
O P E R A T I O N S R E S E A R C H A N D D E C I S I O N S
No. 1 2014
DOI: 10.5277/ord140103

Mariusz MAKUCHOWSKI*

PERTURBATION ALGORITHM FOR A MINIMAX REGRET
MINIMUM SPANNING TREE PROBLEM

The problem of finding a robust spanning tree has been analysed. The problem consists of de-
termining a minimum spanning tree of a graph with uncertain edge costs. We should determine
a spanning tree that minimizes the difference in costs between the tree selected and the optimal tree.
While doing this, all possible realizations of the edge costs should be taken into account. This issue
belongs to the class of NP-hard problems. In this paper, an algorithm based on the cost perturbation
method and adapted to the analysed problem has been proposed. The paper also contains the results of
numerical experiments testing the effectiveness of the proposed algorithm and compares it with algo-
rithms known in the literature. The research is based on a large number of various test examples taken
from the literature.

Keywords: discrete optimization, robust optimization, perturbation algorithms, minimax regret

1. Introduction

In the real world, we often have to make a decision when the parameters are un-
known, e.g. a decision about purchasing a summer swimming costume without a guar-
antee of a warm summer. The quality of the decision made can be evaluated only with
hindsight. What is more, it is only from such a perspective that we see what the opti-
mal action would have been on our part. Since at the time of making a decision we are
unable to evaluate its actual value, often indirect evaluations are used such as an
analysis of the worst case scenario or expected value. In this paper, the criterion
evaluating a given decision is the minimization of maximal regret. What we call regret
is the difference between the value obtained from a decision made and the hypotheti-
cal value obtained for the decision which, with hindsight, would have been regarded

*Institute of Computer Engineering, Control and Robotics, Wrocław University of Technology,
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, e-mail: mariusz.makuchowski@pwr.edu.pl

M. MAKUCHOWSKI 38

as optimal. As we are unable to foresee the future, we try to make sure that the maxi-
mum regret that may happen to us is as small as possible.

Some easy problems, i.e. those belonging to the P class, with precise data become
issues that belong to the class of NP-hard problems when the parameters are changed
into imprecise ones and the criterion is transformed to minimizing the maximum pos-
sible regret. This is also the case for the NP-hard minimax regret minimum spanning
tree problem examined in this paper, which derives from a classical easy minimum
spanning tree problem.

2. Problem of finding a robust spanning tree

One of the fundamental problems of operations research is determining a mini-
mum cost spanning tree. A spanning tree t of a connected, undirected graph G = (V, E)
is any acyclic connected subgraph of this graph which contains all the vertices from V.
We will use Γ to denote the set of all the spanning trees of a given graph. The number
of the spanning trees of a graph depends both on its size and structure. For complete
graphs, it depends exponentially on the number of nodes in the graph and is given by:

 2VVΓ −= (1)

For graphs with weighted edges, we can determine the cost of any spanning tree as
the sum of the weights of its edges. The problem of finding a minimum cost spanning
tree consists of choosing the tree with the lowest cost from all the trees spanning
a given graph. This problem is solved in polynomial time by the algorithm proposed in
[10, 13].

In the analysed problem, the weights of the edges are not known. For each edge
e ∈ E, the range of its possible realizations is given by , .e ec c− +⎡ ⎤⎣ ⎦ A specific realization

of all the edge weights is called a scenario and denoted by S. We will use Ω to denote
the set of all possible scenarios. The cost of an edge of weight e ∈ E in the scenario
s ∈ Ω will be denoted by , .s

e e ec c c− +⎡ ⎤∈ ⎣ ⎦ For a given tree t ∈ Γ, its cost depends on the

scenario s ∈ Ω and is given by:

 (), s
e

e t

F t s c
∈

= ∑ (2)

For the scenario s ∈ Ω we can determine a minimum cost spanning tree, whose
total cost is:

Perturbation algorithm for a minimax regret minimum spanning tree problem 39

 () ()* min ,
t

F s F t s
Γ∈

= (3)

For each tree t ∈ Γ and scenario s ∈ Ω we can determine the regret which is the
difference between the cost of a given tree and the cost of the minimum spanning tree
for a given scenario:

 () () ()*, ,Z t s F t s F s= − (4)

The maximal regret of the tree t ∈ Γ is defined in the following way:

 () () () (){ }*max , max ,
s s

Z t Z t s F t s F s
Ω Ω∈ ∈

= = − (5)

The problem analysed in this paper is to find the tree t* ∈ Γ with the minimum
value of the maximal regret, i.e.:

 ()* arg min
t

t Z t
Γ∈

∈ (6)

3. Overview of the literature

The minimax regret minimum spanning tree problem (6) is strongly NP-hard [2].
In paper [3], a special case is analysed in which all the edge costs can have values
from the interval [0, 1]. This subset of problems is called the central spanning tree
problem and also belongs to the class of NP-hard problems.

