(t) = x for t ≥ 0. Let Υ(t, x) be the constraint 
domain of control as follows:  
 

( ) ( ) ( ){ }2,1,(.)0:(.)(.),, 21 =≤≤== jruuut jj.uxΥ   (3)
 
The equation (2) can be written as follows: 
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( ) ( )( ) ( ) ( ) itttft t =χ== χ ,;,, xxuxx&  (4)
 
This stochastic differential equation (4) is the hybrid system. And the stochastic dynamics of the 
system is described as follows: If the system enters a state k then a number of independent times is Tk 
with a distribution function  Fk(t) and the probability density function fk(t), for k = 0,1,...m. The 
system will go to state j, if the realization of Tk is the smallest of all these variables, and the sojourn 
time in state i just be the smallest realization.  Then, the derivative of the semi-Markov transition 
probability pij(t) is given as: 

( ) )()(1)()( tftFtPtp j
jk

kijij ∏
≠

−== &  (5)

Let Φk denote the σ-algebra generated by the random process and the number of independent random 
times τk as follows:  
 

( ){ } ( ) ( )( ){ }0:,;0:, ≥≤≤)()(= ttttτττ kkkk χχσ xxΦ   
 
We now define the concept of admissible controls. 
 
Definition 2.1 A control ( ) ( ) ( )( ) 2

21 ,,,, +ℜ∈= xxx tututΥ  is admissible with respect to the initial state 
vector ( ) Sxx ∈= ,

21,x if:  

(i) Υ(t, x) is an Φk -adapted measurable process; 

(ii) u(t,x) ∈ Υ(t, x) for all t ≥ 0       
 

For more information and a discussion of this concept, the reader is referred to Sethi et al. (1997) and 
reference therein. 
Let Α(t,i) be the set of admissible feedback controls with the initial vector x(t) = x. Let  0 ≤ to < T and 
consider initial times to in interval [to, T].   
Let 
 

( ) ( )( ) )()()(, 222211 txctxctxcttg −−++ ++=ux          (6)

be the surplus cost, c1 is the unit inventory cost of the internal buffer, −
2c  the unit surplus cost of the 

finished product in the external buffer, and −
2c  the unit backlog penalty of the finished product. 

Our objective is to find an admissible control u(t, x)∈Α(t,i) that minimizes the following cost 
function: 
 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=== ∫ −

T

t

s
u istdsssgeEttJ )(;)(|)(),(,,, χρ xxuxux  (7)

 
where ρ > 0 is the discount rate, Eu is the mathematical expectation taken with respect to the measure 
induced by the control law u(t, x), T is deterministic horizon (also deterministic time).  The function 
(7) is called the surplus cost function. 
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For the manufacturing system, the following assumptions are made in developing the control 
strategy: 
     (H.1)  Assume 01 >c and −+ <≤ 221 ccc . This means that holding costs typically increase as the 
“value added” increases. 

 (H.2) The manufacturing Lead Times are considered only on processing time while setup time, 
transfer time, and queue time are neglected. All operating machines start their operations at the same 
time. 

(H.3) The demand rate is considered for both varying and constant variables.  
This optimization problem falls within the framework of the optimization system with semi-Markov 
jumps called stochastic optimal control problem, in which machines’ life times obey the non-
exponential distribution. In the next section, we establish the optimality conditions described by the 
Hamilton-Jacobi-Bellman (HJB) equation as candidate of the optimal control problem. 
 

3. Optimal Feedback Control 

In this section, our analysis covers the construction of an optimal feedback control structure that 
satisfies (2), (3), and (7), and determines the production rate u(t,x) with the minimum cost function 
described in (7). Moreover, it is closely related to the idea of a feedback control in which the control 
variable u(t,x) is chosen based not only on the time t but also on the state x(t). Let

[ ) [ ) 2
00 ,, ℜ×∈×= TtSTtQ  and ( ) Qt ∈x,  be the initial date. Let vi(t, x) denote the value function, i.e.: 

 
( )

( ) ( )
( )itJtv

itt

i ,,,inf,
,,

uxu
xu Α∈

=  
 

(8)

Using dynamic programming, the value function in (8) is generalized to the following theorem:   

Theorem 3.1 The stochastic control problem satisfies the system of partial differential equations: 

 ( )
( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

+−++= ∑
≠

∈ ij

j
ij

i
ii

iii

itt

i tvtptvtptfvvttgtv t xxuxu,xx xxu
,,,,min,

,, Α
ρ  (9)

at time t, the initial and boundary conditions are satisfied: 

( ) ( )( ) ( ) ( ) Qiitt ∈= ,for       , xxx χ,                               
( )( ) 0=Tvi xΤ,   

       (10)

In equation (9), the terms ( , )i
tv t x  and ( , )i

xv t x  denote the gradient of the value function with respect 
to time t and state variables x, respectively. 

Proof.  The proof of this theorem is presented in Appendix A.                          

    Remark 3.1. (i) The system of partial differential equations (9) is the well-known HJB equation; 
(ii) It depends not only on the state variable of the system, but also on their time variation because of 
the dynamics of semi-Markov decision processes such as pij(t). 
Hence, in order to characterize the optimal control, we review the concepts, and the following results 
represent some properties of the value function vi(t, x)  that are needed in order to address the main 
results on feedback control analysis. 
 
Theorem 3.2 (i) For each {0,1,..., }i I m∈ = , there exists a constant C1, such that the value function 
satisfies: 
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( )( ) ( )tTCttvi −≤ 1x,   for every ( ) Qt ∈x,    (11)

 
(ii) For each { }mIi ,...,1,0=∈ , there exists a constant CM, for every ( ) ( ) Qtt ∈xx ,,, , such that the 

value function satisfies the following condition: 
 

( ) ( ) ( )|||| xxxx −+−≤− ttCtvtv M
ii ,,  (12)

 
Proof. The proof of this theorem is presented in Appendix B.               
 
