DOI QR코드

DOI QR Code

Effect of Solvent Annealing on the Characteristics of PEDOT:PSS as a Ammonia Gas Sensor Film

용매열처리에 따른 PEDOT:PSS 암모니아 가스 감지막 특성 변화

  • Noh, Wang Gyu (School of Chemical Engineering, Yeungnam University) ;
  • Yeom, Se-Hyuk (Gumi Electronics & Information Technology Research Institute) ;
  • Lee, Wanghoon (Gumi Electronics & Information Technology Research Institute) ;
  • Shin, Han Jae (Gumi Electronics & Information Technology Research Institute) ;
  • Kye, Ji Won (Gumi Electronics & Information Technology Research Institute) ;
  • Kwak, Giseop (School of Applied Chemical Engineering, Kyungpook National University) ;
  • Kim, Se Hyun (School of Chemical Engineering, Yeungnam University) ;
  • Ryu, Si Ok (School of Chemical Engineering, Yeungnam University) ;
  • Han, Dong Cheul (Gumi Electronics & Information Technology Research Institute)
  • Received : 2016.12.19
  • Accepted : 2017.03.17
  • Published : 2017.03.31

Abstract

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been extensively studied as the active material in ammonia gas sensor because of its fast response time, high conductivity and environmental stability. It is well known that a post annealing process for organic devices based on PEDOT:PSS significantly increases the device performance. In this study, we propose the solvent annealing of PEDOT:PSS and investigated its effects. As a results, post solvent annealing on PEDOT:PSS lead to the surface chemical and physical properties change. These changes result in improved conductivity of the PEDOT:PSS. In additional, ammonia sensitivity of solvent annealed PEDOT:PSS become higher than pristine polymer film. The enhancement is mainly caused by the depletion of gas barrier PSS and structural re-forming PEDOT networks. We believe that the post solvent annealing is a promising method to achieve highly sensitivity PEDOT:PSS films for applications in efficient, low-cost and flexible ammonia gas sensor.

