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1. Introduction

In long-established inventory models, it is often assumed that the purchasing cost for the items is paid
by the retailer to the supplier as soon as the items have been received. In practice, a delay period known
as trade credit period is offered by the supplier to the retailer, in paying for purchasing cost. Up to the
end of the trade credit of a cycle, the retailer is free of charge, but he/she is charged on an interest for
those items not being sold before this end. During the trade credit period, the retailer can accumulate
revenues by selling items and earning interests. Goyal (1985) is the first person who developed the
EOQ model under conditions of permissible delay in payments. Shah et al. (1988) studied the same
model, incorporating shortages. Later on, Aggarwal and Jaggi (1995) discussed the inventory model
considering deterioration and permissible delay in payment. Other motivating mechanisms in this
research area are those of Teng (2002), Ouyang et al. (2006), Khanra et al. (2011), Singh et al. (2011),
Teng et al. (2012), Singhal & Singh (2013) and Singh and Sharma (2013).
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Deterioration of goods plays an important role in inventory system since in real life situations most of
the physical goods deteriorate over time. Foods, pharmaceuticals, drugs, radioactive substances are
some examples of items in which sufficient deterioration can take place during the normal cargo period
and thus it plays an important role in analyzing the system. Generally, deterioration is defined as decay,
damage or spoilage and obsolescence, which result in decrease of value of the original one. Ghare and
Schrader (1963) presented the first model for decaying items. Covert and Philip (1973) extended their
model considering Weibull distribution deterioration. Raafat (1991) presented a survey of literature on
deteriorating inventory models. Hariga and Benkherouf (1994) proposed an inventory model for
deteriorating items and later on Goyal and Giri (2001) provided a detailed review of deteriorating
inventory literatures. Some other models dealing with the same issue are Yang and Wee (2006) and
Kumar et al. (2012).

Many business practices reveal that the presence of a larger quantity of goods displayed attract
customers to buy more quantity. This phenomenon implies that the demand may have a positive
correlative with stock level. As Levin et al. (1972) observed that ‘‘large piles of consumer goods
displayed in a supermarket will lead the customer to buy more. Yet, too much piled up in everyone’s
way leaves a negative impression on buyer and employee alike”. Gupta and Vrat (1986) and Baker and
Urban (1988) were the first to initiate a class of inventory models in which the demand rate is inventory
dependent. Mandal and Phaujdar (1989) then developed a production inventory model for deteriorating
items with uniform rate of production and linearly stock-dependent demand. Other papers related to
this research area are by Zhou and Yang (2005), Lee and Dye (2012).

Most of the existing production inventory models ignored the presence of the imperfect production
process. However, in real life situation, it is often observed that some of the items may be imperfect in
nature, which are reworked at a cost to make them perfect. The production of defective items may be
due to machine breakdown, labor problem, etc. Rosenblatt and Lee (1986) presumed that the time
between the beginnings of the production run until the process goes out of control is exponential and
that defective items can be reworked instantly at a cost and kept in stock. Kim and Hong (1999)
determined the optimal production run length in deteriorating production processes.

Salameh and Jaber (2000) developed an economic production inventory model for items with imperfect
quality items. Goyal and Barron (2002) extended the model presented by Salameh and Jaber's (2000).
An inventory model is developed by Chung and Hou (2003) to obtain an optimal run time for a
deteriorating production system with shortages. Yu et al. (2005) generalized the models of Salameh and
Jaber (2000), considering deterioration and partial backordering. Later on, Kang (2010) presented an
inventory model considering trade credit and items of imperfect quality. Recently, Sarkar and Moon
(2011), Singh and Singh (2011), Sarkar (2012) and Singh et al. (2012) established some motivating
inventory models with imperfect production processes.

An enormous work has been done in the field of trade-credit. Many previous economic order quantity
inventory models are developed with trade-credit, a very few production inventory models are
developed under allowable delay in payment. In addition, the inventory models for perishable items
with imperfect production, stock dependent demand under trade-credit in which production rate
depends on demand factor are much rare. Therefore, the present model is developed with these unique
features. This model is an extension of the model Sarkar (2012) by considering deterioration and
demand dependent production. The most favorable solution of the proposed model not only exists but
also is unique. To obtain the optimal solution some lemmas are provided and with the help of
sensitivity analysis, the effect of change in the parameters on the optimal policy is also disclosed.

2. Assumptions and notations
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The following assumptions and notations are taken to discuss the model.

