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ABSTRACT
The correlated exploitation of heterogeneous data sources of-
fering very large archival and streaming data is important to
increase the accuracy of computations when analysing and pre-
dicting future states of moving entities. Aiming to significantly
advance the capacities of systems to improve safety and effective-
ness of critical operations involving a large number of moving
entities in large geographical areas, this paper describes progress
achieved towards time critical big data analytics solutions to user-
defined challenges in the air-traffic management and maritime
domains. Besides, this paper presents further research challenges
concerning data integration and management, predictive analyt-
ics for trajectory and events forecasting, and visual analytics.

1 INTRODUCTION
Aerial and maritime transportation have significant role and
impact on the global economy and our everyday lives. The im-
provements along the last decades of these transportation means
in terms of management, planning, security, information to opera-
tors and end-users has been driven by location-based information.
The ever-increasing volume of data emphasizes the need for ad-
vanced methods supporting real-time detection and prediction of
events and trajectories, together with advanced visual analytic
methods, over multiple heterogeneous, voluminous, fluctuating,
and noisy data streams of moving entities.

These transportation domains aim at fostering collaborative
decision-making environments, involving all the stakeholders in
the process as this is expected to provide direct and positive con-
sequences in terms safety, efficiency and economy in both, aerial
and maritime domains. For instance, by having a better under-
standing of the air navigation data (historical data of flight plans,
sector configurations and weather), the number of published reg-
ulations (e.g. delays imposed to flights entering congested areas),
which limit the number of flights planned to enter an airspace or
aerodrome to match traffic demand to available capacity, could be
more accurately forecasted and thus the adherence to scheduled
trajectories improved, reducing delays and operational costs.
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Tracking and analysis of vessels’ behaviour at sea are also
important challenges for enhancing the safety and efficiency of
many maritime operations [10]: preventing ship accidents by
monitoring vessels’ activity represents substantial financial sav-
ings for shipping companies (e.g., oil spill clean-up) and averts
irrevocable damages to maritime ecosystems (e.g., fishery clo-
sure).

The current Air TrafficManagement (ATM) is nowadays chang-
ing its point of view from a time-based operations concept to a
Trajectory-Based Operations (TBO) one, which means a better
exchange, maintenance and use of the aircraft trajectories. Simi-
larly, real-time tracking and forecasting of trajectories of ships
from port-to-port, worldwide, together with route prediction and
early recognition of maritime events, are essential to improve
safety of operations at sea. More accurate and richer informa-
tion on trajectories and related events is expected to increase the
abilities to predict trajectories and forecast events, anticipate the
behaviour of any moving entity, improve situational awareness,
and consequently the decision-making process in both ATM and
maritime domains.

Due to the complexity of these transportation systems, as
well as due to factors contributing to increased uncertainty and
lack of accuracy in the mobility data, the current techniques
for predicting trajectories are limited to a short-term horizon,
while the event detection and forecasting abilities are limited.
The development of methodologies exploiting the amount of
data from heterogeneous data sources, managing the possible
lack of veracity for (actual, historical and planned) trajectories
and other contextual aspects (e.g. airspace sector configurations,
regulations and policies, sea protected areas, weather patterns), is
expected to overcome some of the limitations of existing systems.

The objective of this paper is to describe progress achieved
towards big data analytics solutions concerning moving enti-
ties in the air-traffic management and maritime domains, and
to present related research challenges on data integration and
management, predictive analytics for trajectory and events fore-
casting, and visual analytics. Challenges, methods and techniques
developed in this paper originate from the datAcron project
(http://www.datacron-project.eu/) whose aim is to provide ad-
vances for Big Data Analytics for Time Critical Mobility Fore-
casting.
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The rest of the paper is organised as follows. Section 2 in-
troduces the challenges from both domains from an end-user
perspective. Section 3 presents the overall datAcron architecture.
Section 4 presents the data management components and the
datAcron ontology, while Section 5 presents the location and
trajectory predictors. Section 6 presents the events detection and
forecasting components, and Section 7 the online and offline
visual analytics components. All sections present experimental
results, providing evidence of the progress achieved towards time
critical (i.e. real time) data processing andmobility analytics tasks.
Finally, Section 8 draws the conclusions.

2 USER-DEFINED CHALLENGES IN THE
ATM AND MARITIME DOMAINS

Efficiency in the air-traffic management system requires mini-
mizing costs for both the airspace users (mainly airlines) and the
operators (namely, Air Navigation Service Providers, ANSP’s).
In general, one key enabler for reducing costs is the predictabil-
ity of the system. In particular, from the point of view of the
ANSP, maintaining the balance between the demand (i.e., the
number of users trying to use limited resources like airports,
airspace sectors, etc.) and the capacity (i.e., the number of users
which can safely use the mentioned resources) is one of the main
challenges. For an airline, flying according to the plan, avoiding
delays or extra fuel consumption represents the ideal to achieve
daily operations. A trajectory based operation approach enables
to plan which resources of the air-traffic management system
will be used by each flight (airports, airways, sectors, etc.), define
the achievable schedules, as well as the implied costs, increasing
efficiency.

Big data technology, which can exploit very large historical
and streaming data sources for positioning, contextual aspects
and weather, presents opportunities to boost current predictabil-
ity capacities that are based mainly on complex theoretical mod-
els of the different components of the air-traffic management
system.

Surveillance is an ever-increasing data source since new tech-
nologies are deployed (like ADS-B) which allow to collect data
more widely (space based ADS-B promises global coverage) and
more frequently. Weather data, identically, each time is offered
with more resolution, both geographical and temporal. Contex-
tual data, like flight plans, waypoints, or airways is increasing,
linked to the traffic growth, year after year. While each data set
is big, correlating and jointly exploiting all of them together is
what makes big data technology necessary. The aircraft trajec-
tory must be understood not only as the 4D collection of points:
It should also include events relevant for the traffic management
and the airline operations. So, predicting the aircraft trajectory
implies predicting these events too, and vice versa. The amount
of information involved in this trajectory prediction process re-
quires advanced visual analytics aids in order to understand the
patterns of the predicted trajectories and events, inspect the exact
reasons for deviating from plans towards either making adjust-
ments to the actual system, or tune trajectory and event detection
and prediction methods for more accurate results.

