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Abstract. There are often residual images of the camera tripod in panoramic images, which may reduce the 
image quality and deteriorate the post-processing speed. To address this problem, a camera tripod removal net-
work (TRNet) based on generative adversarial network is proposed. As an end-to-end model, the generator is 
designed to include recognition and reconstruction branches, which reduce the number of parameters and im-
prove the training efficiency by sharing the encoder and correspond to scaffold recognition and texture recon-
struction respectively. The recognition branch based on the U-Net structure can effectively identify the tripod 
area, while the reconstruction branch can brilliantly reconstruct the texture details through an intermediate lay-
er formed by stacking dilated convolution residual blocks.  Furthermore, spectral normalized Markov discrim-
inator and multiple combined loss function are adopted to promote global texture consistency and thus result 
in a better texture filling effect. Finally, a data set of 400 panoramic images is constructed and experimental 
results on this data set demonstrate the better repair ability of TRNet against other state-of-the-art methods.

Keywords: panoramic image, tripod removal, generative adversarial network, dilated convolution residual 
block

1   Introduction

At present, 3D technology can be mainly divided into two categories, one is 3D scene modeling and real-time 
rendering, and the other is panoramic technology which is a branch of virtual reality. 3D panorama is widely 
used in Web3D due to its characteristics of simplicity and practicality, which can utilize real images to establish a 
virtual environment. Specifically, panorama requires field photography. Then the captured panoramic photos are 
further processed, such as denoising, desensitization, etc. Finally, the processed images are stitched together to 
generate scenes. 

Panorama technology strives for photo-level realism and scene-level 3D presentation, and at the same time, its 
low cost has attracted the attention of many researchers. Compared to 3D modeling techniques, panoramas do not 
have sophisticated interactive effects and virtual presentation power, but the techniques that emerge from them 
can also help with 3D modeling. For example, the 3D modeling technology can be used to restore the 3D shapes 
of various objects in real scenes, and then the restored panoramic images are utilized to map on the surface of ob-
jects, which allow the restored scenes to be more realistic.

Panoramic photo shooting generally requires an ultra-wide angle lens and tripod. Compared with ordinary 
cameras, the former has a wider field of view and higher overall imaging efficiency, and the latter plays a role in 
fixing the camera to avoid the problem of uneven image stitching caused by camera shake. However, at the same 
time, due to the existence of these two factors, images of the camera tripod will have different degrees of residue 
in the panoramic image, which affects the user experience significantly. 

In the situation with a small number of images, the method of eliminating tripod in images is mainly manual 
by post-processing personnel through image processing software. This method has the best tripod removal qual-
ity, but is the most time-consuming and labor-intensive. While in some commercial applications, the way to deal 
with this type of problem is to use other images for hard masking, which is simple and straightforward, but the 
user experience is not ideal.

In response to the problems above, a framework based on generative adversarial network (GAN) [8] for tripod 
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removal (TRNet) in panoramic images is proposed from the perspective of image restoration. For the genera-
tor, TRNet utilizes two branches of identification and reconstruction to remove camera tripod in an end-to-end 
manner. At the same time, a common encoder is used to share weights for efficiency. Finally, as for the discrim-
inator and loss function, a spectral normalized Markov discriminator and a joint loss function are used to further 
optimize the removal effect. In this paper, the key research problems are to precisely find the position of camera 
tripod in the image and to naturally reconstruct pixel point of tripod position in the image. Major contributions of 
this paper are summarized as follows.

(1) A camera tripod removal network (TRNet) model for panoramic images is firstly proposed to remove the 
tripod in 3D images and to accelerate the post-processing speed. Even though, there are a few methods for camera 
tripod removing in the 2D images.

(2) The loss function of TRNet model is proposed in detail, and the structures of TRNet are designed step by 
step. 

(3) Extensive experiments have been conducted on a real-word dataset, which demonstrates that TRNet has 
superior quality and performance than state-of-the-art methods.

