DOI QR코드

DOI QR Code

Anti-invasive Effect of the Solvent-partitioned Fractions from Viticis Fructus in PMA-induced HT-1080 Cells

HT-1080 세포에서 만형자 용매 추출물의 암전이 억제효과

  • Son, Jaemin (Ocean Science & Technology School, Korea Maritime & Ocean University) ;
  • Kim, Hojun (Division of Marine Bioscience, Korea Maritime & Ocean University) ;
  • Kong, Chang-Suk (Department of Food and Nutrition, College of Medical and Life Sciences, Silla University) ;
  • Seo, Youngwan (Ocean Science & Technology School, Korea Maritime & Ocean University)
  • 손재민 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ;
  • 김호준 (한국해양대학교 해양과학기술대학 해양환경.생명과학부) ;
  • 공창숙 (신라대학교 의생명과학대학 식품영양학과) ;
  • 서영완 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과)
  • Received : 2018.01.08
  • Accepted : 2018.03.21
  • Published : 2018.03.30

Abstract

Viticis fructus (fruits of Vitex rotundifolia) is the dried fruit from Vitex rotundifolia; is a traditional medicine for treating inflammation, migraines, chronic bronchitis, headaches, eye pain, and gastrointestinal infections; and demonstrates various bioactivities, including anti-allergic, anti-cancer, and anti-inflammatory effects, which are partly due to its phenolic compound content. This study examines the inhibitory effects of viticis fructus (fruits of Vitex rotundifolia) on MMP-2 and MMP-9 expression using gelatin zymography and RT-PCR in phorbol-12-myristate-13-acetate (PMA)-induced HT-1080 fibro-sarcoma cells. Fruits of Vitex rotundifolia were extracted twice using dichloromethane ($CH_2Cl_2$) and methanol (MeOH). The combined crude extracts ($CH_2Cl_2$ and MeOH) significantly inhibited MMP-2 and MMP-9 activities in gelatin zymography. The combined extracts were fractionated into n-hexane, 85% aqueous methanol (85% aq. MeOH), n-butanol, and water, successively according to polarity. Among all solvent-partitioned fractions, 85% aq. MeOH fractions showed the strongest inhibition on the activation of MMP-2 and MMP-9 in gelatin zymography. In PMA-stimulated HT-1080 cells, the expression levels of MMP-2 and MMP-9 mRNA were also greatly inhibited by the 85% aq. MeOH fraction. These results suggest that viticis fructus can be used as an excellent source for anti-invasive agents.

본 연구는 PMA (Phorbol 12-myristate 13-acetate)에 의해 MMP 활성이 증가된 섬유육종세포에서 MMP-2와 -9의 mRNA 발현 및 단백질 활성에 대한 만형자의 억제 효과를 zymography와 RT-PCR 방법에 의해서 측정하였다. 만형자 시료는 dichloromethane에 의해서 두 번 추출되었으며 동일한 과정을 methanol를 사용하여 반복하였다. 각각의 용매에 의해서 얻어진 추출물을 합한 후에 zymography를 이용하여 이 추출물의 MMP-2와 -9에 대한 억제효과를 측정한 결과 유의적인 억제효과를 나타내었다. 억제활성 성분을 추적하기 위하여 극성에 따른 추출물의 용매분획을 실시하여 n-hexane, 85% aq. MeOH, n-butanol, 및 water 분획층을 얻었다. 이 4가지 용매분획에 대한 MMP 억제활성을 측정하였으며 측정한 결과 85% aq. MeOH 분획층이 zymography와 RT-PCR 실험에서 MMP-2와 -9에 대해 가장 강한 억제효과를 나타내었다. 이상의 결과는 만형자 추출물이 암전이 억제제 개발을 위한 좋은 원천이 될 수 있는 가능성이 있음을 제시한다.