Accurate predictions of trajectories will further advance ad-
herence to flight plans (i.e., intended trajectories) reducing many
factors of uncertainty, allowing stakeholders to do better plan-
ning of the operations, reducing risk of disruptions. Our maritime
scenarios [13] aim to address operational concerns regarding fish-
ing activities, highlighting the need for continuous, timely (i.e.

real time) tracking of fishing vessels and surrounding traffic, as
well as the need for offline data analytics.

Security in fishing addresses the need to detect and foresee
collisions between ships, potentially optimizing rendezvous be-
tween rescuing ships in proximity of a vessel in danger and
emergency services. Collision avoidance is a typical situation to
be addressed: To prevent collision of fishing vessels with other
ships we need to predict which other vessels (such as cargos,
tankers, ferries) will cross the areas where the fishing vessels are
fishing, sending a warning to the vessels identified for possible
collision, taking also appropriate action as specified by COLREGs
1. To advance decision making in these cases the potential risk
assessment should be as accurate as possible. Such a development
could also be used on board to enhance situational awareness,
when it is anticipated that a vessel will be required to “give way"
to a fishing vessel.

Additionally, we need to detect vessels in distress, and further
detect vessels in their vicinity to optimise rescuing operations.
Analytics for detecting fishing patterns that are robust to noise
and lack of veracity in data, as well as accurate trajectory pre-
diction algorithms, are fundamental to support effectively those
operational requirements.

Sustainable development maritime scenarios supporting the
monitoring of fishing activities’ impact, including the illegal ones,
is of immense importance. In particular, towards the protection
of areas from fishing we address the issue of Illegal Unreported
Unregulated (IUU) fishing, which is a global threat to the preser-
vation of maritime ecosystems and could potentially undermine
the sustainable development in large areas of the world that de-
pend on maritime resources. Beside the introduction of maritime
protected areas where protected species live and where navi-
gation is prohibited, fishing seasons are regulated and fishing
activities are forbidden in certain periods of the year, depending
on the area and on the type of catch. Towards these objectives
we need to predict and detect vessels entering, exiting, sailing,
spending time or fishing in geographical zones.

Given the above cases in both domains, real-time integration
of disparate data sources enabling scalability for massive amounts
of dynamic data is an existing challenge, which is very closely
connected to the maritime domain, as well as to the ATM domain.
Table 1 presents the main data sources exploited in datAcron 2.

A series of specific challenges concerning processing and man-
aging data from these sources are as follows: (a) scalable, auto-
matic, real-time processing, semantic annotation and linking
of data towards coherent views on integrated cross-streaming
(data-in-motion) and archival (data-at-rest) data; (b) incremental
integration of data, allowing advanced management and query-
answering of spatio-temporal data; (c) efficient distributed man-
agement and querying of integrated spatio-temporal data.

Revolving around the notion of trajectories and furthermaking
advances towards trajectories and events’ detection and predic-
tion, both domains present the following challenges: (a) real-time
reconstruction of entities’ trajectories, supported by real-time
processing and analysis of streams of data; (b) algorithms for
the prediction of anticipated trajectories at different time scale;
(c) algorithms for complex event recognition and prediction in
real-time.

1www.imo.org/en/About/Conventions/ListOfConventions/Pages/ COLREG.aspx
2Vessels equipped with the Automatic Identification system (AIS) communicate
their positions continuously. Coastal stations and satellites receive messages in
real-time.
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Table 1: The datAcron surveillance weather and contex-
tual data sources (spatial coverage is Europe).

Type Source Format Volume Velocity
Terrestrial

AIS CSV Files 19,680,743 messages
(1.05 GB) for 6 month

∼ 76 messages per min
(in average)

M
ar
it
im

e Mixed
terrestrial
and satellite

AIS

CSVFiles
81,722,110 messages
(8.11 GB) for one

month

∼ 1,830 messages per
min (in average)

Su
rv
ei
ll
an

ce

Mixed
terrestrial
and satellite

AIS

Stream of
messages
in JSON

∼ 400 KB / min (in
average)

∼ 3,700 messages per
min (in average)

FlightAware
Stream of
messages
in JSON

13GB/day 1.2Mb/s

A
T
M IFS Radar

Tracks CSV Files 12GB/day (Spanish
Airspace) 1.1Mb/s

Sea state CSVFiles 79,652,684 forecasts
(3.02 GB)

1,463 forecast files -
1 file / 3 hours

W
ea
th
er

M
ar
it
im

e
&
A
T
M

Weather
forecast CSVFiles 71,516 observations

(5 MB)
1 obs/hour, from

16 stations
Geographi-

cal
ESRI

shapefiles
22 different features

(1.4 GB) Static

Port
Registers

ESRI
shapefiles

5,754 different ports
(70 MB) Static

M
ar
it
im

e

Vessel
Registers CSVFiles 166,683 distinct ships Static

C
on

te
xt
ua

l

Eurocontrol
NM B2B CSV Files 1.7 GB/day Static

A
T
M Eurocontrol

NM B2B Flat Files 30MB/cycle Static

Other (ATM) Eurocontrol CSV Files 30MB/month Static

Nevertheless, Visual Analytics (VA) [33] creates opportuni-
ties for a synergy between human analysts and computers by
providing appropriate visual interfaces to all facets of analytical
reasoning, from data exploration, pattern discovery and outlier
identification, to prediction validation. It therefore facilitates the
inclusion of the human domain expert’s tacit knowledge and his
capabilities for reasoning and intuition into the decision process,
which are of fundamental importance in surveillance activities.
The most important VA research challenges for both domains are
as follows: (a) interactive pattern extraction considering archival
and streaming data, supporting the validation of early alerts ob-
tained by the analysis tools; (b) building situation overview and
situation monitoring, capable of providing the overall operational
picture of mobility at desired scales and levels of detail, both in
spatial and temporal dimensions.