The first method for providing an exact solution to the problem examined was
proposed in [15]. This method was based on mixed integer programming (MIP) and
using it, the authors solved instances having up to 25 nodes in a graph. In [1, 11] algo-
rithms based on the branch and bound method were proposed which were able to pro-
vide solutions for graphs having up to 20–40 nodes.

In the paper [8], a 2-approximation algorithm was proposed, whereas [12] pre-
sented an approximate improvement algorithm based on the method of simulated an-
nealing. The most efficient, in terms of the quality of the solutions obtained for large
instances (which cannot be solved exactly in reasonable time using algorithms), is the
algorithm proposed in [7] based on the tabu search method.

A similar problem to the minimax regret minimum spanning tree was studied
in [4], namely the problem of finding minimax regret minimum spanning arbores-
cences with interval costs in directed graphs. In contrast to our problem, the problem

M. MAKUCHOWSKI 40

of finding minimax regret minimum spanning arborescences with interval costs turned
out to be polynomially solvable for directed acyclic graphs.

A comprehensive treatment of the state of the art in robust discrete optimization,
applications of this framework to several combinatorial problems and extensive refer-
ences can be found in books [5, 9].

4. Perturbation algorithm

Perturbation algorithms are modifications of existing algorithms, most often con-
struction algorithms. The idea of a perturbation algorithm consists of carrying out
multiple perturbations of the input data and then solving the resulting problem with
the help of a certain algorithm, called a base algorithm. The solution of the perturbed
problem obtained in this way is tested on the original, unchanged input data. Because
perturbations are random, a perturbation algorithm can perform a whole series of
analogous iterations. After performing a fixed number of iterations, the algorithm
stops and returns the best-found solutions (in terms of the values of the objective func-
tion for the original data). The pseudo-code of such a perturbation algorithm is shown
in Fig. 1.

Fig. 1. Pseudo-code of a perturbation algorithm

Undoubtedly, the basic element of each perturbation algorithm is a fast construc-
tion algorithm which provides high quality solutions. In the problem analysed, these
will be the two algorithms, AM and AU, described in [6]. For discrete optimization
problems, in which the input data (just like in the problem examined) is a graph with
weighted edges, various variants of cost perturbations are applied. In the paper [14],
various algorithms are proposed for perturbing all the weights of the edges. Moreover,

Step 1: enter the data D for the problem

Step 2: repeat steps 2a, 2b, 2c n-times

Step 2a: randomly perturb the original data D creating data D’

Step 2b: initiate Base Algorithm on perturbed data D’ obtaining
 solution x’

Step 2c: if for the original data D, x’ is a better solution
 than the best solution found previously x* then set x*=x’

Step 3: return the best solution found x*

Perturbation algorithm for a minimax regret minimum spanning tree problem 41

appropriate results of perturbation are given in terms of the intensification or diversifi-
cation of calculations. Intensification of calculations is obtained by perturbing the
costs in such a way that they promote the edges chosen in previous iterations of the
algorithm, whereas diversification is obtained by perturbing the costs in the opposite
way.

4.1. Perturbation of the data

The proposed perturbation of the data consists of changing the range of the weights of
the edges from ,e ec c− +⎡ ⎤⎣ ⎦ to *, .e ec c−⎡ ⎤⎣ ⎦ With the probability p = 0.2, the new value *

ec of the

upper bound is drawn from the interval , ,e ec kc+ +⎡ ⎤⎣ ⎦ where k = 1.1. Otherwise, it is not

modified, i.e. * .e ec c+= The values p and k were chosen in an experimental way.

5. Numerical calculations

All the results presented, in particular the algorithm running times, were obtained
on a PC equipped with a Core2Duo E6750 2.66GHz, 2GB RAM processor, running
on a 32-bit Windows 7 system. The algorithms were programmed in the DEV C++
4.9.9.1 environment.

5.1. Notation to describe algorithms

AR – an algorithm that provides a random solution.
AM – an algorithm that provides a solution which is a minimum cost spanning

tree in the case of deterministic edge weights where the values of the edge
weights are defined to be the midpoints of the intervals in the initial prob-
lem.