Keywords

References

  1. M. Aslam, V. A. Chaudhary, I. S. Mulla, S. R. Sainker, A. B. Mandale, A. A. Belhekar and K. Vijayamohanan, "A highly selective ammonia gas sensor using surface-ruthenated zinc oxid", Sens. Actuator A-Phys., Vol. 75, pp. 162-167, 1999. https://doi.org/10.1016/S0924-4247(99)00050-3
  2. G. Wang, Y. ji, X. Huang, X. Yang, P. I. Gouma and M. Dudley, "Fabrication and characterization of Polycrystalline Nanofiber WO3 and Their Application for Ammonia Sensing", J. Phys. Chem. B, Vol. 110, pp. 23777-23782, 2006. https://doi.org/10.1021/jp0635819
  3. R. Pandeeswari, B. G. Jeyaprakash, "High sensing response of ${\beta}-Ga2O3$ thin film towards ammonia vapours: Influecing factors at room temperature", Sens. Actuator B-Chem., Vol. 195, pp. 206-214, 2014. https://doi.org/10.1016/j.snb.2014.01.025
  4. C. S. Rout, M. Hegde, A. Govindaraj, and C. N. R. Rao, "Ammonia sensor based on metal oxide nanostructures", Nanotechnol., Vol. 18, pp. 205504, 2007. https://doi.org/10.1088/0957-4484/18/20/205504
  5. J. W. Jung, S. J. Park, I. B. Jeong, B. Y. Kim, and J. H Lee, "Design of Highly Reliable Thick Film Gas Sensor Using $SnO_2$ Nanofibers", J. Sensor Sci. & Tech., Vol. 25, pp. 271-274, 2016. https://doi.org/10.5369/JSST.2016.25.4.271
  6. J. W. Kye, D. C. Han, H. J. Shin, H. G. Kim, and W. Lee, "Fabrcation of Flexible Temperature & Humidity Sensor Using Inkjet-printing Technology", J. Sensor Sci. & Tech., Vol. 24, pp. 119-123, 2015. https://doi.org/10.5369/JSST.2015.24.2.119
  7. M. W. Ahn, K. S. Park, J. H. Heo, J. G. Park, D. W. Kim, K. J. Choi, J. H. Lee, and S. H Hong, "Gas sensing properties of defect-controlled ZnO-nanowire gas sensor", Appl. Phys. Lett, Vol. 93, pp. 263103, 2008. https://doi.org/10.1063/1.3046726
  8. N. Yamazoe, "Toward innovations of gas sensor technology", Sens. Actuator B-Chem, Vol. 108, pp. 2-14, 2005. https://doi.org/10.1016/j.snb.2004.12.075
  9. S. Carquigny, J. B. Sanchez, F. Berger, B. Lakard, F. Lallemand, "Ammonia gas sensor based on electrosynthesized polypyrrole films", Talanta, Vol. 78, pp. 199-206, 2009. https://doi.org/10.1016/j.talanta.2008.10.056
  10. A. Airoudj, D. Debarnot, B. Beche, and F. P. Epaillard, "Development of an optical ammonia sensor based on polyaniline/epoxy resin (SU-8) composite", Talanta, Vol. 77, pp. 1590-1596, 2009. https://doi.org/10.1016/j.talanta.2008.09.054
  11. Y. Seekaew, S. Lokavee, D. Phokharatkul, A. wisitsoraat, T. Kerdcharoen, and C. Wongchoosuk, "Low-cost and flexible printed graphene-PEDOT:PSS gas sensor for ammonia detection", Org. Electron. , Vol. 15, pp. 2971-2981, 2014. https://doi.org/10.1016/j.orgel.2014.08.044
  12. M. Vosgueritchian, D. J. Lipomi, and Z. Bao, "Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes", Adv. Funct. Mater., Vol. 22, pp. 421-428, 2012. https://doi.org/10.1002/adfm.201101775
  13. Y. Seekaew, S. Lokavee, D. Phokharatkul, A. Wisitsoraat, T. Kerdcharoen, C. Wongchoosuk, "Low-cost and flexible printed graphene-PEODT:PSS gas sensor for ammonia detection", Org. Electron., Vol. 15, pp 2971-2981, 2014. https://doi.org/10.1016/j.orgel.2014.08.044
  14. Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. M. Meskamp, and K. Leo, "Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells", Adv. Funct. Mater., Vol. 21, pp. 1076-1081, 2011. https://doi.org/10.1002/adfm.201002290
  15. U. Lang, E. Müller, N. Naujoks, and J. Dual, "Microscopical Investigations of PEDOT:PSS Thin Films", Adv. Funct. Mater., Vol. 19, pp. 1215-1220, 2009. https://doi.org/10.1002/adfm.200801258
  16. J. H. Kim, Y. K. Seo, J. W. Han, J. Y. Oh, and Y. H. Kim, "Effect of Solvent Doping and Post-Treatment on the Characteristics of PEDOT:PSS Conducting Polymer", Appl. Chem. Eng., Vol. 26, PP. 275-279, 2015. https://doi.org/10.14478/ace.2015.1018
  17. B. Friedel, P. E. Keivanidis, T. J. K. Brenner, A. Abrusci, C. R. McNeill, R. H. Friend, and N. C. Greenham, "Effects of Layer Thickness and Annealing of PEDOT:PSS Layers in Organic Photodetectors", Macromolecules, Vol. 42, pp.6741-6747, 2009. https://doi.org/10.1021/ma901182u
  18. J. Ouyang, C. W. Chu, F. C. Chen, Q. Xu, and Y. Yang, "High-Conductivity Poly(3,4-Ethylenedioxythiophene): Poly (styrenesulfonate) Film and Its Application in Polymer Optoelectronic Devices", Adv. Funct. Mater., Vol. 15, pp. 203-208 February, 2005. https://doi.org/10.1002/adfm.200400016
  19. Y. Chung, T. W. Lee, " Control of the Surface Composition of a Conducting-Polymer Complex film to Tune the Work Function", Adv. Funct. Mater., Vol. 18, pp. 2246-2252, 2008. https://doi.org/10.1002/adfm.200700766