As we defined important measures, we finally considered the stochastic optimal control of a two-
machine flowshop in (8) with the initial condition (x(t), χ(t)) = (x, i). For this, we established the 
following verification theorem and requirements which meet the HJB equation (9).  In addition, vi(t, 
x) has a unique solution that is equal to the minimum expected total cost among appropriately defined 
classes of the admissible control law of the system.   
        
Theorem 3.3. Let ( ) QItvi ×∈x,  be a solution to (9). Then for all ( ) Qt ∈x,  

(i) ( ) ( )itJtvi ,;,, uxx ≤ for every admissible control system u(t,x). 

(ii) If there exists an admissible system ( )xu ,* t  such that 

( )
( ) ( )

( ) ( ){ }uxuxxu xxu
,,,minarg

,

* tfvvgt iii

itt
t ++∈

∈Α,
,  (13)

almost everywhere in t with the probability 1, then  

( ) ( )itJtvi ,;, *uxx =,        (14)

Proof. The proof of this theorem is presented in Appendix C.                      

The optimality conditions established in (9) lead to a feedback control. In practice, the feedback 
control is indispensable to handle the inaccuracies and uncertainties (including stochastic phenomena) 
that are present in design process, and to make full use of the capacity of the equipment (see Engell 
(2007)). 

4.  Dynamic System 

This section describes the dynamics of the manufacturing problem and explicitly relates the HJB 
equation to the control structure. Let us assume that each machine is subject to random failures and 
repairs and has two finite states χi(t): i = 1,2 (i.e., operational and unavailable state) with probability 
distributions Fi(t) and  Gi(t) to applicable to each state, respectively. Computing of the value function 
vi(t, x) and the production rate ui(t, x) includes all states.  

 
 Fig. 2. Transition graph of two-machine system with four states  



  102

Let { }2,1,0),()( =≥= ittt iχχ  be defined by the following expression: 

( )

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

loperationa is  themof None  if      0
down M and l,operationa is M  if      1
down M and l,operationa is M  if      2

loperationa are machinesBoth   if      3

21

12tχ  

 

(15)

Thus, the transition graph of finite states is shown in Fig. 2. 

To determine the probability and transition probability distributions of the two-machine system, we 
will replace two-state machines (state 0 and state 1) by four-state machines (state 0, state 1, state 2 
and state 3).  
The conventional implementation of state machines is based on the selection of successor states and 
the execution of each related action. The machine states are described as follows:  

 
State 0: the system is not operating (down); State 1: the system corresponds to the first machine, 
which is operating and available to produce under the limited buffer level 10 ( )x t B≤ ≤ ; State 2: the 
system corresponds to the second machine, which is operating and available to produce if  the buffer 
level x1(t) > 0; and State 3: the system is equivalent to the deterministic two-machine flow shop.  In 
this case, we assume that all transition times are not exponentially distributed.  
Using the reliability theory in Ross (2003), the dynamics of the two-parallel-machines model is 
described as similar to that of one equivalent machine as follows: 

 
( ) { }0 , at time gfunctionin is SystemPr ≥= ttP tχ  

( ) ( ) { }∏
=

≥=
2

1

0 at time gfunctionin is  MachinePr
i

t  t itPχ  

 

(16) 

Let  P3(t), P2(t), P1(t), and P0(t) be the probability that both machines are operational, only the second 
machine is operational, only the first machine is operational, and neither of them is operational, 
respectively. This results in twelve transition probabilities, as shown in Fig. 2. The derivative of the 
semi-Markov transition probability pij(t) is defined by equation (5) where i, j = 0,1,2,3. The 
calculation of Pi(t), and pij(t) is presented in Appendix E.  
In Fig. 2., at state 3: the future state of the system may be that both machines are “down” (3→0) or 
may be that either the first machine is “up” while the second is “down” (3→1) or the second is “up” 
while the first is “down” (3→2). At state 2: the future state of the system may be that both machines 
are “down” (2→0) or may be that either the first machine is “up” while the second is “down” (2→1) 
or both of them are “up” (2→3). At state 1: the future state of the system may be that both machines 
are “down” (1→0) or may be that either the first machine is “down” while the second is “up” (1→2) 
or both of them are “up” (1→3). At state 0: the future state of the system may be that both machines 
are “up” (0→3) or may be either that the first machine is “up” while the second is “down” (0→1) or 
the second is “up” while the first is “down” (0→2). 
The value function of two-machine flowshop is described by the HJB equation (9) with four states as 
follows: 
 

( ) ( ) ( ) ( ) ( )⎪
⎩

⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

+−+= ∑
=

3

0
0

000 .(.))(.

:0  stateAt  

j

j
j vtptvtdv.gv tt δρ

 (17)



T. Diep et al./ International Journal of Industrial Engineering Computations 1 (2010) 
 

103

( ) ( ) ( ) ( ) ( )⎪
⎩

⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

++−+= ∑
=

≤≤

3

0
1

1
1

11

0

1 .(.))((.))(min.

:1  stateAt  

12
1 j

j
jxxru

vtptvtuvtdv.gv t δρ
 (18)

( ) ( ) ( ) ( ) ( ) ( )⎪
⎩

⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

+−−++= ∑
=

≤≤

3

0
2

2
2

2
2

2

0

2 .(.))((.))()(min.

:2  stateAt  

12
22 j

j
jxxru

vtptvtuvtdtuv.gv t δρ
 (19)

( ) ( ) ( ) ( ) ( ) ( ) ( )⎪
⎩

⎪
⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

+−+−++= ∑
=≤≤

≤≤

3

0
3

3
2

3
21

3

0
0

3 .(.)(.)min.

