DOI QR코드

DOI QR Code

Laser-based THz Time-Domain Spectroscopy and Imaging Technology

레이저 기반 테라헤르츠 시간영역 분광 및 영상 기술

  • Received : 2018.07.10
  • Accepted : 2018.09.04
  • Published : 2018.09.30

Abstract

Terahertz (THz) time-domain spectroscopy(TDS), imaging techniques, and related systems have become mature technologies, widely used in many universities and research laboratories. However, the development of creative technologies still requires improved THz application systems. A few key points are discussed, including the innovative advances of mode-locking energy-emitting semiconductor lasers and better photoconductive semiconductor quantum structures. To realize a compact, low cost, and high performance THz system, it is essential that THz spectroscopy and imaging technologies are better characterized by semiconductor and nano-devices, both static and time-resolved. We introduce the THz spectroscopy and imaging systems, the OSCAT(Optical Sampling by laser CAvity Tuning) system and the ASOPS(ASynchronous Optical Sampling) system, are constructed by our research team. We report on the THz images obtained from their use.

THz 시간 영역 분광학(TDS)은 이제 성숙한 분야가 되었고, 그 기술은 전 세계적으로 수백 개의 연구실에서 사용되고 있지만, THz 시스템의 개선에 대한 여지는 아직 많이 남아있다. 도전과제의 핵심은 모드-잠김 에지 방사(edge emitting) 반도체방출 반도체 레이저와 광전도 반도체 양자 구조의 개선이다. 또한 대량 생산을 위한 기술과 3D 프리팅과 같은 혁신적인 제조 기술도 매우 효과적이다. 최근에 상용제품으로 출시된 OSCAT 시스템과 ASOPS 시스템을 이용하여 분광/영상기법을 반도체 패키지 칩에 적용하기도 하였다. 한편, THz 분광법이 정적(static)이거나 또한 시간-분해적이든 간에 모두 반도체 소재 및 반도체 나노 구조의 특성을 평가하는 데 있어서 선도적인 기법이 될 것이다. 향후에는 점점 더 좁은 영역을 탐구하는 방법이나 THz 응용 시스템을 평형상태에서 벗어나게 하는 툴(tool)로써 사용될 가능성도 높다. 또한 메타(meta) 물질을 이용하여 THz 시스템에 적용할 경우, 가변 필터와 같은 순시적인 광학 부품이 가능하므로 광여기(photoexcited) 반도체 소자(신호원)으로 이용하는 구상/디자인도 할 수 있다.