AU – an algorithm that provides a solution in the form of a minimum cost span-
ning tree in the case of deterministic edge weights where the values of the
edge weights are determined to be the upper endpoints of the intervals in
the initial problem.

AMU – returns the better solution from the two obtained by the algorithms AM and
AU.

PMU – returns the better solution from the solutions obtained by the algorithms AM
and AU for the perturbed data.

M. MAKUCHOWSKI 42

Algorithms denoted by Xn, X ∈ {AR, AMU, PMU}, perform n steps. In each step,
they call algorithm X only once, obtaining in this way a set of n solutions. The ulti-
mate solution returned by the algorithm Xn is the best solution from this set.

Algorithms denoted by X + LS function in two phases. First, algorithm X, which
provides a starting solution, is called. Then the obtained solution is improved by the
local improvement algorithm LS. The latter phase involves a few steps. In each step i,
a basic solution Bi is defined. In the former step, the basic solution is the initial solu-
tion obtained in the first phase of the algorithm. In every step of this phase, the LS
algorithm generates the neighborhood of the basic solution N(Bi). Then the best solu-
tion Yi is selected from this neighborhood. If the selected solution Yi is better than the
current base solution ܤ௜, the algorithm proceeds to the next step i + 1, in which the
solution Yi becomes the base solution, i.e. Bi+1 := Yi. If in step i the solution Yi is not
better than the basic solution Bi, then the algorithm stops and returns its current basic
solution Bi.

The neighborhood of the current solution (spanning tree of the given graph G)
used in the improvement algorithm LS is the set of spanning trees of the graph G dif-
fering in exactly one edge from the current solution, i.e.:

 () () (){ }Γ \ 1 for N t t E t E t t Γ′ ′= ∈ : = ∈ (7)

5.2. Test examples

The presented algorithms were compared using examples generated according to
the concepts of researchers who have been analyzing this problem. The first two
classes of examples Ya1, Ya4 were proposed in [15]. This paper describes the con-
struction of six classes of instances, from which, for the purpose of this research,
classes 1 and 4 were selected. Two further classes of instances He1, He2 have been
described in [1]. The next two classes Mo1, Mo3 were generated according to a for-
mula contained in [11], where from the 3 classes of the instances proposed classes 1
and 3 were selected. In the literature [5, 7], other well-known difficult test examples
(Ka, La) are presented concerning such a specific case as instances of a central
spanning tree. In such instances, all the weights in graphs are described by the same
interval [0, 1]. The difficulty for these instances results only from the topology of
the graph, and not, as in previous instances, from the different range of edge
weights.

Each class consists of 8 groups and each group has 10 instances. The graphs in
a group have the same number of vertices, which varies from 10 to 80. Hence, in the
study we used a total of 640 test examples.

Perturbation algorithm for a minimax regret minimum spanning tree problem 43

5.3. Reference solutions

For each instance, there was a reference solution of the value Zref, which is used to
determine regret. The method of obtaining a reference solution depended on the in-
stance. For instances from class Ka, the values Zref were obtained through the analyti-
cal derivation of optimal solutions. For instances from other classes, we tried to obtain
an exact solution using the CPLEX [16] solver. If the solver was not able to find an
optimal solution within a few hours, the instance was then solved with the help of
numerically intensive calculations performed by approximation algorithms of the TS
type. The best of the solutions obtained was chosen as the reference one.

5.4. Method of evaluating the algorithms

A single base study of a selected algorithm for a particular instance of the problem
provides information about r – the average regret of the obtained solution with respect to
the reference solution, d – standard deviation of the regret, and time – average run time
of the algorithm. Each algorithm is run k times for each instance and the Zref value
is calculated to determine regret. Each time we run algorithms, the pseudo-random
number generator starts in a different state. This study provides k solutions accompa-
nied with the corresponding set of regret values and the average run time of the algo-
rithm. Then, the following values are determined:

 ()()ref
ref

100%r av Z Z
Z

= − (8)

 () ()22

ref

100%
1

kd av Z av Z
k Z

= −
−

 (9)

5.5. Test 1

In this test, the algorithms AR1000, AMU, and PMU10 were compared with one an-
other. The study involved finding solutions to a set of 640 instances (8 classes in
8 groups of 10 instances) and the derivation of the values of r, d and time for each
combination of algorithm and instance. The mean values av(r), av(d), av(time) for
each of the classes for the algorithms discussed are presented in Table 1.