:3  stateAt  

21

22
11 j

j
jxx

ru
ru

vtptvduvuuv.gv t δρ
 (20)

    
where δ(t) = 1 if i ≠ j; δ(t) = - 1  if i = j;  i, j = 0,1,2,3. 

 

5.  Hedging Point Policy with Feedback Control 

In this section, we describe the hedging point policy whose solution leads to the deterministic 
problem and bang-bang control characteristics. It is based on the HJB equation (9), which is linear in 
production rates and satisfies Bellman principle of optimality. The solution of the first-order partial 
derivative in (9) is not simple. To interpret the value function vi(t, x), the concept of viscosity solution 
is often used. For more information and discussion of the concept of viscosity solution, the reader is 
referred to Sethi et al. (2005) and to Fleming and Soner (2006). However, in this paper, we use a 
heuristic method in order to overcome the solution of the multivariable problem in (9). The idea is to 
divide the multivariable problem in (9) into two different problems with each one having a single 
control variable, and corresponding to Akella and Kumar’s optimal solution as in hedging point 
policy Akella and Kumar (1986). 
  
Further simplification of the equation (9) is addressed by determining a control u(t,x) through the 
following linear program: 
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subject to equations (2) and (3) above.  
The optimal feedback control (21) is designed to drive the system to the hedging point. If the system 
state is χ(t) = 0, at which all machines are down, we must have u(t,x) = 0. Whenever the system state 
is χ(t) = i, the linear program in (21) presents a real-time feedback controller, and the production rate 
is calculated at every time instant with χ(t) ≠ 0 either according to varying demand or to constant 
demand.  
Obviously, since (21) is linear in u(t,x), we obtain the following systems: 
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The point-x space at which the gradient of vi(t, x) is equal to zero is called the Hedging point z*(.). 
The optimal control problem (23) was established by Kimemia and Gershwin (1983), then Akella and 
Kumar (1986) established the optimal production rate 

2

* ( )u t  as follows: 

( ) ( )
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(24)

where the hedging point, 
2

* ( )z t  is determined by minimizing the following objective function:  

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
= ∫∞→

T

t
T

dsssg
T

tJ )(),(1lim, uxx  (25)

with respect to x2(t), 0 ≤ t < T (see Akella and Kumar (1986), Bielecki and Kumar (1988)). 

Applying a similar analysis to the optimal control problem (22), the optimal production rate ( )tu*
1  is 

established using the following proposition: 
 Proposition 5.1.  Let *( )y t  be a solution to (25) respect to 1( )y t ∈ℜ  such that y(t) = x1(t)+ x2(t). 

Then the optimal production rate ( )tu*
1  may be given as follows: 
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(26)

where    
 
( ) ( )tztytz *

2
** )(

1
−=  (27)

Proof. The proof of this proposition is presented in Appendix D.                        
In equation (26) the variable 

1

*( )z t  is the hedging point of the WIP on the first machine. From the 
maximum production capacities (r1 > r2), we assume that the hedging point of WIP

1

*( )z t  is a finite 
non-negative value.  
Fig. 3. presents the hedging point policy. It has been extended to the hedging point policy from 
results in Sethi et al. (1997) and contains four different zones which discuss in what follows.  

*
2z 2( )x t

(.) (0,0)u =

1( )x t

(.) (0, )u d=

1(.) ( , 0)u r=

( , )d d

1 2(.) ( , )u r r=

2(.) (0, )u r=
*
1z

                                                             Fig. 3. Hedging point policy 
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The control variable in the first zone is (0, 0) when *
1 1z x B< ≤ and *

2 2x z> ; here, there is no need to 

produce because the buffer level is high enough. However, when Bxz ≤< 1
*
1  and *

22 zx < , there is 
need to produce on the second machine only. As a result, the control variable in this second zone is 
(0, r2). The control strategy at the hedging point ( )*

2
*
1 , zz is (d, d), which results in minimum objective 

function (25) being used. In zone three ( *
110 zx <≤  and )*

22 zx < , there is a need to produce with 
( ) ( )21

* ,. rr=u ; here, the control policy should be set to rapidly reduce the shortage while keeping the 
upper-zero inventory in the buffer of the first machine. When Bxz ≤< 1

*
1  and *

22 zx = , the control 
strategy is (0, d) because of the condition +≤ 21 cc . Finally, in zone four, the control is (r1, 0).   

6. System Behaviour under the Optimal Policy 

     
In practice, it is difficult to determine an optimal control with all four discrete states. While the 
Kanban control is only considered when the system is deterministic, the CONWIP control is applied 
to systems with constant buffer levels (see Bonvik (1996)). In the system presented in this paper, we 
have both stochastic dynamics and a finite buffer level, and so we therefore intend to apply the 
heuristic control for each state as shown above.   
 
6.1 Analysis of state 1 of the system  
 

1x B<

1 0x =

1r 1u

1 1( )ST u

min
1BST

 
1x B<

1 0x =

2r 2u

2 2( )ST u

min
2BST

Fig. 4. Characteristic of the time saved of M1 
 

Fig. 5. Characteristic of the time saved of M2 

 
 
The control structure of the system is conditioned by machine 1. Only the first machine is operational 
while the second one is down. The behaviour of the surplus trajectory depends on  x1(t) at time t. The 
first machine is blocked when x1(t) = B. When x1(t) < B, the first machine is ready to produce and the 
characteristic of the time saved is as follows: 
 

( )
(.)

(.)

1

1
11 u

xBuST −
=  (28)

This characteristic time depends on the control policy u1 and the current WIP x1(t), as in Fig. 4. It 
means the time saved in which the first machine can only produce a number of parts under-bound B.  
 