3 THE DATACRON SYSTEM
ARCHITECTURE FOR TIME CRITICAL
MOBILITY FORECASTING

Critical mobility operations require integrating data that stems
from a wide variety of diverse data sources, both archival and
streaming, having all big data characteristics. During data acquisi-
tion, various tasks need to be performed, incuding data cleaning,
compression, transformation to a common representation model,
and data integration. Besides real-time operations that must be
supported with minimum latency requirements, there exists a
need for offline analysis of the integrated data in order to discover
patterns and extract useful knowledge.

To address these challenging requirements, the datAcron sys-
tem architecture, depicted in Figure 1, has been devised as a
Big Data architecture for processing both real-time and archival
data. While it bears similarities with the Lambda architecture
[19], since it encompasses both a real-time and a batch process-
ing layer, these layers for different purposes (e.g. online trajec-
tory/events forecasting vs offline trajectory clustering and visual
analytics over archival data).

Figure 1: The datAcron system architecture.

In the real-time layer, streaming surveillance data describing
the positions of moving entities, collected from terrestrial and
satellite receivers are fed into the system, while several opera-
tions are performed: Statistics (min/max/avg) are computed over
properties, such as speed and acceleration, in an online fash-
ion; online data cleaning of erroneous data, as well as trajectory
reconstruction and compression are performed. The goal is to
provide only the data that is needed for analytics tasks: This is
mainly done by generating synopses of trajectories, which are
annotated towards the construction of “meaningful” trajectories.
Thus, the generated trajectory synopses are transformed to RDF
(Resource Description Framework) form, according to the dat-
Acron ontology, thereby facilitating the expression of links with
data originating from other sources. To this end, spatio-temporal
link discovery is performed resulting in semantically enriched
trajectories. Further online analysis of enriched trajectories aims
at: (a) deriving predictions of the future location of a moving
object, and (b) complex event recognition and forecasting. Fi-
nally, real-time visualizations support human interaction with
the datAcron system.

In the batch layer, the enriched trajectories as well as data
from other sources transformed in RDF are collected for persis-
tent storage, in order to support offline data analytics. Due to the
immense data volume, parallel data processing is performed over
RDF data stored in a distributed way. On top of the distributed
RDF store, higher-level data analysis tasks run, in order to per-
form trajectory analysis (clustering, sequential pattern mining)
and towards building models for complex event recognition and
forecasting using machine learning techniques. Last, but not least,
visual analytics provide the ability to discover hidden knowledge
and patterns, by means of interaction with a domain expert or a
data analyst, further improving situation awareness, as well.

Below, we describe the main components of the architecture.
In-situ processing components. In-situ processing allows

computation as close to the sources as possible, thus reducing
communication and latency. In datAcron, we apply in-situ pro-
cessing on the streaming surveillance data, as it is ingested in the
system. This supports computing statistical measures of moving
entities’ properties (such as speed and acceleration) and execut-
ing low-level event detection, annotating positions of moving
entities with information regarding entry/exit to/from geograph-
ical areas of interest. In addition to that, trajectory compression
aims to retain only a small set of positions of moving entities,
also called critical points, without sacrificing the accuracy of the
representation significantly.

Data manager. The data manager is responsible for provid-
ing a common representation of all data sources by integrating
and linking data in a knowledge graph, and for query process-
ing over that graph. To support linking of data from different
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sources in a common representation format, we opt for RDF. First,
any incoming data (no matter whether streaming or archival)
is lifted to RDF, by means of RDF generators. The obtained
representation is based on the datAcron ontology [28] (also in:
http://ai-group.ds.unipi.gr/datacron_ontology) supporting the
exploitation of semantically enriched information. Data interlink-
ing is achieved via a spatio-temporal link discovery framework,
which is designed to operate on streaming data sources, apart
from archival. Finally, the integrated spatio-temporal RDF data
is stored in a distributed way, supporting spatio-temporal RDF
query answering by means of a parallel processing engine for
RDF data, offering batch processing and analysis, with notable
difference to existing solutions (see [1] for a recent survey).

Trajectory detection and prediction. This component pre-
dicts the future location of moving entities in real-time, exploiting
enriched trajectories offered by the data manager. The trajectory
prediction component complements the future location predictor,
while offline trajectory analytics (not in the scope of this article)
over distributed RDF data are delivered by the corresponding
component.

Complex event recognition and forecasting. This com-
ponent targets the need to detect and forecast complex events
related to the movement of moving entities. To detect and fore-
cast events in a timely fashion, a novel technique using Pattern
Markov Chains is proposed for continuous narrative assimilation
on data streams. In addition to that, machine learning methods
are applied to build prediction models, while an offline complex
event analyser operates on the historical data and discovers pat-
terns of events to be predicted. The latter are not within the scope
of this article.

Visual analytics. The aim is to support exploratory and in-
teractive analysis of data, in order to enable the task of human
interpretation, which is necessary in the case of Big Data. Visual
analytics does not represent a single, specific analysis technique
but rather a methodological approach to gain insight into large,
complex, noisy and often conflicting data, to develop and test hy-
potheses, and to build and understand complex analytical models.
The key aspect is the collaborative work between the computer
and the human analyst, whereby the human expert imparts back-
ground knowledge about the current analysis task’s context and
reasoning in the overall analytical process.

For the implementation of the overall architecture, the big
data technologies employed include a blend of state-of-the-art
solutions that are used in production environments successfully.
Stream processing components have been developed in Apache
Flink, harnessing the scalability and low latency offered. Solu-
tions that rely on micro-batching, such as Spark Streaming, do
not match with the required complex stream processing and low
latency requirements targeted by our work. Instead, for batch
processing and analysis, we have selected Apache Spark which is
a more mature project than Flink, having a larger ecosystem, and
bigger user base, while also achieving scalability, high perfor-
mance, and exploiting in-memory processing. The stream-based
communication between components is achieved by means of
Apache Kafka.