M. MAKUCHOWSKI 44

Table 1. Mean values av(r), av(d), av(time) for each
of the classes for the algorithms discussed

Class of
instants

AR1000 AMU

av(r)
[%]

av(d)
[%]

av(time)
[ms]

av(r)
[%]

av(d)
[%]

av(time)
[ms]

Ya1 243.47 7.85 73 0.97 0.00 4
Ya2 257.97 9.41 84 0.27 0.00 16
He1 2235.00 72.88 95 3.31 0.00 27
He2 1035.56 67.03 63 3.21 0.00 28
Mo1 15307.57 617.32 103 0.69 0.00 35
Mo3 865.34 36.27 111 1.73 0.00 43
Ka 68.03 2.70 90 82.46 3.97 43
La 20.58 0.85 90 26.71 1.46 47

Total 2504.19 101.79 88 14.91 0.00 30

Class of
instants

PMU10 PMU100

av(r)
[%]

av(d)
[%]

av(time)
[ms]

av(r)
[%]

av(d)
[%]

av(time)
[ms]

Ya1 0.72 0.17 35 0.52 0.06 338
Ya2 0.17 0.05 47 0.13 0.01 350
He1 2.52 0.70 58 1.67 0.22 362
He2 2.19 0.71 30 1.42 0.22 54
Mo1 0.27 0.26 65 0.08 0.05 368
Mo3 1.17 0.24 73 0.86 0.13 377
Ka 76.21 3.25 46 71.05 2.34 70
La 24.04 1.96 50 21.03 0.86 72

Total 13.41 0.92 51 12.10 0.49 249

5.6. Test 2

Another test shows the effect of a change in the type of perturbation on the quality
of an algorithm. For this purpose, a further two versions of the perturbation algorithm:
PMUa and PMUb were created. In these algorithms a new value *

ec of the upper bound
of the range of weights is drawn for each edge of a tree. The upper bounds are per-
turbed by algorithm PMUa in a way that draws *

ec , the new value of the upper bound,
from the interval [,1.01].e ec c+ + Using algorithm PMUb, the range of the values of *

ec
drawn increases with the number of perturbations performed:

* , 1 0.1e e e
ic c c

maxIter
+ +⎡ ⎤⎛ ⎞∈ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Perturbation algorithm for a minimax regret minimum spanning tree problem 45

where i is the number of the current iteration and maxIter – the number of the last iteration
in the algorithm. The parameters in these relationships were selected in an experimental
way. The test results for the described methods of perturbation are shown in Table 2.

Table 2. Test results for the described methods of perturbation

Class
of instants

10
aPMU 10

bPMU

av(r)
[%]

av(d)
[%]

av(time)
[ms]

av(r)
[%]

av(d)
[%]

av(time)
[ms]

Ya1 0.88 0.03 35 0.70 0.11 35
Ya2 0.25 0.01 46 0.16 0.02 47
He1 2.65 0.21 58 2.63 0.49 58
He2 2.53 0.31 31 2.33 0.50 31
Mo1 0.52 0.04 66 0.22 0.12 66
Mo3 1.59 0.02 74 1.19 0.18 73
Ka 76.88 3.56 48 77.17 3.60 47
La 24.88 1.71 52 25.10 1.87 51

Total 13.77 0.74 51 13.69 0.86 51

5.7. Test 3

In the latter test, solutions are created with the use of a top-down method obtained
from the solutions provided by the algorithms presented in the former test. The mean val-
ues av(r), av(d) and av(time) for each of the classes of algorithms discussed, AR1000 + LS,
AMU + LS, PMU10 + LS, and PMU100 + LS are presented in Table 3.

Table 3. Mean values av(r), av(d), av(time) for each
of the classes for the algorithms discussed in Section 5.7

Class of
instants

AR1000 + LS AMU + LS

av(r)
[%]

av(d)
[%]

av(time)
[ms]

av(r)
[%]

av(d)
[%]

av(time)
[ms]

Ya1 0.01 0.02 1177 0.01 0.00 59
Ya2 0.00 0.00 1218 0.00 0.00 56
He1 0.07 0.10 801 0.07 0.00 76
He2 0.17 0.20 166 0.19 0.00 44
Mo1 0.00 0.00 655 0.00 0.00 46
Mo3 0.00 0.00 934 0.00 0.00 99
Ka 44.62 8.20 191 39.70 10.41 201
La 19.40 2.03 109 21.51 2.24 72