Using (28), when x1(t) = 0, the minimum time saved is given by: 
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)(
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1 (.)
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If we decide on the control at time t (t is current time), the real time of the minimum time saved is 
determined by: 
 

TtSTtST B
real
B ≤≤+= 0,min

11    (30)
  
Example 6.1 Consider the system at time t; assume B = 10 parts, r1 = 0.2 part/time unit, x1(t) = 0,  
then: min

1BST  =  10/0.2 = 50 time units and real
BST1  = t + 50. It means that after 50 time units from t, the 

first machine has already produced 10 parts with maximal capacity u1 = r1 and it stops at 50 + t 
because the WIP is equal to upper bound B = 10.             
  
At the hedging point ( )tz*

1 , the production rate is equal to the demand rate. The time saved at the 
hedging point is also called the Hedging time dzSTz /*

1
*
1
= . For this policy du =*

1 , the time saved at 
the hedging point is determined by: 

*
*
1*

11 z
ST

d
B

d
zBST −=

−
=  (31)

6.2 Analysis of state 2 of the system 
 
The behaviour of this state is presented in Fig. 5. The control structure of the system is conditioned 
by machine 2. Only the second machine is operational, while the first is down. The behaviour of the 
surplus trajectory depends on x1(t) at time t. Because the first machine is down, the second machine is 
starved when x1(t) = 0. When x1(t) > 0 the second machine is available to produce and satisfy the 
demand d(t) at time t. Its time saved characteristic can be written as follows: 
 

( )
(.)

)(

2

2
22 u

txuST =  (32)

 
The production with the hedging point policy in (18) may be adopted, but it must depend on its time 
saved characteristic. Under a similar condition as in state 1, when  x1  = B, the minimum time saved 
and its real time are given by: 
 

22
)(

min

(.)
min

2
2 r

B
u

BST
tuB

=
⎭
⎬
⎫

⎩
⎨
⎧

=  
 

(33)

TtSTtST
B
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22

 (34)

 
The time saved at the hedging point is: 

d
zST

Z

*
2*

2
=  (35)

Remark 6.1 (i) The hedging times, *
iST  for i = 1,2, refer to the time saved in which the machine can 

produce a number of parts dSTi .* ; (ii) The components ( )ii uST , for i = 1, 2, refer to the time saved in 
which the machine can only produce in interval [0, STi(.)] with any policy ui; (iii)  Meanwhile, the 
terms ( ).min

iST , for i = 1, 2, refer to the minimum time saved that the machine can produce a number 
of parts ii rST .min ; (iv) The processing time of states 1 & 2 depends implicitly on the size of the buffer 
between the two machines (B) and the current WIP x1(t). 
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6.3 Analysis of state 3 of the system 
 
At this state, both machines are up, and the optimal control problem becomes a deterministic 
problem. Consequently, the optimal feedback control is considered. We then have the following three 
cases: 
 

a) If the buffer x1 = B is full, the choice of u1 depends on the capacity of the second machine. Here, 
the way to go is to produce with u1 = 0 because the second machine has an amount of time 
saved min

2BST  to produce ( ).. 2
min

2 uST B  parts. We can approximate the optimal policy for the second 
machine by using the model as in Akella and Kumar (1986): 
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This policy corresponds to the Kanban control, where the first machine is instructed to stop 
production.  

b) If the buffer x1 = 0 is empty, it must produce u1(.) = r1 because the second machine needs 1/r1  
time units before it can continue to produce with any policy u2(.), then dx1(t)/dt = - d(t) < 0 for 

1[0,1/ ]t r∈ . In this time interval 1[0,1/ ]r , the second machine is called a starved machine, and 
the production is only determined after 11/r  time units. 

c)  When the buffer x1(t) is neither empty nor full, the feedback optimal control in equations (18) 
& (20) is applied. Here, the policy may correspond to the CONWIP control, and the proper 
production path consists of responding to actual demands u1(t) = u2(t) = d(t) (i.e., corresponding 
to hedging point policy).  
 

6.4. Analysis of state 0 of the system 
This state corresponds to the case where both machines are down: dx1(t)/dt = 0, dx2(t)/dt < - d(t) < 0 
and the buffer level becomes constant. 

7. Simulation Results with constant demand  

This section aims to illustrate the validity of the results of the proposed model by using the numerical 
method with constant demand rate d(t). To that end, we consider a problem with a two-machine 
flowshop system producing a single-part-type (in Section 2). The dynamics of the system was 
described in Section 4, and it has four discrete states.  

The up-downtimes are distributed according to one of the following three probability density 
functions, referred to as reliability models: 

(a) Weibull, i.e., 

     ( ) ( )( )β1−ββ γ−βγ tttf W exp=  
 

This distribution is denoted as W(β, γ). 
(b) Log-normal, i.e., 
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This distribution is denoted as L(α, σ).

                   

 
(c) Gamma, i.e., 

   
( ) ( ) { }tttf G

0
0 exp β−
α

β 1−αα

Γ
=  

 

This distribution is denoted as G(α, βo).
  We ensure that as the failure rate increases, the functioning rate decreases, and the coefficient of 

variation, CV, is less than one. We then present the set of up-down times used in this example in 
Table 1, which also shows their coefficients of variation, CV (which take values less than one and are 
equal to CVW, CVL, and CVG with CVW = 0.93, CVL = 0.95, and CVG = 0.57), the MTTF (Mean Time 
to Failure) and the MTTR (Mean Time to Repair). The parameters of the system are as follows:  

- Maximal production rate r1 = 0.25, r2 = 0.225 

- Unit inventory cost of the internal buffer c1 = 0.5 

- Unit surplus cost of the finished product in the external buffer 2 1c+ =   

- Unit backlog penalty of the finished product and 2 2c− =   

- Discounted rate ρ = 0.65. 