The remainder of this paper is organized as follows. In Section 2, existing related works is reviewed. In Section 
3, the detail of the proposed model, including loss function and structure are illustrated. Experimental results are 
described in Section 4. Finally, conclusions are drawn in Section 5.

2   Related Work

In this section, previous studies that related to our work will be presented, including objects removal, image res-
toration, and panoramic image processing methods. 

The removal of objects in images has received a lot of attention and has a wide range of applications and re-
search prospects in recent years [1-2]. For example, the digital compositor needs to erase the weave used during 
the filming of stunt shots to avoid malfunctioning. Some scholars have also applied artificial intelligence tech-
nology to film restoration, mainly for the old film picture spots, scratches, flicker, dithering, mold, tearing, noise 
flicker, dithering, mold, tearing, noise, etc. 

Both image restoration and removal of objects in images can be categorized as natural image restoration in 
computer vision, while the tripod removal problem can be translated into a texture restoration problem in the tri-
pod region. Up to now, many methods of image restoration have been proposed, which can be broadly classified 
into three categories, including structure-based [3], block-based [4], and network-based [6-7] methods.	

Structure-based algorithms generally use geometric methods to repair missing parts in an image, which can 
well represent the structure in the image information. Wang et al. [3] used an outline generator instead of an edge 
generator, which was more suitable for the case where the corrupted image contains distinct objects. By introduc-
ing structural information, this approach produces a more intuitive and clearer repair results.

Block-based algorithms [4] typically take a random pixel point at the boundary of the area to be restored as 
the center, and then select a block based on the texture features of the image according to the center first. Then 
the best match block is searched for intact areas of the image that do not need to be repaired on a block-by-block 
basis. Finally the contents of this best match block are used to restore the area to be repaired. This method allows 
the block to repair the texture information of the image excellently, but does not maintain the structural consisten-
cy of the repaired area with the background well.

Pathak et al. [5] proposed to combine encoder-decoder and generative adversarial networks for image res-
toration first.  The proposed algorithm used a Context Encoder-Decoder (CE) to generate the missing parts. 
Specifically, the encoder was used to extract the depth features of the image through a convolution layer, and the 
decoder was used to utilize the extracted depth features in a deconvolutional manner. The model is able to repair 
moderately large missing images well, but there is a pixel discontinuity on the boundary of the missing region.

Since GANs [9, 13-14] were proposed, well-performing network structures such as Deep Convolutional 
Generative Adversarial Networks (DCGAN) [10], WGAN-GP [11], and Shift-Net [12] have emerged, all of 
which are based on generative adversarial networks obtained by continuous optimization, allowing the models to 
obtain clearer structures and finer texture details. Furthermore, GAN is redesigned to reconstruct the pixel point 
of the image, which can precisely learn the texture around the tripod and naturally restore the image. This is the 
big difference between the proposed model and the state of the art methods. Then, template of tripod is designed 
to find the exact position in the image, which is also another difference between them.  
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3   Panoramic Image Datasets

Datasets of panoramic images are not common and need to be specifically collected and processed. Therefore, 
we traveled to 13 scenic spots in Sichuan province and took more than 6,000 panoramic photos, which were 
screened and processed to form a panoramic image dataset containing various environments and ground textures. 
Furthermore, 400 panoramic images named “Panaroma_400” were selected for the tripod removal task.

3.1   Panoramic Imaging Methods

Panoramic images are usually available in two forms, specifically are equirectangular and Cubemap. 
Equirectangular is a simple map projection that projects lines of longitude and latitude equidistantly onto a rect-
angular plane. The projection is very easy to construct, as it forms a grid of equal rectangles for subsequent pro-
cessing.

Cubemap, another storage format for panoramic images, is a collection of six square images that represent re-
flections in the environment.  However, the distribution of pixels projected at the corners of each side is still less 
uniform compared to the ideal case.

In this paper, to ensure the image quality, a super wide-angle camera is used to capture the panoramic image 
which is stored in an isometric column projection. Most of the panoramic images obtained have a resolution of 
8640×4320 and a small number have a resolution of 7680×3840.