Assumptions

1. The inventory organism deals with a single type of items.

2. The replenishment rate is finite.

3. The delay in payment is offered to the retailer.

4. The demand is stock-dependent.

5. There is no repair or replacement of the deteriorated units.

6. Shortages are not permitted.

7. The lead time is zero.

8. The production of imperfect items is considered.

Notations

I;(t)  On-hand inventory at time ¢ where 0 < ¢ < ¢; (units)

I;(t)  On-hand inventory at time t where #; <¢ < T (units)

p Selling price per unit ($/units)

D Stock-dependent demand i.e. D =a+mli(t), a> 0; m> 0 (units)
T Length of inventory cycle (year)

P Production rate (units per year), defined as P = ka, and k>1

R The 1* offered trade-credit period without any charge (years)

S The 2™ offered trade-credit period with charge (years)

I, Rate of interest earned due to financing inventory (/year)

I Rate of interest charged due to the credit balance for [R, S] ($/year)
1> Rate of interest charged due to the credit balance for [S, 77 ($/year)
Cy Ordering cost per order ($/order)

C Production cost ($/unit)

Cq Deterioration cost ($/unit)

Ch Holding cost ($/unit item/unit time)

G Purchasing cost ($/unit)

C, Rework cost for the defective cost ($/item)

Zi Total cost of the system for i={1,2,3} ($)

3. Formulation of the Model

We consider an inventory model with stock-dependent demand model with different types of delay

period. Depending on this policy, there may arise some cases:

Case (1): If the retailer pays the purchasing cost within the time R (i.e., 7 < R), then there is no interest

charged.

Case (2): If the retailer pays the purchasing cost after R and before S (i.e., R < T'< S), then the supplier

can charge a rate of interest I to the retailer.
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Case (3): If the retailer pays the purchasing cost after S and before T (i.e., T > S), the supplier can
charge a rate of interest I, on the unpaid balance (see Figs. 1-3).

Inventory Level
A

Li(t) \ (1)

»
>

t T R Time

Fig. 1. Inventory versus time (Case-1: T< R)

Inventory Level

A

i (0

»
»

t R T S Time
Fig. 2. Inventory versus time (Case-2: R< T'<S)

Inventory Level
A
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»
»

t R S T Tlme

Fig. 3. Inventory versus time (Case-3: 7> §)

Now, the present state of the on-hand inventory is described by the following differential equations:
1'(t)=P—D(,(t))—0I,(t) =ka—(a+ml (1)) -0I(t), 0<t<t (1)

and
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L'(t) = -D(I,(t)) - 01,(t) = —(a + mL,(t)) - 0L,(t), 4<t<T (2)
with boundary conditions /,(0) =0 and 1,(T)=0.
The solutions of the equations (1) and (2) are given as follows:

(k=Dar oy 3)
Il(l‘)zm[l—e :|, OStSt]
and
__a ~(m0)(i-T) _ <t< “4)
12(t)—(m+9)|:e 1. t1<t<T
Since /,(t,) =1,(t,), we have
_ 1_ e(erH)T (5)
(k 1)a |:1 _ e*(m+:9)t1 :| — a |:ef(m+:9)(t177’) _ 1:| . [l — 1 ln 1 _ ( ) .
(m+6) (m+6) (m+0) k

Now, different costs of the inventory system are as follows:

Ordering cost is OC and is given by

oc=C4 (6)
T

Inventory holding cost is HC and is given by

Colf r G
HC =+ [t + [ 1,(tydt | = HC=—+
0

e o,

Deterioration cost for deteriorating items is DC and is given by

T

(m+6) | 7

4

C, | t co|l a a(kt,~T) |
DC == |01 (t)de + | 01,(t)dt | = DC==22| — L l(k—1)e "M ol gl S 010 (8)
Th 1 I 2 T (m+9)2{( ) }
Production cost is PRC and is given by
4 9

PRC =< [ par =54, ©)

T 0
Purchasing cost is PUC and is given by

C, 1 C kat (10)
PUC =2 [ Pdr=-2"2

T T

Along with the trade credit, the paper considers the production of imperfect items. The lifetime of
defective item follows a Weibull distribution defined aswy/(t) = at”, f#>—1, where o, p are two
parameters and t is the time to failure. Hence, the total number of defective items is:

, 11)
_Iw(r)dr:| | tl/m (
0 dt = ka l—e[ﬁ”] .

The rework cost is RC and is given by
—Lt +1 12
Rcza_Nzﬂ[l_e[mJ'” J (12

N = }Pt//(t)e

T T

Now, for different delay periods:
Case(1): T<R

In this case, interest earned is IE; and is given by

L

IE, = %U(rl —1)D(1,())dt + JT'(T —1)D(1,(r))dt + (R - T){ID(II (1))dt + jD([2 (t))dtH -

0 4 4
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- -1
lElz%[(R—T+zl){azl+m(k ar, , mik )a(e*"’*g”l—1)}+R{a(r—zl)+ ma_ (et )

(m+9) (m+9)2 (m+9)2

ma(T—tl)}_{ﬂlerm(k—l)atlz m(k—1)ate "’”)ﬁ+m(k-1)a(ew),l_l)}

C(m+6) | |2 2(m+6) (m+6)° (m+06)
2 2 2 2
_ a(T _tl ) " ma ~ (tle{erH)(trT) _T) + ma . (e—(erH)(tlfT) _1)_ nm(T _tl ) .
2 (m+6) (m+06) 2(m+6)
In this case, interest charged is IC, and is given by

IC, =0.