- Demand rate d(t) = 0.145. 
We use the numerical method based on the Kushner and Dupuis (2001) approach because it is very 
difficult to solve the HJB equation with an analysis model. Let  ∆xk > 0 and ∆t > 0 denote the lengths 
of the finite difference intervals of the variables x and t, respectively. The first-order partial 
derivatives of the value function in equations (17)-(20) are replaced by the following expressions:  
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  (37) 

 
For details of this method, the reader is referred to Kushner and Dupuis (2001). 

Table 1  
Down-uptime distributions considered on Machines 1 & 2  

Case Uptime Downtime MTTF 

1/λ 

MTTR 

1/μ 

A L (4.3, 0.80) W (1.08, 0.009) 100 10 

B G (3.15,0.0315) W (1.08, 0.009) 100 10 

 

The results of this example are illustrated in Fig. 6 to Fig. 11 with given internal values of x1 ⊂ [0, 
20], x2 ⊂ [-20, 20], and t ⊂ (0, 500).  
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7.1 Interpretation of the results for case A in Table 1 
This corresponds to case A in Table 1 above. Fig. 6 and Fig. 7 represent the production rates u1(t,x2) 
and u2(t,x2) versus surplus level x2 and time t at x1 = B = 20 parts.  Fig. 8 and Fig. 9 represent the 
production rates  u1(x1, x2) and u2(x1, x2) versus WIP x1 and surplus level x2  at t = 205 time units, this 
time t is chosen arbitrarily from within the time interval (0, 500).  Simulation results correspond to 
the hedging point policy as in equations (24) and (26). In Fig. 6, the production rate of M1 u1(t,x2) is 
equal to zero, which corresponds to zones 1 and 2 in Fig. 3 (i.e., x1 ≥  *

2z ). In Fig. 7, the production 
rate of M2 u2(.) is equal to maximum at (r2 = 0.225) while the surplus level x2 is less than zero (zones 
2 and 3 in Fig. 3), and is equal to d = 0.145 when x2 = *

2z =0.95 parts. However, this rate is equal to 
zero when the surplus level is more than 0.95 parts over time (0, 500).  
In Fig. 8, the production rate u1(.) is equal to maximum (u1 = r1 = 0.25) when the WIP x1 = 0, and is 
equal to zero if Bxz ≤< 1

*
1 , which corresponds to zones 1 and 2 in Fig. 3. Fig. 9 presents the 

production rate of M2 (u2(x1,x2)) versus x1 and x2.  The optimal policy at the hedging point *
2z  is found 

within the whole interval (0,500) with *
2u = d = 0.145 and *

2z  = 0.95 parts. The value of ( ).*
kz  is 

computed as follows: 

( )
[ )
( )

( )( ) 2,1for        ,minarg 3

20,20
20,0

*

2
1

==
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⊂
ktvtz

x
xk x  (38)

We also obtain the hedging point on the first machine ( ) 0*
1 =tz , and then the value ( ) ( ) 95.0*

2
* == tzty  

parts.   

 
Fig. 6  Optimal Production Rate for u1(.) on M1 

versus t and x2 at x1 = B 
Fig. 7 Optimal Production Rate for u2(.) on M2 

versus t and x2 at x1 = 0

 

  

Fig. 8  Optimal Production Rate for u1(.) on M1 
versus x1 and x2 at t = 205 time units 

Fig. 9 Optimal Production Rate for u2(.) on M2 
versus x1 and x2 at t = 205 time units 
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Simulation results show that the optimal control law is similar to the bang-bang control problem 
when the surplus level varies in time t < T < ∞. Note that the hedging point policy *

2 ( , *)u t d=z  is 
valid over time. The value of the optimal production rate u2(.) is greater than zero when the system is 
in state 3 (i.e., both machines are up), and is equal to zero when the system in states 0 and 1 (i.e., 
machine M2 is down). On other hand, the  
value of u1(.) is expressed analogically as u2(), but it is equal to zero when the system in states 0 and 
2.  When the system is in state 0, 1, or 2 the heuristic policy described in sub-section 6.1 and 6.2 is 
used. As results, the optimal policy agrees with the analytical model developed in Akella and Kumar 
(1986). 
 

7.2 Interpretation of the results for case B in Table 1 
The results of this case are similar to the case when the up-downtime obeys log-normal and Weibull 
distributions, as in Fig. 10 and Fig. 11 because we use the same MTTF and MTTR. Both cases A and 
B in Table 1 (i.e., where log-normal and gamma distributions are used for machine uptimes) and in 
Fig. 8 and Fig. 10 show that the machine must produce at a maximum production rate u1 = r1 when 
the WIP level is equal to zero. 

  
Fig. 10  Optimal Production Rate for u1(.) on M1 

versus x1 and x2 at t = 205 time units 
Fig. 11 Optimal Production Rate for u2(.) on M2 

versus x1 and x2 at t = 205 time units 

8. Simulation Results with varying demand 
 

 This example is to illustrate the optimum cost values for different demand scenarios with the varying 
demand rate d(t) for which data is given in Table 2. The parameters of the system are the same as in 
constant demand rate with case A in Table 1. Results of this example are shown in Fig. 12 and Fig. 13 
as the optimal production rates for M1 and M2, u1(.), u2(.) versus the time and the surplus level at x1 = 
B = 20.  At x1 = B = 20 parts, the production rate for the first machine shown in Fig. 12 is equal to 
zero for every time t and x2. In Fig. 13, the production rate of the second machine u2(.) is equal to the 
maximum value when the surplus level x2 is less than zero, and is equal to zero when the surplus level 
is greater than the hedging point value z2(t). This value z2(.) is equal to 0.95 when u2(.)= d(t) over 
time (0, 500). The production rate u2(.) fluctuates in time because of the varying demand d(t) with the 
bang-bang control, as in Fig. 13. 