4 DATA PROCESSING AND MANAGEMENT
Aiming to build solutions towards managing data that are con-
nected via, and contribute to enriched views of trajectories upon
which ATM and maritime challenges focus, we revisit the notion
of semantic trajectory and built on it towards integrating the

Figure 2: Themain concepts and relations of the ontology.

wealth of information available in heterogeneous data sources
in both domains in a representation where trajectories are the
main entities: The datAcron ontology (http://ai-group.ds.unipi.
gr/datacron_ontology) has been designed to provide a common
model for all data sources in both domains towards supporting
analysis tasks. Its development has been driven by ontologies
related to our objectives (e.g. DUL, SimpleFeature, NASA Sweet
and SSN) as well as schemas and specifications regarding data
sources from both domains. To a greater extent than other models
for representing trajectories, this ontology provides the means
for specifying trajectories at varying levels of spatio-temporal
analysis: Trajectories can be seen as temporal sequences of mov-
ing entities’ positions derived from raw data, as raw data ag-
gregations signifying meaningful events providing a synoptic
view of raw trajectories (generalizing on the stops and moves
model [31], according to the types of critical points), as temporal
sequences of meaningful trajectories segments (each revealing
specific behaviour, event, goal, activity etc.), or as mere geome-
tries. Representations at any such level of analysis are linked
to each other, as well as to related information and events. Be-
yond answering spatio-temporal SPARQL queries concerning
trajectories along with information regarding aspects that affect
and are affected by the mobility of moving entities, this ontology
supports generic data transformations for adapting available data
to the analysis goals, or to specific requirements of analysis tasks.
This is done by converting movement data from one form to
another, to support different task foci: movers, spatial, events,
space, and time. Details are provided in [28].

According to the ontology specifications, as illustrated in Fig-
ure 2, a Trajectory can be segmented to TrajectoryParts, each
including other segments and/or semantic nodes. Each semantic
node may be associated with a specific raw position or a tem-
porally ordered sequence of raw positions of a moving object.
Trajectories and trajectory parts can be associated with any rele-
vant information, as well as with events (dul:Event). Although
events may happen independently from the trajectory, we focus
on those happening on the trajectory itself (e.g. a “turn" or a
“gap of communication") and on those concerning moving en-
tity state (e.g. vessel in a protected or in a bad-weather area).
The detailed patterns for specifying structured trajectories and
occurring events are presented in [28].

4.1 Data processing
The low-level event detection component is aiming at enriching
the raw-data generated by the moving entities with basic derived
attributes that serve as input for higher-level processing. A major
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consideration is to achieve that enrichment with low-latency,
preferably by processing streaming data close to data source (in-
situ): This provides a number of inherent advantages, such as
decreased communication delays, savings in communication, and
reduced overhead in sub-sequent evaluation steps.

The detection of low-level events refers to generatingmetadata
on incoming raw data for detection of erroneous data, ensuring
data quality, and enriching the data stream with contextual in-
formation for further analysis. For supporting the data quality
assessment, described in Section 7, attributes of min/max, me-
dian/average of properties (e.g. speed, acceleration etc.) are gen-
erated on a per trajectory basis. In addition to that, raw position
data are enriched with low-level events of entering or leaving of
moving entities from one area to another one, by processing the
real-time stream of moving entity positions.

The Synopses Generation detects important mobility events
along trajectories represented as critical points: This task has to
be carried out in a timely fashion against the streaming posi-
tional updates received from a large number of moving entities.
Instead of retaining every incoming position for each object, the
Synopses Generator module drops any predictable positions along
trajectory segments of “normal” motion characteristics, since
most vessels and aircrafts usually follow almost straight, pre-
dictable routes at open sea and in the air, respectively. By doing
so we may only retain positions that signify changes in actual
motion patterns. We opt to avoid costly trajectory simplification
algorithms like [18, 21] operating in batch fashion, online tech-
niques employing sliding windows [20] or safe area bounds for
choosing samples [21], as well as more complex, error-bounded
methods [16, 17]. Instead, emanating from the novel trajectory
summarization framework introduced in [25, 27], specifically for
online maritime surveillance, but significantly enhanced with
additional noise filters and also extended for the needs of the
aviation domain, the Synopses Generator applies single-pass
heuristics for achieving succinct, lightweight representation of
trajectories. We prescribe that each trajectory can be approxi-
mately reconstructed from judiciously chosen critical points of
the following types:
- Stop indicates that an entity remains stationary (i.e., not moving)
by checking whether its instantaneous speed is lower than a
threshold over a period of time.
- Slow motion means that an entity consistently moves at low
speed over a period of time (below a given threshold).
- Change in Heading: Once there is an angle difference in heading
greater than a given threshold with respect to the mean veloc-
ity vector (computed over the most recent course), the current
location should be emitted as critical.
- Speed change: Such critical points are issued once the rate of
change for speed exceeds a given threshold with respect to its
mean speed over a recent time interval.
- Communication gaps occur when an entity has not emitted a
message over a time period, e.g., the past 10 minutes.
- Change in Altitude may be detected for aircrafts by checking
their rate of climb (or descent), i.e., the vertical speed of the
aircraft (in feet/sec) when ascending (respectively, descending).
Once, this value exceeds a given threshold, a critical point should
be issued in the synopsis.
- Takeoff is the latest position of an aircraft while on the ground:
The next position has altitude above ground.
- Landing for flying aircrafts is the first reported location when
they touch the ground.

This module can achieve dramatic compression over the raw
streaming data with tolerable error in the resulting approxima-
tion. At lower or moderate input arrival rates, data reduction is
quite large (around 80% with respect to the input data volume),
but in case of very frequent position reports, compression ratio
can even reach 99% without harming the quality of the derived
trajectory synopses (typically, straight movements with constant
speed).