3.2   Tripod Diversity

Tripod can be divided into stable and portable types, and is selected according to the environment. The stable type 
bracket with gimbal handle will cover more pixel points; while the portable type is less stable and covers less pix-
el points.

3.3   Texture Diversity

The Panaroma_400 dataset contains a variety of floor textures such as masonry floor, concrete floor, tile floor, as-
phalt floor, and floor rubber floor, covering various environments commonly found in daily life. 

A binary mask image (mask) was specially created for each image to indicate the tripod area. The hexahedral 
cut of the original panoramic image produces six mapped images named front (u), back (b), left (l), right (r), top 
(u), and bottom (d), and the mask image that indicates the position of the camera mount in the bottom (d) image. 
The mask image with a resolution of 8640×4320 has a resolution of 2750×2750, and the panoramic image with a 
resolution of 7680×3840 corresponds to a mask image with a resolution of 2445×2445.

4   Model Structure Description

In this section, TRNet model is designed in detail, which includes three important parts, namely loss function, 
generator and discriminator. Loss function is the objective of TRNet model, and then generator is to find the 
camera tripod and reconstruct the content of camera tripod region, at last discriminator is to judge the quality of 
reconstruction. 

4.1   Loss Function

In order to guide the goal of TRNet model, the loss function is designed to control the direction of these opera-
tions in the model. The loss function of TRNet consists of four components, which is calculated as the weighted 
sum of the reconstruction loss (LRec), content loss(LContent), mask loss(Lmask), and adversarial loss(Ladv), specifically 
are
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1 2 3 4 .Rec Content mask advL L L L Lθ θ θ θ= + + +                                                 (1)

LRec is the reconstruction loss which guarantees effective features are learned and can be represented as the 
function of real image (Igt), standard mask image (Mgt) and other regions (I) as follows 

1 1
( ) + ( ) (1 ) .Rec R gt R gt R gt R gtL I I M I I Mλ β= − × − × −                                       (2)

The residuals from the real image are computed for the bracket region and the other regions separately. Since 
we pay more attention to the texture of the scaffold region, the value of λR is larger than βR. Furthermore, in order 
to better learn the ground texture, in addition to the reconstruction loss mentioned above, TRNet also incorporates 
a content loss consisting of a combination of perceptual loss and style loss [15, 17-19],

.
i

N
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L L Lλ λ= +∑                                                              (3)

Instead of simply computing the difference between the output of the reconstructed branch and the real image, 
the perceptual loss is computed as the difference between their multi-layer feature mappings, which can be ex-
pressed as

(1 ) ,m RI M I MI = − +                                                                (4)
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L I I I Iφ φ φ φ= − + −∑ ∑                                          (5)

 Im is the original image with the tripod region removed, while ϕn() denotes the feature mapping of the nth 
pooling layer (1, 2, 3) of the pre-trained model VGG-16. 

Similar to the perceptual loss, the style loss constructs the Gram matrix from the multilayer feature mapping, 
except that it focuses more on the visual perception of the scaffold region, which is represented in the following 
form

( )) ( (( )),T
ii n n iG I Iφ φ⋅=                                                                 (6)
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In addition to reconstruction loss and content loss, mask loss and adversarial loss are also incorporated into 
the loss function to enhance the sharpness of the texture whose calculation are described in detail in Section 4.2 
Generator and Section 4.3 Discriminator, respectively.

4.2   Generator 

There are two steps to eliminate the camera tripod. The first step is to find the area of the tripod, and the second 
step is to reconstruct the area of the tripod. The quality of reconstruction is the degree of coincidence between the 
tripod area and the surrounding area. Therefore, the generator of TRNet is designed as a two-branch full convolu-
tional neural network (FCN) [13] based on U-Net [16] , as shown in Fig. 1. 
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Fig. 1. Generator of TRNet

In the encoder stage, six convolutional layers are stacked to transform a tensor of size (3, 512, 512) represent-
ing the original image into a tensor of size (256, 64, 64). After the encoder, the network is divided into two decod-
er branches. 