Total 8.03 1.32 656 7.69 1.58 82

M. MAKUCHOWSKI 46

Class of
instants

PMU10 + LS PMU100 + LS

av(r)
[%]

av(d)
[%]

av(time)
[ms]

av(r)
[%]

av(d)
[%]

av(time)
[ms]

Ya1 0.00 0.01 86 0.00 0.00 390
Ya2 0.00 0.00 85 0.00 0.00 389
He1 0.06 0.00 106 0.06 0.00 410
He2 0.19 0.00 45 0.20 0.00 68
Mo1 0.00 0.00 77 0.00 0.00 389
Mo3 0.00 0.00 126 0.00 0.00 427
Ka 43.44 9.58 178 44.74 9.08 179
La 20.61 2.68 71 19.62 2.05 88

Total 8.04 1.53 97 8.08 1.39 293

5.8. Commentary on the numerical calculations

In instances Ka and ܽܮ, in which all the ranges of the edge weights are the same,
the algorithms AMU, AR2, and PMU1 are equivalent. This is due to the fact that the
algorithm AMU is influenced only by these intervals. Each edge gets the same priori-
ty, which determines the order in which they are attached to a tree. In algorithm AR,
priority is ascribed at random. In the case of identical priority, this order is not defined
and can be either random or fixed in any way.

For the instances Ka and La mentioned above, the algorithms AR1000, PMU100,
PMU10, and AMU choose the best solution from among the randomly selected 1000,
200, 20 and 2 solutions. For classes Ka and La, the theoretical predictions concerning
the quality of the solutions AR1000:av(r) < PMU100:av(r) < PMU10:av(r) < AMU:av(r)
coincide exactly with our numerical studies.

In the case of instances from the classes Ya, He, Mo, although algorithm AR1000
generates a large number of solutions, it generates much weaker solutions than algo-
rithm AMU. Algorithms PMU10 and PMU100 generate 10 and 100 different solutions,
respectively, with the quality of each of them being close to the quality of the solution
obtained using AMU. For classes Ya, He, Mo, both the theoretical and experimental
relationships between the quality of the solutions are as follows: PMU100:av(r)
< PMU10:av(r) < AMU:av(r).

Perturbation algorithms of the PMUn type provide better solutions than the current
best construction algorithm AMU. Generating better solutions is burdened with the cost of
the longer run time of the algorithm PMUn in comparison to the runtime of algorithm
AMU. Moreover, the designer can manipulate the run time of the algorithm PMUn by
changing the parameter n. By increasing the value of n we can improve the quality of the
solutions obtained at the expense of increasing the run time of an algorithm.

Perturbation algorithm for a minimax regret minimum spanning tree problem 47

During the study, a number of various ways of perturbing data were performed.
These methods differ in the amount of data perturbed and intensity of perturbation. In
addition, the intensity of data perturbation in successive steps of the algorithm was
either stable or underwent some changes. Changes in the perturbation intensity de-
pended on the information obtained in previous solutions, or varied linearly. The re-
sults for the two methods of perturbation used are presented in Table 2. The quality of
the algorithms PMUa and PMUb is not better than that of algorithm PMU. Other
methods of perturbation did not give any significant improvement with respect to per-
turbations used in the algorithm PMU.

The use of a top-down algorithm LS in the problem analyzed gives a significant
improvement in the solutions obtained by algorithms AR1000, AMU, PMU10 and
PMU100. For instances from the classes Ya, He, Mo, the quality of our solutions is
outstanding. The relative error with respect to the reference solutions is less than
0.1%, even if the error for the initial solutions was more than 10 000%. There is no
evidence that any of the tested initial algorithms is more efficient than the others.
Since the quality of the solutions AR1000 + LS:av(r) ≈ AMU + LS:av(r) ≈ PMU10
+ LS:av(r) ≈ PMU100 + LS:av(r) is similar, we propose to use the computationally fast-
est solution, which is algorithm AMU + LS.

In the case of instances Ka and La solved by the local improvement algorithm LS,
the initial algorithms AR1000, AMU, PMU10, and PMU100 differ only in the number of
randomly generated solutions from which the best one is chosen. The lack of a posi-
tive correlation between the quality of the initial solution and the quality of the final
solution leads us to use algorithm AMU which, for the instances Ka and La, is equiva-
lent to random choice of any solution.