Case (2): R<T<S

In this case, interest earned is IE, and is given by

IE, = pT]"U(t1 —t)D(1,(t))dt + ]'(T -t)D (1, (z))dz]-

pL . m(k—1)at, . m(k=1)a; (.o, ma o1 _ma(T—tl)
IEz—p?[tl{atl. 10 (medy (e< )_1)}+T{a(T—tl)+(m+6)2(e% )o7) 1) (m+6)}
) {ﬂ m{k=Nar’ m{k=Date ™" m(k-1)a e _1)}

2 2(m+6) (m+t9)2 (m+t9)

—_ a(T22—l‘12) I ma z(tle4m+9)(tr7) _T) +ﬂ3 (e%mm)(trr) _1) _M |
(m+6) (m+6) 2m+0)

In this case, interest charged is IC, and is given by

1,C, %
IC2: cl P

:M R _T_ 1 . 7(m+6')(R T) .
T(m+¢9) (m+¢9) (m+¢9)
Case(3): T>S

In this case, interest earned is IE3 and is given by

ﬁ' (t, =)D (1, (1)) dt+J. ~t)D(1 (t))dt} :

15, =Pl + m(k—V)at, m(k —1)2“( e 1) 7 a5 1) £ 0T ko)
T (m+6) (m+6) (m+6)
ma(S—tl)}_{atlz_‘_m(k—l)atl2 +m(k—l)atle{mm)" . m(k—l)a(e,(,,ﬁg)tI _1)}

T (m+0) [ |2 2(m+o) (m+6)  (m+0)
_ a(Sz _tlz) + ma (te (m+6)(4,-T _Se ~(m+0)(S-T) )+ ma (e—(m+9)(tl—T) _ef(mm)(sfr))_ma(S2 _112) '
2 (m+0)2 (m+9)3
In this case, interest charged is IC; and is given by
T 7(m+6')(S7T)
ic, = 12Cr jlz(t)dt:—lfch’“ s_r-—1 ¢ :
T < T(m+¢9) (m+¢9) (m+¢9)

Thus, the total average cost for case (1): is Z;(T) and is given by,
Z(T)=0C+HC+DC+PRC+PUC+RC+IC, -IE, .

The total average cost for case (2) is Z»(T) and is given by

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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Z,(T)=0C+HC+DC+PRC+PUC+RC+1C, - IE, 20)

The total average cost for case (3) is Z3(T) and is given by

Z,(T)=0C+HC+DC+PRC+PUC+RC+1IC,-1IE, . @D

Our objective is to minimize the total cost of the inventory system. The necessary conditions for the
existence of the optimal solutions are

dzZ,(T) _ 0 (22)
dr ’

dz,T) _, (23)
dr ’

dzy(T) _ 0 (24)
dT

Using :Ehe software Mathematica-8.0, from eq. (22) to Eq. (24) we can determine the optimum values of
T =T:,where i=1, 2, 3 and the optimal value Z;(7; ), where i=1,2,3 of the total cost can be determined
by (21) provided they satisfy the sufficiency conditions for minimizing Z(7; ), where i=1, 2, 3 given by

d’zZ.(T
# >0, wherei=1,2,3
dT rope

For the cost minimization we may formulate the three lemmas (motivated by Sarkar (2012)) as follows:

Lemma 1. Z;,7) must have a minimum value at T " if it satisfies the equation

[Ci+8,(C,+C)+g.Cha+4(C, +0C,)-4pl.| and the inequality B (T* )2 +¢,T" + ¢, >0 where all the values of
[¢5 (C, +6C,)+4,(C, +C)+4,C ka —%p]u}

¢i’s are given in Appendix 1.