Empirical results [25] indicate that such critical points can
be emitted in real-time keeping in pace with the incoming raw
streaming data. As a next step, we plan to address the case of
cross-stream processing, i.e., correlating surveillance data from
multiple sources in order to provide a coherent trajectory repre-
sentation.

4.2 Data management
To convert the data from different sources into the common RDF
model and integrate them in a knowledge graph, we designed and
implemented a generic RDF generation framework, which can
be instantiated to any of the given (streaming or archival) data
sources. Due to the syntactic and semantic heterogeneity of data
sources exploited in datAcron, and given that sizes vary from
a few thousands (e.g. aircraft or vessel registries), to practically
infinite streams of data (e.g. reported positions ofmoving entities),
we need an efficient method that can easily be integrated to
widely used SPARQL workflows, to rule all the data sources, and
that will also be easily adapted to changes on both the ontology
and the sources, while the output will be easily verified. The
proposed method stands on two main components: (a)The data
connector, which is responsible to connect to a data source and
accept the data provided. It is capable of applying basic data
cleaning operations, computing and converting values, applying
simple filters, or extracting information regarding the incoming
entries, e.g. extracting the Well-Known-Text representation of
a given geometry in a Shapefile. (b) The triple generator, which
is responsible to convert all the data coming through the data
connector, into meaningful triples w.r.t. the datAcron ontology.
Triple generators exploit graph templates and variables vectors.
The variables vectors enable transparent reference to datasource
fields, while they enable the RDF generation method to refer to
data not explicitly available in the source, but generated during
the generation process. The graph template, on the other hand,
uses these variables into triple patterns; i.e. in triples where any
of the subject or object can be either a variable or a function with
variables as arguments. Such an example of data conversion into
triples by exploiting a graph template made of triple patterns, is
provided in Figure 3.

By doing so, and in contrast to other RDF generators, the pro-
posed method needs no further knowledge of a specific vocabu-
lary (e.g. compared to RML [11]), and it can be used by anyone
who can write simple SPARQL queries. It requires no underlying
SPARQL engine, and it inherently supports parallelisation and
streaming data sources (compared to SPARQL-Generate [15] and
GeoTriples [14]).

This RDF generation method manages to transform 10,500
input records to RDF per second. For some sources, this number
may be smaller due to complicated geometries. Overall, the av-
erage time per triple generated is approximately 0.04 seconds,
given that the frequency of position reporting per aircraft/vessel
is at least 2 seconds.
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Triples produced by the RDF generators are directed to the
datAcron link discovery component: This detects spatio-temporal
and proximity relations such as “within” and “nearby” relations
between stationary and/or moving entities. It is noteworthy
that there is not much work on the challenging topic of spatio-
temporal link discovery nor on link discovery over streaming
data sets. State of the art approaches such as [23], [30], [29] focus
on spatial relations in static archival data sets only. In particular
RADON [29] employs optimizations that can be only applied if
the data sets are a-priori accessible as a whole, which cannot be
assumed for streaming data sets. Our work addresses explicitly
proximity and spatio-temporal relations in both archival and
streaming datasources.

Figure 3: Triple Generation example.

The implemented component continuously applies SPARQL
queries on each RDF graph fragment produced by an RDF gen-
erator, to filter only those triples relevant to the computation
of a relation r. It applies a blocking method to organize entities
(either being moving or stationary entities), and a refinement
function to evaluate pairs of entities in any block.

Aiming to discover spatio-temporal relations among entities,
existing methods use an equi-grid which organizes entities by
space partitioning. The temporal dimension is not partitioned:
given a temporal distance threshold, we can safely clean up data
that are out of temporal scope, i.e. entities that will never satisfy
the temporal constraints of the relations. To effectively prune
candidate pairs of entities, the proposed method computes the
mask of cell: This is the complement of the union of those spatial
areas that correspond to entities in a cell and intersect with the
cell area. Figure 4 depicts examples, where the green regions
illustrate the mask of cells generated from 8,599 Natura2000 and
fishing regions around Europe.

Thus, for each new entity we identify the enclosing cell, and
then we evaluate that entity against the spatial mask of the cell.
If it is found to be in the mask, we do not need to further evaluate
any candidate pair with entities in that cell. In addition to masks,
the link discovery component uses a book-keeping process for
cleaning the grid, towards identifying proximity relations among
entities when dealing with streamed data.

Figure 4: Equi-grid with masks for stationary areas.

We have evaluated the performance of the Link Discovery
method with and without cell masks on a data set of 4,765,647
critical points, against a data set of 8,599 regions generating
381,262 dul:within and 9,122 geosparql:nearTo relations. The
method without masks achieves linking 23.09 entities per second,
while activation of the mask boosts the throughput to 123.51 enti-
ties per second. Preliminary results concerning geosparql:nearTo

relations among critical points, as well as critical points and 3,865
ports, have shown a throughput of 328.53 entities per second,
producing 2,536,967 relations. Challenges lying ahead for link
discovery, include both, the identification of more complex spatio-
temporal relations in real-time streaming data, and improving
performance and scalability. The latter can be achieved by the re-
finement of blocking schemes for achieving better load-balancing
for tasks’ parallelization, as well as by the use of advanced tech-
niques for reducing the number of comparisons in the cells.