Keywords

References

  1. M. Tonouchi, New Terahertz Industry-High Technology Information, CMC books, City, pp. 95-131, 2011.
  2. Smith P R, Auston D H and Nuss M C, "Subpicosecond photoconducting dipole antennas", IEEE J. Quant. Electron., Vol. 24, No. 2 pp. 255-260, 1988. https://doi.org/10.1109/3.121
  3. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors", J. Opt. Soc. Am. B, Vol.7, No. 10, pp. 2006-2015, 1990. https://doi.org/10.1364/JOSAB.7.002006
  4. B. B. Hu and M. C. Nuss, "Imaging with terahertz waves", Opt. Lett., Vol. 20, No. 16, pp. 1716-1718, 1995. https://doi.org/10.1364/OL.20.001716
  5. J. V. Rudd, D. Zimdars, and M. Warmuth, "Compact fiber-pigtailed terahertz imaging system", Proc. SPIE, Vol. 3934, pp. 27-35, 2000.
  6. R. Wilk, M. Mikulics, K. Biermann, H. Kunzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, "THz time-domain spectrometer based on LT-InGaAs photoconductive antennas exited by a 1.55 ${\mu}m$ fibre laser", Conf. on Lasers and Electro-Optics, Baltimore, MD, 2007.
  7. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, "Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy", Phys. Rev. B62, pp. 15764-15776, 2000. https://doi.org/10.1103/PhysRevB.62.15764
  8. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, "Subpicosecond photoconducting dipole antennas", Nano Lett. Vol. 2, Issue 9, pp. 983-987, 2002, https://doi.org/10.1021/nl0256210
  9. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, "How many-particle interactions develop after ultrafast excitation of an electron-hole plasma", Nature, Vol. 414, pp. 286-289, 2001. https://doi.org/10.1038/35104522
  10. M. Yamashita, C. Otani, T. Matsumoto, Y. Midoh, K. Miura, K. Nakamae, K. Nikawa, S. Kim, H. Murakami, and M. Tonouchi, "THz emission characteristics from p/n junctions with metal lines under non-bias conditions for LSI failure analysis", Opt. Express, Vol. 19, No. 11, pp.10864-10873, 2011. https://doi.org/10.1364/OE.19.010864
  11. J. M. Schleicher, S. M. Harrel, and C. A. Schmuttenmaer, "Effect of spin-polarized electrons on terahertz emission from photoexcited GaAs", J. Appl. Phys., Vol. 105, pp. 113116-113124, 2009. https://doi.org/10.1063/1.3133093
  12. R. J. B. Dietz, N. Vieweg, T. Puppe, A. Zach, B. Globisch, T. Gobel, P. Leisching, and M. Schell, "All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling", Opt. Lett., Vol. 39. No. 22, pp. 6482-6485, 2014. https://doi.org/10.1364/OL.39.006482
  13. S. Schumann, C. Jansen, M. Schwerdtfeger, S. Busch, O. Peters, M. Scheller, M. Koch, "Spectrum to space transformed fast terahertz imaging", Opt. Express, Vol. 20, No. 17, pp. 19200-19205, 2012. https://doi.org/10.1364/OE.20.019200
  14. H. T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution", Appl. Phys. Lett., Vol. 83, No. 15, pp. 3009-3011, 2003. https://doi.org/10.1063/1.1616668
  15. T. L. Cocker, et al., "An ultrafast terahertz scanning tunnelling microscope", Nat. Photon., Vol. 7, No. 7, pp. 620-625, 2013. https://doi.org/10.1038/nphoton.2013.151
  16. I. C. Ho, X. Guo, and X. C. Zhang, "Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy", Opt. Express, Vol. 18, No. 3, pp. 2872-2883, 2010. https://doi.org/10.1364/OE.18.002872
  17. T. L. Cocker and R. Huber, J. Phys. D: Appl. Phys., "The 2017 terahertz science and technology roadmap" Vol.50, 043001(pp. 26-27), 2017.
  18. B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, "Terahertz lenses made by compression molding of micropowders", Appl. Opt., Vol. 50, pp. 2256-2262, 2011. https://doi.org/10.1364/AO.50.002256
  19. S. F. Busch, M. Weidenbach, M. Fey, F. Schafer, T. Probst, and M. Koch, "Optical Properties of 3D Printable Plastics in the THz Regime and their Application for 3D Printed THz Optics", J. Infrared Millim. Terahertz Waves, Vol. 35. pp. 993-999, 2014. https://doi.org/10.1007/s10762-014-0113-9
  20. K-L Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, "Generation of 10 ${\mu}J$ ultrashort terahertz pulses by optical rectification", Appl. Phys. Lett., Vol. 90. pp. 171121-171123, 2007. https://doi.org/10.1063/1.2734374
  21. R. Inoue. Y. Ohno, M. Tonouchi, "Development of fiber-coupled compact terahertz time-domain spectroscopy imaging head", Jpn. J. Appl. Phys. Vol. 45 Part 1(10A), pp. 7928-7932, 2006. https://doi.org/10.1143/JJAP.45.7928
  22. M. Tonouchi, OPTRONICS, Vol. 26, No. 8, pp. 117, 2007.
  23. B. S. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, "T-ray computed tomography", Opt. Lett., Vol. 27, pp. 1312-1314, 2002. https://doi.org/10.1364/OL.27.001312
  24. A,C. Kak and M. Slaney, "Principles of THz computed tomographic imaging", IEEE Press, New York(1988).
  25. V. A. Stoica et al., "Wideband detection of transient solid- state dynamics using ultrafast fiber lasers and asynchronous optical sampling", Opt. Express, Vol. 16, No. 4, pp. 2322-2332, 2008. https://doi.org/10.1364/OE.16.002322
  26. B. J. Kwon, K. Y. Kang, K. K. Kang, S. Y. Kim, J. S , Kim, S. C. Lee, B. Ryu, "Development of the THz imaging inspection module for defect analysis of semiconductor chip" Collected papers of KEES Summer Conference, Vol. 5, No. 1, p. 516 2017.