2
Proof. For minimization of the total cost Z;, —LX =0 and d Zzl > (0 must be satisfied.
rert ar-|,_,.
Now,
4 :Q_f_(ch +9Cd) a ; {(k 1) —(m+0)1, +e ~(m+0)(4,-T) _k} ' a(ktl _T) +(C +C)kat1
T T (m+(9) m+l9 T
_P_le (R—T+f1) atl : m(k_l)atl : ( - —(m+0)y ma - (e—(m-m)(tl—T) _1)
T (m+9) (m+9 +9)
_ma(T—tl) ~ £+m(k—l)at12+ m(k— l)ate%"”g m(k )a ( . )
(m+0) 2 2(m+0) (m+6)’ (m+6)
2,2 2,2 a ) g
_ a(T -4 ) ' ma z(lle_(mﬂg)(tl_”—T)+ﬂ3(e_(m+9)(t‘_n—l) ma<T — ) +Crka 1_6_[ﬁ}1ﬂ )
2 (m+9) (m+9) 2(m+9) T

Differentiating the above expression with respect to T, we get
4z, _$(G+0C) 4(G+0C) ¢, $(G+C) h(G+C) dpl, dpl, 4Cka, $Cha
dT T Vi i Vi T " T i T
and again, differentiating the above expression with respect to T, we find
d2Zl _&4_ 24 (Ch +0Cd) _ 24, (Ch +0Cd) | (2B (Ch +0Cd) 4 2¢2 (Cl’ +C) 2¢11 (Cl’ +C)
ar* T T T T T’
Is(C+C) 201, 240l dupl, 26Cha 24 Cha G
T T T’ T T T’ T

B

B
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2

=0andd Z
d

T2

For minimum of Z;, %

>0 1imply that

T=T" T=T

@(Chwcd)ﬁ(CﬁC),@pc,qzoc,ka] :[q #(G, +6G,) @(CP+C),¢6p4,¢4c,ka]

e 7 T T T

T T T T

and

2C, 24(G+6G) (G +6C,) 26(C,+C) (G +C) 24pl, 24Cha ¢ Cha
s T T T T T’ s T
=T

S 24, (Ch +9Cd) N 24, (Cp +C) N 2¢,pl, N #.rl, N 2¢,C ka
T2 T T2 T T3 T T T T2 .
r=r

After some simplification, we get

- |:CA +4, (Cp +C)+¢4Crka+¢l (C, +0Cd)_¢3ple:| and g, (T*)z F. T +4. >0.
|:¢5 (Ch + ecd)+ &, (Cp + C) +¢,,C ka _¢6ple:|

Hence the proof.

Lemma 2. Zz(T*) must have a minimum value at T if it satisfies the equation

[C+4(C,+0C,)+4,(C, +C)+4Cha+4,C, L~ 4ol | and the inequality ¢, (T* )2 +¢, I +¢, >0where all the
|:¢5 (Ch +0C, ) +d (Cp + C) +¢0Chka+,C 1, — 1L, :|
values of ¢;’s are given in Appendix 2.

2

C Z Z .
Proof. For minimization of the total cost Z;, h =0 and d 22 >0 must be satisfied.
=1’ d T=T"
Now,
Z, = &4_ (Ch + ecd) a . {(k _l)ef(erH)t] + o (M O6-T) —k}+ a(ktl _T) + (Cp + C)katl
T T (m+0) (m+0) T

_p;g [tl {atl + mgk_l)m‘ + m(k_l)a(e’(”””)t’ —1)}+T{a(T—tl)+ nd (e’(””g)(t"” —1)

m+t9) (m+9)2 (m+t9)2

_ma(T—tl)}_{ﬁ_‘_ m(k—l)atl2 N m(k—l)atlef(mw)n m(k_l)a(e—(erﬁ)t] _1)}

+
(m+6) 2 2(m+9) (m+6) (m+0)
2 2
_ a(Tz—f12)+ ma Z(IIe—(erH)(tl—T)_T)_i_ ma 3(6—(m+9)(t|—7')_1)_ma(T _tl)
2 (m+0) (m+0) 2(m+6)

, Cka l_e—{ﬁ}f“ L LG [ 1 |
T T(m+0) (m+6) (m+0)

Differentiating the above expression with respect to T, we get

% _ ¢5(Ch +0Cd) 44 (Ch +0Cd) _Q ¢2(Cp +C) l ¢11(Cp +C) +¢19ple ¢20ple ¢4Crka \ ¢10Crka ¢21Cplcl +¢22Cplcl
dT T T’ T’ T’ T T’ T T’ T T’ T’
and again, differentiating the above expression with respect to T, we have

d2Z2 :£+ 2¢1(Ch +6Cd) _2¢5(Ch +6Cd) + ¢12(Ch +9Cd) + 2¢2<Cp +C) _2¢11<Cp +C) +¢13(Cp +C)

ar* T T T T T T T
2411, n 20,01, $spL, n 2¢,Cka _ 24,,C ka " ¢sC,ka n 26,C 1y 26,C, 1, + $uC, L

T’ T? T T’ T? T T’ T? T
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For minimum of Z,, 4z, 0 and L2 0 imply that
- T

ar|,_,

T=T"

#(G+0C) h(G+T) ppl, dCha AG ] {c A(GHG) (C+C) gupl, ¢Cha AL ]
- :