In the case of multiple starts in the improvement algorithm, we suggest using
a perturbation algorithm with a sufficiently large perturbation, so that future solutions
differ from one another. The feature of providing diverse solutions is also possessed
by algorithm AR. However, due to the longer process of improving the solutions pro-
vided by AR , algorithm PMUn is preferred.

6. Summary

If we use only a single algorithm to generate a final solution, we suggest using the
algorithm PMUn. This algorithm provides better quality solutions than AMU, the best
known construction algorithm in the literature. Additionally, there is the possibility of
extending the run time of algorithm PMUn by increasing the parameter n, in order to
obtain further improvement in the quality of solutions.

If we apply a single algorithm to generate a starting solution for a single run of the
improvement algorithm, we propose algorithm AMU. The quality of the solutions gen-

M. MAKUCHOWSKI 48

erated by the improvement algorithm does not differ from the ones generated using the
other initial algorithms. The time used to obtain initial solutions accompanied by the
performance-enhancing procedure is shorter than for the other initial algorithms.

In the case of applying an algorithm to generate initial solutions for improvement
algorithms using multiple starts, we propose algorithm PMUn with a small value n and
a large perturbation. The perturbations should be strong enough to provide different
starting solutions with a high probability.

Acknowledgements

This work was supported by the Polish Committee for Scientific Research, grant N N206 492938.

References

[1] ARON I., VAN HENTENRYCK P., A constraint satisfaction approach to the robust spanning tree with
interval data, Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, Edmond-
ton, Canada, 2002.

[2] ARON I., VAN HENTENRYCK P., On the complexity of the robust spanning tree problem with interval
data, Operations Research Letters, 2003, 32, 36–40.

[3] BEZRUKOV S., KADERALI F., POGUNTKE W., On central spanning trees of a graph, Lecture Notes
Computer Science, 1996, 1120, 53–58.

[4] CONDE E., CANADIA A., Minimax regret spanning arborescences under uncertain costs, European
Journal of Operational Research, 2007, 182 (2), 561–577.

[5] KASPERSKI A., Discrete optimization with interval data: Minimax regret and fuzzy approach, Studies
in Fuzziness and Soft Computing, Springer-Verlag, Berlin 2008, 228.

[6] KASPERSKI A., KOBYLAŃSKI P., KULEJ M., ZIELIŃSKI P., Minimizing maximal regret in discrete opti-
mization problems with interval data, [in:] Issues in Soft Computing Decisions and Operations Re-
search, O. Hryniewicz, J. Kacprzyk, D. Kuchta (Eds.), Akademicka Oficyna Wydawnicza EXIT,
Warsaw 2005, 193–208.

[7] KASPERSKI A., MAKUCHOWSKI M., ZIELIŃSKI P., A tabu search algorithm for the minimax regret
minimum spanning tree problem with interval data, Journal of Heuristics, 2012, 18 (4), 593–625.

[8] KASPERSKI A., ZIELIŃSKI P., An approximation algorithm for interval data minmax regret combina-
torial optimization problems, Information Processing Letters, 2006, 97 (5), 177–180.

[9] KOUVELIS P., YU G., Robust discrete optimization and its applications, Kluwer Academic Publishers,
1997.

[10] KRUSKAL J.B., On the shortest spanning subtree of graph and the traveling salesman problem, Proc.
Amer. Math. Soc., 1956, 7, 48–50.

[11] MONTEMANNI R., GAMBARDELLA L.M., A branch and bound algorithm for robust spanning tree
problem with interval data, Operations Research Letters, 2005, 161, 771–779.

[12] NIKULIN Y., Simulated annealing algorithm for the robust spanning tree problem, Journal of Heuris-
tics, 2007, 14, 391–402.

[13] PRIM R.C., Shortest connection networks and some generalizations, Bell System Technical Journal,
1957, 36, 1389–1401.

Perturbation algorithm for a minimax regret minimum spanning tree problem 49

[14] RIBEIRO C., UCHOA E., WERNECK R., A hybrid GRASP with perturbations for the Steiner problem in
graphs, Technical Report, Computer Science Department, Catholic University of Rio de Janeiro,
2002.

[15] YAMAN H., KARASAN O.E., PINAR M.C., The robust spanning tree with interval data, Operations
Research Letters, 2001, 29, 31–40.

[16] IBM ILOG, CPLEX Optimizer, <http://www.ibm.com/software/commerce/optimization//cplex-
optimizer>.

Received 4 May 2013
Accepted 23 January 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

