Published June 20, 2023 | Version v1
Conference paper Open

Sporadic-E and GNSS Scintillation

  • 1. ISR, Boston College

Contributors

  • 1. Boston College

Description

Multiple recent reports have claimed observations from ground-based GNSS measurements of near-equatorial daytime L1 (1.6 GHz) amplitude scintillation associated with sporadic-E.  While there is a long history of detecting ground-based VHF scintillation associated with sporadic-E, if the L1 observations hold up it could say something new about ionospheric structure.  Refractive index fluctuations in the ionosphere decrease as .  Moreover, L1 scintillation measurements respond to smaller irregularity length scales transverse to the line of sight (LOS) than VHF, and the irregularity spectral density function (SDF) for electron density fluctuations typically decreases with decreasing scale size.  The E-region is a thin layer, so there is not a large distance to integrate through to increase the phase effects.  Some of the strongest historical VHF scintillation observed to be associated with sporadic-E layers had an amplitude scintillation index, S4, of 0.4–0.6.  Using frequency scaling for power-law spectral indices appropriate to E-layer instabilities, this translates to an L1 S4 of 0.02–0.03, which is typically at or below the S4 noise floor for GNSS receivers.  Slant-path enhancements could raise this to 0.09 at low elevations.  Could coherent structures, such as discrete edge-diffraction mechanisms, plausibly generate observable S4 levels at L1?  This talk will explore both random and coherent scintillation mechanisms to assess the physical conditions required to generate an S4 of 0.2 or higher at 1.6 GHz due to E-region irregularities.  Particularly, are the required electron density fluctuations consistent with what is likely to be associated with sporadic-E?

Files

Beach_IES2023_ConfPaper(v1).pdf

Files (708.8 kB)

Name Size Download all
md5:3b78a23f0320d903a20ce640c5715601
708.8 kB Preview Download

Additional details

References

  • Basu, S., & Das Gupta, A. (1969). Scintillations of satellite signals by ionospheric irregularities with sharp boundary, J. Geophys. Res., 74, 1294–1300, doi:10.1029/JA074i005p01294
  • Beach, T. L., & Lovelace, R. V. E (1997). Diffraction by a sinusoidal phase screen, Radio Sci., 32, 913–921, doi:10.1029/97RS00063
  • Beach, T. L., & Baragona, C. A. (2007). Quasiperiodic scintillation and data interpretation: Nongeophysical GPS amplitude fluctuations due to intersatellite interference, Radio Sci., 42, RS3010, doi:10.1029/2006RS003532
  • Hajkowicz, L. A. (1997). Possible ambiguity in defining the ionospheric origin of quasiperiodic scintillations, J. Atmos. Sol. Terr. Phys., 59, 1417–1423, doi:10.1016/S1364-6826(96)00174-5
  • Hewish, A. (1951). The diffraction of radio waves in passing through a phase-changing ionosphere, Proc. R. Soc. London A, 209, 81–96, doi:10.1098/rspa.1951.0189
  • Rastogi, R. G., & Mullen, J. (1981). Intense Daytime Radio Wave Scintillations and Sporadic E Layer Near the Dip Equator, J. Geophys. Res., 86, 195–198, doi:10.1029/JA086iA01p00195
  • Rino, C. L. (1979). A power law phase screen model for ionospheric scintillation: 1 weak scatter. Radio Sci., 14, 1135–1145, doi:10.1029/RS014i006p01135
  • Seif, A., Liu, J.-Y., Mannucci, A. J., Carter, B. A., Norman, R., Caton, R. G., & Tsunoda, R. T. (2017). A study of daytime L-band scintillation in association with sporadic E along the magnetic dip equator, Radio Sci., 52, 1570–1577, doi:10.1002/2017RS006393
  • Shaikh, M. M., Gopakumar , G., Hussein, A., Kashcheyev, A., & Fernini, I. (2021). Daytime GNSS scintillation due to Es over Arabian Peninsula during low solar activity, Results in Physics, 20, 103761. doi:10.1016/j.rinp.2020.103761
  • Yadav, V., Kakad, B., Pant, T. K., Bhattacharyya, A., & Prasad, D. S. V. V. D. (2015). Study of equatorial E region irregularities using rare daytime VHF scintillation observations, J. Geophys. Res. Space Physics, 120, 9074–9086, doi:10.1002/2015JA021320