 

Table 2  
Data of the varying demand rate 

t  0-100 100-200 200-300 300-400 400-500 

d(t) 0.125 0.125 0.145 0.175 0.175 
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Fig. 12  Optimal Production Rate for u1(.) on M1 
versus t and x2 at x1 = B 

Fig. 13 Optimal Production Rate for u2(.) on M2   
versus t and x2 at x1 = B 

9.  Conclusions 

9.1 Summary and extensions 
In this paper, the optimal stochastic production problem for a two-machine flowshop, single-product 
manufacturing system has been considered, with machines subject to random breakdowns and 
repairs. Using Markov properties, we have formulated a new model in the form of a stochastic control 
problem by adopting Rishel’s assumptions to model discrete machine states, which are characterized 
by semi-Markov jumps, and by using a dynamic programming approach to make decisions at 
different stages over time. The objective was to find the production rate for upstream and downstream 
machines while minimizing surplus costs by using a semi-Markov process (i.e., Markov properties). 
The optimality conditions were established using Pontryagain’s principle, and led to the HJB 
equation. In effect, the production control is the feedback control, for the control variables of two 
production rates are linear over time.  
 
The heuristic approach presented seeks to improve the complexity of the HJB equation when the 
system has stochastic control variables and it makes the problem deterministic. We also provided an 
analysis of the hedging point policy for the feedback controller. We applied our proposed model to a 
real world manufacturing system with machines having Weibull, log-normal, and gamma 
distributions. In what follows, we discuss the other extensions in our model, which is very important. 
 
 While the classical Markov model (see Rishel (1975), Davis(1984)) has been considered as a 
stochastic optimal control with homogenous Markov jumps, the Boukas proposition (see Boukas 
(1988)) gave an analysis of stochastic problems with non-homogenous Markov jumps. Obviously, 
both homogenous and non-homogenous Markov jumps have constant transitions. That led to a model 
that is not time-dependent even through the control problem is considered in continuous time. 
However, we have extended to the stochastic problem in the continuous-time optimal problem with 
semi-Markov jumps, i.e., the transition rates between the machine states as well as the transition 
probabilities are time-dependent. Hence, the optimality conditions do not depend only on the system 
states, but also on the time t. This first extension can enable us to consider the failure and functioning 
rates as being functions of time instead, and to thereby improve the coefficient of variation CV for the 
up-downtime distribution which is less than one. This is very different from the Markov framework, 
and can lead to a high system performance (see Li and Meerkov (2005)). A rich body of works exists 
in the literature, examining semi-Markov processes, and these go back fifty years. They include the 
following: A detailed theoretical analysis of semi-Markov processes is described in Howard (1971); 
Glynn (1989) considered a generalized semi-Markov process (GSMP) of discrete events. Abbad 
(1991) presented the semi-Markov control problem (SMCP) using an infinite horizon approach with 
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discounted rewards and showed that the SMCP and the Markov control problem (MCP) are of the 
same ergodic class. Recently, D'Amico et al. (2005) and Janssen and Manca (2007) presented a 
generation of applied semi-Markov processes which can apply to economic and financial issues. They 
showed that a semi-Markov process is the renewal process. In our model, we used definitions of 
semi-Markov processes found in Becker et al. (2000) and the assumptions of Rishel (1975) to 
characterize the discrete events of the system, such as machine breakdowns and repairs. 
   
The second extension considers the control problem in deterministic horizon with discount rate. This 
extension is neither similar to the Rishel formulism nor to the Boukas extension; Rishel considered 
the problem in a finite horizon, without a discounted rate while Boukas considered it in an infinite 
horizon, with a discounted rate. Consequently, the proposed model looks at a control of the system in 
order to meet either constant or varying demand. 

 
9.2 Future Research 
 
   This new model can be applied to a large-scale system (job shop) with machine maintenance and 
setup problems, using the Just in Time (JIT) concept.  
 

Appendix  

A. Proof of Theorem 3.1 

 
To prove this theorem, we use Rishel’s assumptions (see Rishel(1975)). For that, we consider a 

system with two different events, as follows: 
(1) Given χ(t) = i, the probability that there are no jumps of χ(t) at time t in the interval  [0, T]: 

∫ −−
T

t
ii dstsp )(1  

 
(A.1)  

 (2) Given χ(t) = i, the probability that there is the first jump of χ(t) at time t in the interval [0, T]:  

∫ −
T

t
ij dstsp )(  

 
(A.2)  

 Next, we consider the process in the finite interval  [0, T]  and consider events that have χ(t) exactly 
m jumps, m = 0,1,…,for all t ≤ T. Assume that T is bounded, with probability 1; thus event χ(t)  has 
more than a finite number of jumps in [0, T],  has probability 0 (see Rishel (1975)). Let ( )P,,ΦΩ be 
the probability space. Let ( )ωη ,tm  be the characteristic function of the set Ω∈ω  which χ(t,ω) has 

exactly m jumps in ( )[ ]ωTt, . Let { }ittX i === )(,)( χxx . Then 

( )
( ) ( )

( ) ( ) ( )( )∑ ∫
∞

=

−−

∈
⎥
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⎤
⎢
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⎡
==

0

)(

,,
)(|,)(min,

m

it
T

t
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i XtXdsssgetEtv χρη uxx
xu Α

 
 

(A.3)

Using equation (A.1) for the probability of no jump from i  to  i at s: 

( ) ( )
( ) ( ) ( )( ) =⎥

⎦

⎤
⎢
⎣

⎡
=∑ ∫

∞

=

−−

∈ 0

)(
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)(|,)(min
m
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T

t
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XtXdsssgetE χρη ux

xu Α
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( ) ( )
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( ) ( )