T T T T T T T T T T
a}nd
2, 24(GH0G) h(GH0G) 26(C+C) h(G+C) 24l 24Cha giCha 2L, 4G,
rr T 1 T TZTGTTGTT_T

r T r T T T
After some simplification, we get
[C +4,(C, +6C,)+¢,(C, +C)+4,Cka+4,C, 1, ¢19ple]

[4(C,+6C,)+,(C, +C)+ o Cha+$.C, 1 — P, |
Hence the proof.

|2(6+0C) 24(C+C) 2, dopl, 24 Cha 2] ] |

¥ 2 e
and s (T") + 4, T+, >0

Lemma 3. Zi(T) must have a minimum value at T if it satisfies the
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equation

=[CA +4(C, +0C,)+4,(C, +C)+4,Chka+4,C, 1, ~hupl. | and the inequality ¢, (T*)2 +¢,T" +¢,, > 0where all the

|:¢5(C/1+9C )+¢1 (C +C)+¢10Cka+¢31 ple ¢29p1e:|
values of ¢;’s are given in Appendix 3.
2

=0 andd Z;
dT

Proof. For minimization of the total cost Zs,

=1’ T=T"
Now,
;G (G+0C)] a ((k-1)e ,,Hg,l+e,(m+g)(,l,n_k}+a(ktl—T) +(c,,+c)kat1
T T |(m+o) (m+0) T

A P PPN G +m(k—1)2” (¢ )T a(5 )+ (ot _ g mots)
T (m+0)  (m+6) (m+6)

_ma(S—tl)}_{£+m(k—l)at12 m(k—1)ate’ (m+0) m(k—l)a(ef(mw)[l _1)}_{a(52—t12)

(mv0) | |2 2(me0) | (mro)  (m6) 2

4

(m+0)2 2(m+0)

Gl [ﬂﬂj T LaGa g o 1 +ef(m+e><sfr> |
! T(m+6) (m+0)  (m+0)

Differentiating the above expression with respect to T, we get
@z, _4(G+0C) _4(G+e6) ¢, #(G+C) (c,+q) Gupl, _dupl, $Cha
)

L__ma ( £ T _ Se—(n1+9)(S—T)) 4 ma (ef(mH?)(IPT) _e—(n1+9)(S—T))_ma (S ’ _tlz)H

dr T T T T T T T T’
QOCka ¢30 p 02 ¢31 P 02
T T T

and again, differentiating the above expression with respect to T, we have
d’Z, :&+2¢1(Ch +0C,) 24,(G, +6C,) +¢12(ch +6C,) +2¢2(C,, +C) _2¢H(C,, +C) +¢U(cp +C)
ar’ 1 T T’ T T T’ T
2411, +2¢29P1g _%4171 2¢,Cka 24,C ka ¢15C ka 2¢3o oo 26,C, 1, ¢35 o2
T T’ T T T’ T T T’ T

> (0 must be satisfied.
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2
For minimum of Z3, 9z 0 and d 223 >0 imply that
rer ar-|,_.
A(G+6G) 4(G+O gpl. d4Cha 4Cs | | € HG+6G) A(G+C) gipl, dCha AG]
T T T T o T T T T T T » ’

and

!
+

2, %(G+G) 4(G+0C) 2(C+C) h(G+O) 2ppl, 24Cha hCha 264G Ly AC L,
T ﬁTTTﬁTfTTTﬁTTT_T

+

264(G,+0C,) 2(G+C) 2pl, gupl, 24,Cha 2,C,L
> ' + + + + .
T T V& T T T »

After some simplification, we get

. [cira(c,+0c)+.(C, +C)+,Cha+ 4 Col — . ]
[4,(C,+0C,)+4,(C, +C)+,Cha+,C, 1, ~dopl, |

#\2 *
and ¢, (T") +4,T" +4,>0.

Algorithm

Step 1: Determine T, from equation (22), if T,” <R then evaluate Z; (T,) from (19). Otherwise go to step 2.
Step 2: Determine T, from equation (23), if R < T," < S then evaluate Z, (T,") from (20). Otherwise go to step 3.
Step 3: Determine T; from equation (24), if T,” > S then evaluate Z; (T5") from (21). Otherwise go to step 4.
Step 4: Find out TC = min{ Z, (T,"), Z, (T5), Zs (T5)}.

4. Numerical Examples

All calculations are executed with the help of the software Mathematica 8.0, from where we get the
optimal value. To illustrate the proposed model two examples are presented here in which Z; and Z; are
the optimal solution.