The recognition branch and the encoder form a typical U-Net image segmentation network, in which the output 
of the corresponding layer of the encoder stage is connected to the corresponding layer of the recognition branch 
by a jump connection, and a predicted mask image M is obtained using multi-layer de-convolution. Based on the 
above elaboration, the calculation formula of the mask loss can be obtained as

1 ( , ),mask gtL Dice M M= −                                                                 (9)
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For the reconstruction branch, it shares the encoder with the recognition branch, reducing the number of 
weights, and at the same time, the capability of the recognition tripod learned by the recognition branch is passed 
to the reconstruction branch through the shared encoder. In this way, the trained TRNet does not need to input the 
mask image indicating the scaff old region when restoring photos, further improving the applicability.

In addition, residual blocks are introduced into the reconstruction branch to solve the problem of gradient dis-
appearance due to excessive convolution. However, the use of residual blocks alone is not suffi  cient and its ability 
to extract information is still lacking.  Dilated convolution can expand the perceptual fi eld and extract a wider 
range of features without increasing the computational eff ort, which helps to reconstruct textures.

Therefore, in this paper, a new structure, the dilated residual block, is proposed, and its structure is shown in 
Fig. 2(a). Distinguished from the traditional residual block, a layer of dilated convolution is added in it. In the 
reconstruction branch, four blocks of cavity residuals with dilation values of 2, 4, 8, and 2 are stacked to form a 
special intermediate layer. This intermediate layer both avoids the degradation problem of deep neural networks 
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and takes advantage of the dilated convolution to improve the ability to extract features and repair the ground tex-
ture in a limited number of layers.

The final part of the reconstruction branch is the decoder. The decoder is designed as a symmetric structure 
to the shared encoder. At the same time, the output of the corresponding layer in the encoder is cascaded to the 
corresponding layer in the decoder by a jump connection, so that the reconstruction branch uses the fine-grained 
details learned in the encoder stage to construct the image in the decoder stage and obtain the output IR of the re-
construction branch.

                                                        

                                                                    
                 (a) Structure of the dilated residual block                                    (b) Structure of the discriminator

Fig. 2. Structure of the dilated residual block and the discriminator

4.3   Discriminator

In this subsection, an worthy network of discriminator is designed to evaluate the performance of generator. In 
generative adversarial networks, the generator and discriminator components compete with each other with the 
aim of achieving Nash equilibrium through training. In TRNet, a spectrally normalized Markov discriminator 
[14] is employed to determine whether the output of the generator is true or false from both global and local per-
spectives to ensure the final output is of high quality, and its structure is shown in Fig. 2(b).

The discriminator stacks 7 convolutional layers with 4×4 kernel size and 2 steps to capture the features of 
Markovian patch. The final output of the discriminator is a patch feature of the shape H × W × C, where C is the 
number of channels. Then, these patches are penalized using hinge loss as adversarial loss to obtain the final prob-
ability that the input is a real or false scaffold erased image. Based on this, the adversarial loss can be calculated 
as follows

.adv D GL L L= +                                                                       (14)

                     [ ] [ ]~ ( ) ~ ( )(1 ( )) (1 ( ( ))) .
dataD x P x z Pz zRe RL E LU D x E LU D Ge z= − + +                               (15)

[ ]~ ( ) ( ( )) .G z Pz zL E D G z= −                                                               (16)

5   Experimental Results and Analysis

In this section, the experimental data set, evaluation metrics, and experimental environment are briefly described. 
Subsequently, the results of ablation and comparison experiments are analyzed in detail to illustrate the perfor-
mance of the proposed model.
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5.1   Datasets

The dataset Panorama_400 contains 400 sets of images. To ensure the same data distribution, 448 sets of images 
were randomly selected as the training set and the remaining 50 sets of images were used as the test set. Since 
both the input and output images of TRNet have a resolution of 512×512, the high-resolution images in the 
Panorama_400 dataset are down-sampled to 512×512.