( ) ( ) ( )( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−= ∫∫ −−

∈

T

t

i
ii

T

t

ts

itt
dssvtspdsssge xux

xu
,)(,min

,,

ρ

Α
          

 
 
 

(A.4)

 
Using equation (A.2)  for the probability of  the other jumps from i to j, the terms in equation (A.3) 
can be written by induction, starting with: 

( ) ( )
( ) ( ) ( ) ( )∑ ∫∫

≠

−−
−∈

⎥
⎦

⎤
⎢
⎣
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==−

m
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T
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dsjssdzgesEtsp χη
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ρ ;|.)()(min 1,,
xx
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( ) ( )

( )∑∫
≠

∈
−=

m

ij

ij
T

t
ijitt

dsssvtsp )(,)(min
,,

x
xu Α

 (A.5)

Combining eq. (A.4) and eq. (A.5) yields 

( )
( ) ( )

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

−+= ∑∫∫ −−

∈

m

j

ij
T

t
ij

t

ts

itt

i dsssvtspsdsgetv )(,)()(.inf,
,,

xx
xu

δ
Τ

ρ

Α
 (A.6)

where  δ(s) is an indicator function  δ(s) = -1 if i = j, δ(s) = 1 if i ≠ j. 
 
Let h(x,u,s) be a continuous function defined by 

( ) ( ) ( ) ( )∑ −+= −−
μ

ρδ
j

ij
ij

st ssvtspesgsh )(,)()(,,, xuxux  (A.7)

Substituting (A.7) in (A.6) yields  

( )
( ) ( )

( ) ( )∫ −−

∈
=

Τ
ρ

t

ts

itt

i dssshetv )(),(min,
,,

uxx
xu Α

 (A.8)

where the minimization is over all functions u(s,x), Tst ≤≤ , such that (.) ( , )t i∈Au in Definition 2.1 
and such that x(s) and χ(s) satisfy (4), (5) and (6). We may split the integral at any value of small 
increment Δt > 0  to obtain: 

( )
( ) ( )

( ) ( ) ( ) ( )∫∫
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−−
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∈
+=
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∈ ∫ xux
xu
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(A.9)

Since h(x,u,t) is a continuous function, using the Taylor series on its first variable, the integral in 
(A.9) is approximately h(x, u, t)Δt. Therefore we have: 

( )
( ) ( )

( ) ( ) ( ){ }tOttttvetthtv it

itt

i Δ+Δ+Δ++Δ= Δ−

∈
)(,,,min,

,,
xuxx

xu

ρ

Α
 (A.10)

In (A.10), the term O(Δt) denotes a collection of higher-order terms in tΔ .  
Now, using the following Taylor expression:

  
...!3/!2/1 32 +−+−=− yyye y  (A.11)
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substituting (A.11) into (A.10), then for small Δt, (A.10) becomes, approximately 

( )
( ) ( )

( ) ( ) ( ){ }xxxuxx
xu

&,,,,min,
,,

tvtvthtv i
x

i

itt

i
t ++=

∈Α
ρ  (A.12)

where  

( ) 0lim
0

=
Δ
Δ

→Δ t
tO

t
 

(A.13)

Remark A.  (a) The term ( ))(, ttttvi Δ+Δ+ x in (A.10) is the current value function at time tt Δ+ . (b) 
The result of (A.12) holds for the present value function ( ))(, ttvi x for deterministic horizon optimal 
control problems defined by equation (8). (c) The HJB equation (A.12) derived from Bellman 
principle of optimality obtains on time scales. 

B. Proof of Theorem 3.2 

This proof has been extended to the optimal control problem with discounted cost from results of 
Chapter III in Fleming and Soner (2006). Therefore, to prove that ( , )iv t x  is convex in (t, x), it 
suffices to show that ( ) ( )itJtJ i ,,,,, uxux =  is jointly convex in (t, x, u).  Let 
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From (7), we get 

( ) ( ) ( )∫ −−=
T

t

ts
u

i dsssgeEtJ )(),(,, uxxx ρ

 

               

( ) ( )( ){ }∫ −−+−−+−+−− −−++=
T

t

ts
u dsscscsscceE )()()()( xxxxρ

 

                
( ) ( ) ( ){ }∫ −+−−−+ ++≤

T

t

ts
u dssseEcc )()( xxρ

 

               ( ) ( )∫ −−−+ +≤
T

t

ts
u dsseEcc |)(| xρ  

 

where      
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s

t

t dfts τττ,χ )()()( )( xxx  
 

Note that:    ( )∫+≤
s

t

t dfts τττ,χ )()(|)( )( xxx|
 

Chosen u(t) = d(t) such that x(s) = x(t) to obtain: 
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( ) ( ) ( )∫ −−−+ +≤
T

t

ts
u

i dsseEcctJ |)(|,, xux ρ

 

                
( ) ( )tTCdssEcc

T

t
u −=+≤ ∫−+

1|)(| x  

 
 
 

(B.1) 

The coefficient C1 depends on initial value x(t) such that ( ) ( )tccC x−+ +=1 . 
From (B.1), it is shown that: 

( )
( ) ( )

( ) ( )tTCtJtv i

itt

i −≤=
∈ 1,,

,,min, xxx
xu Α

  

is convex function for every (t,x). This proves (i). 
 