As far as the Knowledge Graph Store is concerned, even though
there exist several solutions for distributed RDF processing (see
[1] for a survey), a notable difference is that we deal with mo-
bility data that have a strong spatio-temporal flavour and typi-
cal queries also contain spatio-temporal constraints. A typical
distributed RDF processing engine cannot process efficiently
spatio-temporal constraints, as such constraints would have to
be enforced in a post-processing step to obtain the final result,
at the cost of having computed a much larger set of candidate
results. Motivated by this limitation, we designed a solution for
scalable processing of spatio-temporal RDF data. The system
contains a distributed storage layer, and a batch processing layer
developed in Apache Spark. In the storage layer, we use a custom
dictionary encoding technique for representing spatio-temporal
entities. Our encoding technique allows representing an approx-
imation of the position of any moving entity using a unique
integer identifier, which corresponds to the spatio-temporal cell
where the entity is located. We support different storage layouts,
including “one-triples-table”, vertical partitioning, and property
tables. Also, for the file layout we exploit Parquet, which provides
a columnar layout and achieves compression. The RDF triples
are stored in HDFS, while the dictionary needs to be stored in
main memory for efficient access, so we opt for REDIS which
fits our needs, although other NoSQL key-value stores may also
comprise solutions (e.g., Aerospike, etc.) In the processing layer,
we have developed different implementations of basic operators
(such as filtering and join) that can be used to generate different
physical execution plans from a given logical plan. Moreover,
the spatio-temporal encoding is used during query processing,
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by filtering triples that do not match with the spatio-temporal
query constraints. This happens in parallel to filtering RDF triples,
matching with the RDF graph patterns specified in the query [24].

Experimental results [24] performed overmore than 269MRDF
triples from surveillance, weather, and contextual data sources
show that we can improve query processing time for star join
queries with spatio-temporal constraints when using our tech-
niques.

5 TRAJECTORY PREDICTION
The prediction of a trajectory evolution can be seen either (a)
as a Future Location Prediction (FLP), or (b) as a Trajectory Pre-
diction (TP) problem. In FLP, the task is to predict the next k
points in the trajectory, a process that is inherently dynamic and
continuously adaptive, exploiting measured (reactive mode) or
predicted (proactive mode) error as feedback. On the other hand,
TP aims to produce a “best guess” of the complete trajectory in
the maximum likelihood sense. The two tasks are interconnected
and applied in parallel, with FLP (TP) being the short-term online
(full-length offline, respectively) predictor. Generally, there are
two main approaches in addressing these prediction tasks:

(a) The Kinetic approach, which describes the forces and mo-
mentums that describe the motion of the moving entity in terms
of physical laws. The kinetic approach can produce accurate pre-
dictions, but requires high-intensity processing, due to detailed
simulation. Moreover, predictions, being sensitive to changes in
many of the (stochastic) parameters involved, are quickly deviat-
ing, as the temporal window expands. In the aviation domain, the
kinetic approach uses extremely accurate aircraft performance
models, such as BADA (Base Of Aircraft Data), combined with
localized weather forecasts. Similar kinetic approaches are used
in various forms, e.g. for dead reckoning in navigation modules,
in the maritime domain.

(b) TheKinematic approach; which considers only the temporal
evolution of the model’s parameters as time series and exploits
the causalities discovered. In practice, this includes data-driven
methods that exploit enriched trajectories as training sets for
FLP and TP purposes. In other words, the model “learns” the
kinetic behaviour of the moving entity by processing historical
information of its own trajectory in case of FLP or of an entire
group of “similar” trajectories in case of TP.

In contrast, the data-driven FLP and TP targeted in datAcron
rely exclusively on reference points of actual trajectories, en-
riched with features (e.g. weather conditions, operational con-
straints, etc.) that affect trajectories.

The current state-of-the-art in data-driven approaches for FLP
and TP range from standard signal processing to advanced re-
gression learners. In FLP, standard regression methods, as well
as motion-type modelling have been applied primarily in the
short-term time frame [32]. Since TP includes complete trajec-
tories, a number of supervised and unsupervised methods have
been applied in the context of classification: Grouping together
“similar” trajectories and predicting new ones based on these
groupings for “similar” input conditions, e.g. for the same depar-
ture/destination, same weather conditions, etc. [34]. The current
state-of-the-art approaches do not address the range of options
from short to long term predictions in its entirety, nor exploit
the full enrichment of the data points as constraints to optimize
the training. Additionally, the volume and velocity of the data
are considered of less or even no importance compared to the
spatio-temporal prediction accuracy.

Recursive Motion Functions (RMF) for FLP: Mobility patterns
over short-term time frames are often studied in the sense of
online predictive analytics, i.e., involving small set of positions as
“recent history” and strict constraints with regard to storage and
processing resources. Tao et al. [32] propose Spatio-Temporal
Prediction trees as an indexing scheme supporting predictive
queries and incorporating a general framework that computes
different non-linear motion patterns to capture movements of
arbitrary characteristics. In this context, the Recursive Motion
Function (RMF) approach enables the computation of different
types of movement (such as linear, polynomial, circular, etc) by
exploiting the recent past of an object’s position sequence and
adapting the prediction model according to its specific character-
istics. According to our knowledge RMF is the most prominent
candidate for addressing the online FLP task and under big data
specifications. RMF captures the motion dynamics of an entity
in a differential recursive formula by combining the most recent
data points per f (system parameter) and is most effective when
the acceleration components are zero, constant or at least exhibit-
ing slow drifts: It results to very low prediction accuracy when
it is applied in any of our domains.

The proposed RMF* method includes significant modifications
and enhancements of the base RMF algorithm producing in real
time the next k forward positions, using minimal storage and
processing resources. It exploits dynamic motion pattern match-
ing interchangeably with linear-only modes of operation. RMF*
incorporates the advantages of linear extrapolation for the steady
parts of the flights, while at the same time exploits additional
information regarding any shift in the motion type provided by
critical points produced by the synopses generation task, before
activating the full pattern-matching mode. This means that the
algorithm continuously checks for drifts to non-linear phases,
i.e., the beginning of turn and/or altitude change, activating the
proper differential approximation method accordingly, including
sections of circular, ellipsoid, parabolic, hyperbolic or general
quadratic trajectory.

RMF* can achieve very accurate predictions for the FLP task, as
the data effectively capture the dynamics of the trajectory. Since
FLP is very difficult for the take offs and landings, the experi-
mental evaluation of the proposed RMF* is primarily focused on
the aviation domain and specifically on these non-linear phases.
Results provided in Figure 5(a) are based on complete flights
between two airports (Barcelona-Madrid) and present average
2-D spatial error (longitude, latitude) of roughly 1-1.2 km for a
look-ahead time frame of up to a minute, with a sampling rate of
8 secs, and 8 look ahead steps, i.e., roughly a 1-minute look-ahead
time window (mean≈1000m, stdev≈500m, skewed towards zero).