5.2   Evaluation Metric

Six evaluation metrics were used to fully validate the superiority of the model, namely Peak Signal to Noise Ratio 
(PSNR) [20-21], Structured Similarity Index Method (SSIM) [22], Mean Square Error (MSE), Average of the 
Grey level Absolute Difference (AGE) [23], the Percentage of Error Pixels between Two Images (PEPS) [23] and 
the Percentage of Clustered Error Pixels (PCEPS) [23].

The higher the value of PSNR and SSIM, the better the restoration effect. And smaller values of the four met-
rics, MSE, AGE, pEPs and pCEPS, indicate less difference between the two images, i.e., better restoration.

5.3   Ablation Study

Firstly, experiments related to the effectiveness of style loss were done, and the experimental results are shown in 
Table 1. The first and second rows of Table 1 indicate the evaluation results calculated with and without the use of 
style loss, respectively. The data show that the six metrics are significantly improved after using style loss, which 
proves that the style loss facilitates the texture transfer from the texture of the bracket region to the texture of the 
ground and helps the reconstruction of the texture of the bracket region.

In the reconstructed branch, an intermediate layer consisting of a stack of four dilated residual blocks is add-
ed, which exhibits a strong texture learning capability. In order to compare the variability between the proposed 
structure and other structures, five sets of comparison experiments were designed, the details are shown in Table 
2. The above six results were tested and the results are shown in Table 3 and Fig. 3.

Table 1. The results of the ablation experiments on style loss, where SL denotes style loss

PSNR MSSIM (%) MSE AGE PEPS PCEPS
TRNet (IG) w SL 39.0425 97.7600 0.0002 1.0921 0.0045 0.0015
TRNet (IG) w/o SL 35.9096 92.0200 0.0004 1.4985 0.0064 0.0019

Table 2. Details of the 5 contrasting structures

Index Details of structure
(a) Intermediate layer consisting of 4 layers of dilated residual blocks
(b) Intermediate layer consisting of 7 layers of residual blocks
(c) Intermediate layer consisting of 21 layers of dilated convolution
(d) Intermediate layer consisting of 21 layers of ordinary convolution
(e) Intermediate layer consisting of 7 layers where all convolutions are replaced with residual blocks of 

the dilated convolution
(f) Intermediate layer without any operation

Table 3. Results of multiple structures under different evaluation metrics

PSNR MSSIM (%) MSE AGE PEPS PCEPS
(a) 40.0321 97.5600 0.0002 0.9778 0.0045 0.0016
(b) 38.3456 95.2200 0.0003 1.0834 0.0057 0.0026
(c) 30.7756 73.9200 0.0013 5.1567 0.0499 0.0027
(d) 35.8676 94.3211 0.0006 1.5122 0.0072 0.0024
(e) 37.9347 95.3022 0.0003 1.1429 0.0056 0.0024
(f) 28.7644 64.8133 0.0020 6.4002 0.0734 0.0062
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(f) is the shallowest network among the six structures, and there is a distinct stent image residue in its restored 
image, which proves that deeper networks are more conducive to texture reconstruction. Although (c) uses all 
cavity convolution with a larger receptive field, it ignores the influence of adjacent pixels, resulting in a more 
severe smearing in the restored area with obvious iridescence. (d) restored image is accurate in color, but when 
the ground texture is more complex, it will produce a more unconventional texture and the border transition is not 
natural enough. (b), compared with (d), avoids the problem of gradient disappearance through jump connection 
and activation function, so the overall performance is better and restores the brick joints and brick textures more 
accurately. Similarly, (e) also has more jump connections and activation functions compared with (c), and the res-
toration ability is also improved.