Now we proceed to prove that the value function ( )x,tvi satisfies the Lipschitz condition for every 
(t,x). First of all, the ( )x,tvi  must satisfy the variable x. For any control ( ) ( )itt ,, Α∈xu , let: 

( )∫+=
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t

t dfts ττττ,χ )(),()()( )( uxxx  
 

( )∫+=
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From x(t) = x, xx =)(t , we can rewrite: 

( )∫+=
s

t

t dfs ττττ,χ )(),()( )( uxxx  (B.2) 

)()( ss xxxx +−=  (B.3)

Then, 
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(B.4) 
Since this is true for every ( , ) ( , )t t i∈u x A , it follows that: 

( ) ( ) ( ) ( )tTcctvtv ii −−+≤− −+ xxxx ,,
 

                           ( )tTC −−= xx2  

 

(B.5)

Next, let Ttt << . Let ( ).*x  be the optimal trajectory for initial date (t,x). From expression (8), we 
can write: 
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Using (B.1), the convex function of ( )** ux ,,tJ i  becomes: 

( ) ( ) ( )ttCdsssgeEtJ
t

t

ts
u

i −≤= ∫ −−
3))(,)((,, **** uxux ρ ,

        
 (B.7)

where ( ) ||3
*x−+ += ccC , x* is initial value of x*(s) for tst ≤≤ . 

 
Substituting (B.7) into (B.6) to obtain: 
 

( ) ( ) ( )( ) ( )xxxx ,,,, *
3 tvttvttCtvtv iiii −+−≤−  (B.8)

Using (B.5), the following term is given: 
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(B.9)

where ( )( )**
4 ,,max xxsfC i= , that means choosing u(t) = r if (r - d) > d. If not, u(t) = 0. 

Therefore, from (B.8) & (B.9) we have: 

( ) ( ) ( )( ) tttTCCCtvtv ii −−+≤− 423 .,, xx  (B.10)

Note that inequalities (B.5) and (B.10) are in Lipchitz form for ( ),iv t x . In the sequel, let us consider 

(t,x), ( ) [ ] [ ] 1,0,0, ℜ××∈ BTxt , for any control u(t, x): 
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By combining (B.4),(B.5) and (B.10), expression (B.11) becomes: 

( ) ( ) ( ) ( ) ( ) ( )xxxxxx ,,,,,, tvtvtvtvtvtv iiiiii −+−≤−                                 

                          ( )xx −+−≤ ttCM  (B.12)

where:  

( )( )tTCCCCM −++= 243 1   

Therefore, the Lipchitz condition is satisfied for every (t, x). This also proves (ii).  

        

C. Proof of Theorem 3.3 

  To prove this theorem, we recall Definition 2.1. Let (Ω, Φ, P) be a probability space for t ≤ s ≤ T, 
and (t, x) be initial date. Let [ ] 2,0 ℜ×∈Φ T , the following assumptions hold: 
(a) ( ), ( )tt e ρ ϕ−Φ =x x  for  2ϕ ∈ℜ  and ∞<< T0 ; 

(b)  ∞<∫ −
T

t

t
x dsuxtgeE ),,(ρ . 

(i) Let ( )it,Α be any admissible feedback control with the initial vector x(t) = x. From ( ) ( )itt ,, Α∈xu
, equation (9) becomes: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ≥++−+
j

j
ij

iiii ,gtvtpttvtftvtvt 0,,,,,, uxxxuxxx x δρ  (C.1) 

Put g(t,x,u) on the right side to obtain:  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ −≥+−+
j

j
ij

iiii ,gtvtpttvtftvtvt uxxxuxxx x ,,,,,, δρ
 (C.2)

From Assumption (a), by applying Dynkin’s formula to ( )x,tvi
 in (C.2) (see chapter III in Fleming 

and Soner (2006)) : 

( )( )[ ] ( ) ( )∫ −− −≥−
T

t

siiT dstgetvTTvEe uxxx ,,,, ρρ  (C.3)

Here, there are two ways to get results: by using the boundary condition ( )( ) 0, =TTvi x , which is our 
finite time problem, or by sending a limit  ( )( )[ ]TTvEe iT

T
x,lim ρ−

∞→
 that tends to zero for the infinite 

horizon problem. Then, the equation (C.3) applies: 

( ) ( )uxx ,,, tJtv ii ≤  (C.4)

(ii) In the proof of (i), equality now replaces inequality in (C.4).  
These complete the proof of Theorem 3.2.                    
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D. Proof of Proposition 5.1. 

    Let y(t) ∈ ℜ1 be the state variable of (25). By using dynamic programming, the optimal control in 
(25) becomes the following linear program: 

( ) ( )

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∈ t
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,. Αu

 (D.1)

Since the relation y(t) = x1(t) + x2(t), its derivative is given by: 
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Substituting (D.2) into (D.1) we obtain: 
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 (D.3)

Because  y(t) ∈ ℜ1  the value function  vi(.) is convex in y. The optimal control problem (D.3) is 
established in Akella and Kumar (1986), where the optimal production rate is )(*

1 tu with hedging point
)(* ty . Both machines are controlled simultaneously, and their optimal policies are validated at time t 

together. Therefore, combining the optimal solutions in (25) and (D.3) with the relationship y(t) = 
x1(t) + x2(t), we can obtain the hedging point )()()( *

1
**

1 tztytz −= using )(*
1 tu .  

 
This completes the proof of Proposition 5.1.                        

E. Determination of Pk(t) and pij(t) 

Determination of probability distribution Pk(t) 

( ) ( ) ( )tGtGtP 210 .=  
( ) ( ) ( )tGtFtP 211 .=  
( ) ( ) ( )tFtGtP 212 .=  
( ) ( ) ( )tFtFtP 213 .=  

(E.1) 

(E.2) 

(E.3) 

(E.4)

Let pk(t), k = 0, 1, 2, 3 be the density functions of Pk(t) as follows: 

( ) ( ) 3,2,1,0; == k
dt

tdPtp k
k  (E.5)

Determination of derivative of transition probability pij(t) 

Based on equation 5, we have: 

( ) ( ) [ ]∏
≠

∈−=
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jkij kjitptPtp 3,2,1,0,,;)(1)(
  
 (E.6)
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