The proposed RMF* algorithm is under fine-tuning of the
pattern-matching module, with special attention in identifying
and modelling a set of motion patterns, or “primitives”, separately
for the aviation and for the maritime domains, so that the module
can promptly and correctly identify the best choice when in non-
linear mode.

Hybrid Clustering/HMM method for TP purposes: In order to
address the TP task, there is a trend of using stochastic models for
discovering and retrieving patterns from past history. Addition-
ally, there is a need to address the task in the scale of big data. To
address this challenge towards long term trajectory predictions
our proposal is to partition historic trajectories into subsets, train
separate predictive models for each one of them and then use
these models for individual predictions, provided that the ability
to select the correct model exists.
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Figure 5: (Left) RMF* prediction accuracy over various
look-ahead time frames. (Right) Accuracy estimations for
the per-waypoint deviation (m) from flight plan (cluster
size=255) with the hybrid clustering/HMMmethod.

Clustering is the most popular approach for unsupervised
learning, ranging from simple k nearest neighbour (k-NN) group-
ing, to multi-level hierarchical restructuring of the input data
and using an arbitrary well-defined distance function as simi-
larity metric. The advantages of a clustering approach include
computing “cohesive” clusters of trajectories that are of smaller
scale than the original set, while a distance function that ex-
ploits any data linked to enriched trajectories can be used. The
SemT-OPTICS algorithm [26] is such an approach, where the
similarity between two trajectory points is decomposed in two
parts: The one regarding their spatio-temporal similarity and
another for the enriching data, adopting an appropriate variant
of Edit distance with Real Penalty (ERP) [9].

The Hidden Markov Model (HMM) approach is widely used in
modelling and predicting time series, including spatio-temporal
mobility patterns. The HMM approach models the evolution of
an entity’s motion by a set of states and transitions between
them, each one accompanied by a probability that is typically
extracted by analyzing historic data. Additionally, the deviations
between “intended trajectories” (e.g. flight plans in the ATM do-
main) and actual routes are modelled as HMM observations or
emissions, in order to construct a probabilistic model for trajecto-
ries. We designed HMMs in a way that exploits reference points
in conjunction to the enriching information. This is in contrast
to approaches exploiting raw trajectory data [7, 8].

Based on these, we devised a novel Hybrid Clustering/HMM
approach [12] to address the TP task, following a two-stage ra-
tionale: Clustering at the first stage of processing and training
HMMs for each cluster, using only the reference points of the
medoid of each cluster. The rationale behind this modelling ap-
proach is to be able to predict deviations from flight plans op-
timally, based on all the information available, including local
weather (per waypoint), aircraft size, seasonal factors (time, week-
day), etc. The current experiments on real aviation data (Spain,
April 2016) show that deviations from flight plans can be pre-
dicted with a combined 3-D spatial accuracy of 183–736m (RMSE),
in terms of half-width confidence interval for mean deviation
between intended (flight plan) and actual route flown, averaged
over the entire sequence of reference points for all clusters and
statistically significant at a=0.05. Results are shown in Figure 5
for one such cluster in the Madrid/Barcelona flights. Addition-
ally, this approach exhibits at least an order of magnitude better
accuracy in terms of absolute cross-track error compared to the
current state-of-the-art “blind” HMM for TP, while at the same
time it exhibits two to three orders of magnitude less processing

Figure 6: (Left) DFA and (Right) the correspondingMarkov
Chain.

and storage resources, due to the combined scaling-down of data
due to clustering and to the use of reference points.

The proposed Hybrid Clustering/HMM approach is still un-
der optimization. For the clustering stage, the challenge is to
customize the similarity metrics properly and separately for the
aviation and the maritime domains. For the HMM stage, the main
challenge is to capture the statistics of the per-waypoint devia-
tions for entire clusters of trajectories. Especially for the maritime
domain, the reference points must be defined more dynamically
(e.g. via detected critical points) since there are no equivalents
to flight plans available. Hence, more specialized probabilistic
distributions are tested for modelling the combination of distance-
related Gaussian error distributions per-dimension. This typically
involves exhaustive cross-validation experiments for prediction
accuracy, rather than estimation of confidence intervals; e.g. via
t-Student significance tests. Finally, segmented-trajectory models
are also investigated, for very large training data sets.

6 COMPLEX EVENTS DETECTION AND
FORECASTING

Given a stream of low-level events and a set of patterns defining
spatial and temporal relations between low-level events, opera-
tional constraints and contextual information, we need to detect,
in a timely manner, when these relations are satisfied. Whenever
these relations are satisfied, we say that a high-level (or complex)
event has been detected. Besides event detection, which con-
tributes to increasing situation awareness, given the importance
of predictability in both domains, we additionally address the
problem of forecasting the occurrence of complex events.

Specifically, given the input stream of low-level events gener-
ated by the components described in Section 4.2, let us consider
the case where a maritime analyst is interested in isolating parts
of a vessel’s trajectory during which a vessel changes its direction
by 180 degrees: These could indicate fishing activity. We could
formally define this complex event as a temporal sequence of
Change In Heading events where the first and last events in the
sequence have opposite headings (headings difference is close to
180 degrees). This HeadingReversal pattern could be given to the
event detection and forecasting module.

Whereas there exist multiple event detection systems, at dif-
ferent levels of maturity, very few of them address the issue of
forecasting ([22] is one of the few cases). Moreover, being able to
predict complex events which are defined by patterns that are not
simple sequences of input events, poses significant challenges.
Our event detection and forecasting module advances the state-
of-the-art by moving beyond sequential patterns. It has the ability
to predict complex events that are defined in the form of regular
expressions, where the low-level events may be related through
sequence, disjunction or iteration. In addition, by employing a
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Figure 7: (Left) DFA and (Right) waiting-time distribu-
tions.

rigorous probabilistic framework, it can handle input streams
that are generated by higher-order Markov processes (see [2] for
a detailed description).