Example 1. We consider the following parameter values on the basis of the previous study:

Ca=$ 180/order, p = $20/unit, a =15, m=0.5,k=2,0=0.1, C=2, Cq4= 15/unit, R = 1.5 years, I, =
$0.15/year, I; = $0.18/year, I, = $0.20/year, S = 1.74 years, C, = $14/unit/year, C, = $10/unit, o =
0.010, B =0.053, C, = $1.5/item. Then the optimal solutions are:

In, case (1): {T;'=1.2529, Z (T, )=398.759}, case (2): {T> =1.7157, Z, (T, )=401.442},

case (3): {T3=1.76178, Z5 (T3 )=400.971}. Among the above optimal solutions, the better optimal
solution TC=min{ 7, (Tl*), 7> (Tz*), 73 (T3*)}=398.759, T'=1.2529. From the numerical example, Figs.
4-6 show the convexity of the cost function.

Average cost Average cost Average cost
406 a40 ’
405 \ "
404 430 g
430
403
20 /
402 // 420
401 \
= S g 410
400 \\ %
1.2 1.3 1.4 1.5 1.5 P 2.5 5 1.5 B o5 3
Time Time Time
Fig. 4. Case 1: average cost versus Fig. 5. Case 2: average cost versus Fig. 6. Case 3: average cost versus cycle

cycle length cycle length length
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Example 2. We consider the following parameter values on the basis of the previous study:
Ca=$ 350/order, p = $20/unit, a =

$0.15/year, I¢

= $0.18/year, I, =
0.10, = 0.53, C, = $1.5/item. Then the optimal solutions are:

$0.20/year, S =

2.75 years, Cy =

161

15,m=05,k=2,0=0.1,C=2, Cq= 15/unit, R = 2.1 years, I,

$14/unit/year, C, = $10/unit, a =

For, case (1): {T)"=1.77939, Z; (T, )=480.611}, case (2): {T>'=2.66707, Z, (T,')=479.241}, case (3): {
T3 =2.86137, Zs (T3 )=476.712}. Among the above optimal solutions, the better optimal solution

TC=min{ Z; (T\), Z2 (T2), Z3 (T3 )}=476.712, T

show the convexity of the cost function.

Average cost

Average cost

Time

Fig. 7. Case 1: average cost versus cycle

length

5. Sensitivity Analysis

2

cycle length

3 4

5

Time
Fig. 8. Case 2: average cost versus

Average cost

560

540

520

*=2.86137. From the numerical example, Figs. 7-9

5

Time

Fig. 9. Case 3: average cost versus

cycle length

Sensitivity analysis of the numerical example (1) and (2) are presented in Table 1 and 2 respectively as

follows.

Table 1

(For example (1)) The effect of changing the parameter (7) while keepmg all other parameters unchanged