The experimental results show that the images restored using (a) produce less noise and accurately identify the 
location of the brick joints and the texture of the ground. Even on floors with more complex and variable textures, 
the cavity residual block accurately restores details with natural boundary transitions and disappearance of brack-
et contours. In terms of evaluation index, the cavity residual block also has certain advantages in comparison with 
a variety of structures, which can also be visually confirmed. There are two reasons the proposed model work so 
better than the existing methods. First, the template of camera tripod is designed to find the exact position in the 
image, which can increase the accuracy. Second, the discriminator of proposed model can learning the texture 
around camera tripod in the image, then it can help the algorithm reconstruct the texture on the pot of camera tri-
pod. 

Fig. 3. Comparison of experimental results for multiple structures

(Raw is the original image and gt is the standard image.)

5.4  Comparison with Advanced Methods

In order to verify the superiority of the proposed model in this paper, experiments were conducted with other four 
advanced comparison algorithms under six evaluation metrics. The four compared algorithms are LBAM [24], 
EraseNet [13], CycleGAN [25] and EnsNet [23], and the experimental results are shown in Table 4 and Fig. 4.

As shown in Fig. 4, CycleGAN is able to roughly erase the camera tripod in the image, but because the ground 
has multiple complex textures, it may misjudge during the training phase, resulting in poor erasure results.  

EraseNet has a good erasing effect in most scenes, but it does not reconstruct the texture within the tripod area 
well, resulting in a visual smearing effect.
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Table 4. Data comparison with multiple advanced methods

PSNR MSSIM (%) MSE AGE PEPS PCEPS
CycleGAN 32.3421 91.2100 0.0011 2.7898 0.0182 0.0121
EraseNet 37.5255 96.4200 0.0002 1.6036 0.0052 0.0017
LBAM 29.3942 89.5500 0.0025 4.3021 0.0332 0.0112
EnsNet 33.7292 94.8600 0.0004 1.9829 0.0092 0.0033

TRNet (ours) 40.7644 97.9700 0.0001 0.9441 0.0040 0.0011

In the results obtained by LBAM, the contours and textures of the stabilized tripod are still relatively clear. 
And in some of the samples, the color reproduction also has a certain gap with the standard image, and there are 
rainbow patterns. 

The overall performance of EnsNet is relatively good, but the convolution operation identifies the noise as a 
feature when it encounters a large range of noise, resulting in light spots in the results.

The TRNet proposed in this paper performs better in terms of color, texture, and edge transition. Thanks to 
the dilated residual block, TRNet can extract texture features in a larger range and promote smooth transition of 
texture on edges. Furthermore, loss functions such as style loss allow TRNet to better mimic the texture details of 
masonry. In particular, where the ground texture complexity is high, the texture within the bracket area is closer 
to the overall visual effect.

From the perspective of quantitative metrics, TRNet also has excellent performance compared to other net-
works, as evidenced by its first place performance in all six metrics. In the Friedman test [26], the 2

FX  statistics 
and p-values of TRNet are 23.832 and 8.6 × 10−5, respectively. So the original hypothesis was rejected, i.e., 
TRNet significantly outperformed the other comparison algorithms.

Fig. 4. The results of comparison with a variety of advanced methods 

(Raw is the original image, masked is the mask image and gt is the standard image.)
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6   Conclusion

In this paper, we propose a generative adversarial network-based camera bracket erasure model, which constructs 
generators consisting of recognition branches and reconstruction branches responsible for locating bracket re-
gions and reconstructing tripod region textures from both image segmentation and image restoration, respectively. 
The recognition branch passes the learned tripod regions to the reconstruction branch through a shared encoder to 
achieve “end-to-end” tripod removal. To better reconstruct the texture, the residual blocks proposed in ResNet are 
optimized and the dilated residual blocks are proposed. Four cavity residual blocks are stacked in the reconstruc-
tion branch, which improves the ability to reconstruct ground texture and performs very well in the comparison 
of multiple structures. Experimental results on dataset Panaroma_400 show the brilliant recognition and texture 
reconstruction ability of the model proposed in this paper compared to other state-of-the-art models. The model is 
mainly an iterative algorithm, which requires more time in the the worst case. Therefore, future research on this 
model will mainly focus on improving time efficiency and parallel computing.
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