Keywords

References

  1. Cathcart, J., Pulkoski-Gross, A. and Cao, J. 2015. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis. 2, 26-34. https://doi.org/10.1016/j.gendis.2014.12.002
  2. Eugenia Gentile, E. and Liuzzi, G. M. 2017. Marine pharmacology: therapeutic targeting of matrix metalloproteinases in neuroinflammation. Drug Discov. Today 22, 299-313. https://doi.org/10.1016/j.drudis.2016.09.023
  3. Gialeli, C., Theocharis, A. D. and Karamanos, N. K. 2011. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 278, 16-27. https://doi.org/10.1111/j.1742-4658.2010.07919.x
  4. Hadler-Olsen, E., Fadnes, B., Sylte, I., Uhlin-Hansen, L. and Winberg, J. O. 2011. Regulation of matrix metalloproteinases in health and disease. FEBS J. 278, 28-45.
  5. Hansen, M. B., Nielsen, S. E. and Berg, K. 1989. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Meth. 119, 203-210. https://doi.org/10.1016/0022-1759(89)90397-9
  6. Hu, J., Van den Steen, P. E. and Sang, Q. X. A. and Opdenakker, G. 2007. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat. Rev. Drug Discov. 6, 480-498. https://doi.org/10.1038/nrd2308
  7. Kieseier, B. C., Seifert, T., Giovannoni, G. and Hartung, H. P. 1999. Matrix metalloproteinases in inflammatory demyelination. Neurology 53, 20-25. https://doi.org/10.1212/WNL.53.1.20
  8. Mignatti, P. and Fifkin, D. B. 1993. Biology and biochemistry of proteinases in tumor invasion. Physiol. Rev. 73, 161-195.
  9. Moss, L. A. S., Jensen-Taubman, S. and Stetler-Stevenson, W. G. 2012. Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am. J. Pathol. 181, 1895-1899. https://doi.org/10.1016/j.ajpath.2012.08.044
  10. Sang, Q. X., Jin, Y., Newcomer, R. G., Monroe, S. C., Fang, X. X., Hurst, D. R., Lee, S., Cao, Q. and Schwartz, M. A. 2006. Matrix metalloproteinase inhibitors as prospective agents for the prevention and treatment of cardiovascular and neoplastic diseases. Curr. Top. Med. Chem. 6, 289-316. https://doi.org/10.2174/156802606776287045
  11. Shay, G., Lynch, C. C. and Fingleton, B. 2015. Moving targets: emerging roles for MMPs in cancer progression and metastasis. Matrix Biol. 44-46, 200-206. https://doi.org/10.1016/j.matbio.2015.01.019
  12. Sternlicht, M. D. and Werb, Z. 2001. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell. Dev. Biol. 17, 463-516. https://doi.org/10.1146/annurev.cellbio.17.1.463
  13. Stocker, W, Grams, F., Reinemer, P., Bode, W., Baumann, U., Gomis-Ruth. F. X. and Mckay, D. D. 1995. The metzincins- topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. 4, 823-840.
  14. Verma, R. P. and Hansch, C. 2007 Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs. Bioorg. Med. Chem. 15, 2223-2268. https://doi.org/10.1016/j.bmc.2007.01.011
  15. You, J. S., Chae, B. S., Kim, D. K., Cui, X., Park, J. S., Lee, J. H., Kim, S. H. and Shin, T. Y. 2013. Antiallergic and anti- inflammatory effects of the viticis fructus. Kor. J. Pharmacogn. 44, 286-290.
  16. Yu, J. M., Kim, D. H. and Son, J. H. 2015. Whitening effects of solvent fractions isolated from Vitex rotundifolia. J. Appl. Biol. Chem. 58, 266-271.
  17. Yoshioka, T., Inokuchi, T., Fujioka, S. and Kimura, Y. 2004. Phenolic compounds and flavonoids as plant growth regulators from fruit and leaf of Vitex rotundifolia. Z. Naturforsch. 59, 509-514.