Parameter (i) % Change Z(Ty) T, Z(Ty) T, 7:(T3) Optimal Solutlon TC
C, -20 1.27669 363.199 1.78904 363.798 1.80790 363.295 Zl(Tl 363.199
-10 1.26464 380.991 1.75041 382.663 1.78406 382.157 Z(T,") 380.991
+10 1.24146 416.502 1.68424 420.145 1.74091 419.743 Z(T,") 416.502
+20 1.23031 434221 1.65554 438.778 1.72130 438.474 Z,(T,") 434.221
Ca -20 1.11981 368411 1.53682 379.296 1.63198 379.757 Zy(T)) 368.411
-10 1.18809 384.010 1.62765 390.674 1.69824 390.567 Zi(T,") 384.010
+10 1.31476 412.780 1.80141 411.679 1.82282 411.014 Z5(T,") 411.014
+20 1.37410 426.168 1.88513 421.445 1.88157 420.732 Z5(T,") 420.732
p -20 1.29398 404.494 1.66931 406.189 1.72479 405.896 Z:(T,") 404.494
-10 1.27285 401.663 1.69182 403.836 1.74342 403.450 Zi(T,") 401.663
+10 1.23402 395.786 1.74109 399.006 1.77985 398.462 Zy(T)") 395.786
+20 1.21611 392.750 1.76823 396.525 1.79762 395.923 Z(T,") 392.750
a -20 1.40293 346.120 1.92633 340.934 1.91014 340.384 Z3(T)) 340.384
-10 1.32147 372.867 1.81080 371.508 1.82946 370.898 Z:(T,") 370.898
+10 1.19412 423.923 1.63576 430.844 1.70413 430.682 Z(T,") 423.923
+20 1.14299 448.458 1.56744 459.794 1.65439 460.090 Z(T,") 448.458
m -20 1.26871 394.754 1.71542 396.728 1.75925 396.267 Zy(T)) 394.754
-10 1.26044 396.787 1.71438 399.144 1.75957 398.681 Z(T\) 396.787
+10 1.24604 400.671 1.71950 403.624 1.76595 403.136 Zy(T)") 400.671
+20 1.23984 402.524 1.72598 405.686 1.77218 405.173 Z(T)) 402.524
k -20 1.46530 364.548 2.39638 348.934 2.14613 349.976 Z3(T)) 349.976
-10 1.33769 384.015 1.95273 379.477 1.92372 378.815 Z3(T\) 378.815
+10 1.19275 410.296 1.57058 418.069 1.64509 418.345 Zi(T)) 410.296
+20 1.14799 419.561 1.47257 431.129 1.55900 432.275 Z(T)) 419.561
0 -20 1.26114 396.444 1.73148 398.526 1.77314 398.008 Z(T,") 396.444
-10 1.25699 397.605 1.72349 399.990 1.76740 399.495 Z(T,") 397.605
+10 1.24887 399.907 1.70808 402.883 1.75627 402.437 Z(T,") 399.907
+20 1.24490 401.049 1.70063 404313 1.75088 403.891 Z(T,") 401.049
Cq -20 1.25873 397.378 1.72995 399.585 1.77243 399.070 Zy(T)) 397.378
-10 1.25580 398.069 1.72278 400.515 1.76709 400.022 Zi(T,") 398.069
+10 1.25001 399.447 1.70870 402.366 1.75651 401.918 Z(T,") 399.447
+20 1.24714 400.133 1.70179 403.286 1.75128 402.862 Z,(T,") 400.133
C, -20 1.25294 398.709 1.71580 401.389 1.76186 400918 Z(T,") 398.709
-10 1.25292 398.734 1.71575 401.416 1.76182 400.945 Z(T,") 398.734
+10 1.25287 398.784 1.71564 401.469 1.76174 400.998 Z(T,") 398.784
+20 1.25285 398.808 1.71559 41.4960 1.76170 401.025 Z(T,") 398.808
C -20 1.25756 391.655 1.72707 393.958 1.77029 393451 Z(T,") 391.655
-10 1.25522 395207 1.72136 397.701 1.76602 397.212 Z(T,") 395.207
+10 1.25058 402.309 1.71009 405.181 1.75756 404.729 Z(T,") 402.309
+20 1.24829 405.859 1.70454 408.918 1.75336 408.485 Z,(T,") 405.859
Ch -20 1.31048 385.626 1.86431 383.516 1.86733 382.803 Z3(T\) 382.803
-10 1.28078 392.263 1.78541 392.649 1.81281 392.007 Z3(T\) 392.007
+10 1.22665 405.122 1.65353 410.563 1.71402 409.708 Zi(T\") 405.122
+20 1.20191 411.36 1.59766 418.145 1.66930 418.231 Zi(T\) 411.360
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Table 2
(For example (2)) The effect of changing the parameter (i) while keeping all other parameters unchanged
Parameter (i) % Change T, Z(T)) T, 7,(Ty) T; Z4(Ty) Optimal Solution  TC
G 20 1.81323 442.892 2.85506 437.557 2.95676 B4R5 Z(Ty) 434.985
-10 1.79610 461.768 2.75217 458.509 2.90722 455.891 Z_;(T;) 455.891
+10 176310 499.422 2.59462 499.761 2.81884 497456  Zy(Ty) 497.456
+20 1.74721 518.201 2.53165 520.188 2.77928 518.130 Z_;(T;) 518.130
Ca 20 158531 438.994 233311 451201 2.63309 451236 7y(T)) 438.994
-10 1.68462 460.402 2.50028 465.689 2.75028 464.239 Z,(Tl*) 460.402
+10 1.87037 499.791 2.83369 491.970 2.96645 488723 Zy(Ty) 488.723
+20 1.95811 518.076 2.99996 503.972 3.06568 500.326 Z3(T3*) 500.326
) 20 1.84287 488.940 2.53810 487.481 2.75589 485854 Zy(Ty) 485.854
-10 1.81007 484.832 2.59860 483.429 2.80883 481.339 Z_;(T;) 481.339
+10 175060 476285 2.74591 474.893 291322 471977 Zy(T) 471.977
+20 1.72349 471.860 2.83880 470.358 2.96407 467.139 Zz(Tz*) 467.139
a 20 2.00092 2153 3.08277 407.781 3.11316 404793 Zy(Ts) 404.793
-10 1.88027 451.679 2.85219 444.004 2.97776 441.028 Z}(T}*) 441.028
+10 1.69341 508.515 2.51545 513.634 2.76063 511933 Zy(T)) 508.515
+20 1.61897 535.531 2.38891 547.372 2.67284 546.76 Z](T]*) 535.531
m 20 1.79006 476.407 256167 476.096 275873 47439 Zy(T) 474.394
-10 1.78397 478.573 2.60677 477.862 2.80456 475.777 Z;(T;) 475.777
+10 177627 482.525 2.74735 480.188 2.92970 477075 Zy(Ty) 477.175
+20 1.77455 484317 2.85462 480.644 3.00880 477.145 Z;(T;) 477.145
K 20 2.12770 430.249 4.06453 393.610 3.54119 392950 Zy(Ty) 392.950
-10 1.91876 458.746 3.25081 442.920 3.19904 439.201 Z;(T;) 439.201
+10 1.68079 497.859 234213 506.344 2.58945 506.624  Zy(T)) 497.859
+20 1.60773 511.782 2.14123 527.412 2.38914 530.605 Z,(Tl*) 511.782
0 20 178812 477.607 2.67743 475.658 2.36441 473100 Zy(Ts) 473.100
-10 1.78371 479.114 2.67205 477.460 2.86273 474917 Z;(T;) 474917
+10 177517 482098 2.66246 481.001 2.86033 478484 Zy(Ty) 478.484
+20 1.77103 483.575 2.65824 482.742 2.85960 480.235 Z;(T;) 480.235
Ca 20 178769 478694 2.69617 476.502 2.88205 473816 Zy(Ty) 473.816
-10 1.78353 479.653 2.68150 477.874 2.87169 475.266 Z;(T;) 475.266
+10 177528 481.567 2.65286 480.601 2.85111 478154 Zy(Ty) 478.154
+20 1.77120 482.520 2.63887 481.955 2.84091 479.591 Z;(T;) 479.591
G 20 178072 480.234 267172 478.732 2.3647 476178 Zy(T) 476.178
-10 1.78005 480.423 2.66939 478.987 2.86304 476.445 Z(T5") 476.445
+10 177873 480.799 2.66475 479.494 2.85971 476979 Zy(Ty) 476.979
+20 1.77807 480.988 2.66244 479.748 2.85805 477.246 Z](T]*) 477.246
C 20 178602 473.078 2.69027 471.052 2.37790 468397 Zy(T) 468.397
-10 1.78270 476.845 2.6786 475.148 2.86962 472.556 Z](T]*) 472.556
+10 177610 484376 2.65568 483.329 2.85316 480.866  Zy(Ty) 480.866
+20 1.77283 488.139 2.64444 487.414 2.84498 485.016 Z5(Ty) 485.016
G 20 1.86115 462387 2.98032 452.648 3.06107 449.024 Z(T)) 462.387
-10 1.81904 471.592 2.8114 466.244 2.95946 463.054 Z(T5) 463.054
+10 1.74200 489 .454 2.54265 491.709 2.76771 490.006 Zl(Tl*) 489.454
+20 1.70667 498.128 2.43429 503.71 2.67903 502.947 Z(T) 498.128

The behavior of the parameters changed with respect to the total average cost is shown graphically in
Fig. 10 (for example (1)) and Fig. 11 (for example (2)) and some interesting results drawn from
sensitivity analysis are given as follows.

(1) The total average cost increases as the purchasing cost (C,) increases, which is true in practical
situation. As the purchasing cost per item increases, it is obvious to increase the optimal cost of the
system.

(2) The total average cost of the system increases with an increase in ordering cost (C,4), which is quite
natural as the per order growth of ordering cost implies an increase in total average cost of the system.
(3) When the selling price increases the total average cost of the inventory system decreases. The fact is
that due to the higher selling price retailer accumulates more revenue and earns more interest during the
delay period.

(4) As the demand parameters (a, m) increases the total average cost of the system increases. The
motive is that more demand means more production consequently the total average cost increases.

(5) An increase in production parameter (k) shows that the retailer produces more items therefore the
holding cost and deterioration cost, etc. increases as a result the optimal cost of the system increases.
(6) The total average cost decreases as the deterioration rate (6) and the deterioration cost (Cy)
decreases which according to the real situation.

(7) An increase in rework cost per unit item indicates the growth of the total rework cost. To reduce the
cost, the production of imperfect items will have to be reduced.

(8) When the production cost (C) and the holding cost (C;) increases the total average cost of the
system increases. The reason is that per unit increase in production and holding costs increases the total
production and holding costs therefore the total average cost of the proposed model increases.
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6. Conclusion

In this research article, an inventory model for deteriorating items with stock dependent demand rate
considering imperfect production and delay in payment scheme has been developed. In this model, two
delay periods have been provided by the supplier to attract the retailer. During the delay period an
interest was earned on accumulated revenue by the retailer selling his/her commodity. In most of the
papers, the examiners have considered the production of the perfect items through different machinery
systems. However, in practical situation, due to employment problems, machine breakdowns, the
system produces imperfect quality items, which may rework at a cost to make it perfect. In this model,
the production of the imperfect items follows Weibull distribution and the production rate depends on
the demand factor. An algorithm to determine the optimal policy has also been presented. In addition,
sensitivity analysis is performed to examine the effect of parameters. From sensitivity analysis it is
observed that the model is enough stable with respect to the changes in system parameters. Further, the
model may be generalized by considering shortages and n cycles in a finite planning horizon.
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