As a first step, event patterns in the form of regular expres-
sions are converted to Deterministic Finite Automata (DFA). A
detection occurs every time the DFA reaches one of its final states.
As an example, see Figure 6 which depicts the DFA constructed
for the simple sequential expression R=acc (one event of type a
followed by two events of type c) where the set of events that
may be encountered are Σ={a,b,c}.

For the task of forecasting, we need to build a probabilistic
model for (the behaviour of) the DFA. We achieve this by con-
verting the DFA to a Markov chain. If we assume that the input
events are independent and identically distributed (i.i.d.), then it
can be shown that we can directly map the states of the DFA to
states of a Markov chain and the transitions of the DFA to tran-
sitions of the Markov chain. The probability of each transition
would then be equal to the occurrence probability of the event
that triggers the corresponding transition of the DFA. However,
if we relax the assumption of i.i.d. events, then a more complex
transformation is required, in which case the transition proba-
bilities equal the conditional probabilities of the events. An an
example, see Figure 6 which shows the Markov chain derived
from the indicated DFA, if we assume that the input events are
generated by a 1st-order Markov process (see [2] for details). We
call such a derived Markov chain a Pattern Markov Chain (PMC).

Once we have obtained the PMC corresponding to an initial
pattern, we can compute certain distributions that are useful
for forecasting. At each time point the DFA and the PMC will
be in a certain state and the question we need to answer is the
following: how probable is it that the DFA will reach its final
state (and therefore a complex event will be detected) in k time
points from now? The answer to this question depends on the
state of the PMC. Hence, for each such state we need to calculate
a separate distribution. These distributions are called waiting-
time distributions. As an example, Figure 7 shows a DFA and the
waiting-time distributions for its states.

In order to estimate the final forecasts, another last step is
required. Forecasts are provided in the form of time intervals, like
I = (start , end). When such a forecast is produced, its meaning
is that the DFA is expected to reach a final state sometime in
the future between start and end with probability at least some
constant threshold θ (provided by the user). These intervals are
produced by a single-pass algorithm that scans a waiting-time
distribution and finds the smallest (in terms of length) interval
that exceeds this threshold. As an example, Figure 7 shows a DFA
being in state 2, the waiting-time distribution for this state is
shown in blue color, together with the forecast interval extracted
(I = (2, 4)).

Figure 8: Precision achieved for events’ forecasting using
different Markov process’ orders.

The above described method has been implemented in a sys-
tem calledWayeb, tested with real-world maritime annotated and
enriched trajectories. We show results from one pattern applied
to a single vessel. The pattern is as follows:

R=ChangeInHeadingNorth

(ChangeInHeadingNorth+ChangeInHeading East)*

ChangeInHeadingSouth

where + stands for disjunction and * for iteration and each turn
event has additionally been annotated with the vessel’s heading.
This pattern attempts to detect a NorthToSouthReversal event
where a vessel executes a series of turns, initially heading towards
the northern direction and eventually ends heading towards the
southern direction. Figure 8 shows the precision of the proposed
forecasting method for this pattern using different prediction
thresholds. The precision is defined as the percentage of forecasts
which were accurate (i.e. the event was indeed detected within
the forecast interval). It shows results both for the assumption
of a 1st -order and for a 2nd -order Markov process. We can see
how increasing the assumed order does indeed positively affect
precision.

Promising such results as they may be, there still remain sig-
nificant challenges ahead. The most fundamental concerns rela-
tionality, i.e., the ability to naturally (without a pre-processing
step) handle events with attributes and relations between the
attributes of different events in a pattern. For example, in the
NorthToSouthReversal pattern, the information about the vessel’s
heading would simply be an attribute which could be checked
with predicates like IsHeading(North). Moreover, the method
that we have proposed assumes stationarity which implies that
the transition matrix of the PMC does not change. However, the
statistical properties of a stream may indeed change over time
in which case we would need an efficient method for updating
online the probabilistic model.

7 VISUAL ANALYTICS
The purpose of the Visual Analysis approach is to combine al-
gorithmic analysis with the human analyst’s insight and tacit
knowledge in the face of incomplete or informal problem speci-
fications and noisy, incomplete, or conflicting data [33]. Visual
Analysis therefore is an iterative process where intermediate
results are visually evaluated to ascertain and inform subsequent
analysis steps based on prior knowledge and gathered insights.
From the perspective of Visual Analytics, analysis methods fall
into two categories within the overall architecture (Figure 1).

On the batch layer, Visual Analytics (VA) augments a wide
range of tasks from initial data exploration and curation, com-
plex analysis workflows, to refining and evaluating the different
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models. Synoptic analysis tasks that are the subject of such ex-
ploratory visual analyses presume availability of global measures
like spatial extents, value ranges, (as yet undiscovered) patterns
defined over large time spans/time cycles, and thus must be sup-
ported over sufficiently large data sets. Specifically, it is worth
noting that due to the exploratory focus, VA does not prescribe
a rigid pipeline of algorithmic processing steps, nor does it pre-
scribe a fixed composition of specific visualizations, as opposed
to typical dashboards [3].

To cope with these requirements in an efficient and scalable
way, the VA component within the integrated architecture is
itself of a modular, extensible design, as shown in Figure 9. It
comprises four principal component groups – data storage, anal-
ysis methods, data filtering and selection tools, and of course,
visualization techniques. Different components are typically com-
posed in an ad-hoc fashion, through visual-interactive controls,
to facilitate the workflow required by the human analyst’s task
at hand.

The following paragraphs review several novel workflow com-
positions addressing different analytical challenges in both the
ATM and maritime domains.

The ability to understand data properties and to assess their
quality is a crucial first step in any data analysis setting. Dealing
with massive movement data analysed in context (e.g., as weather
data) amplifies both the importance of that first step as well as
the technical challenge involved in dealing with such large data.

Investigation of quality of movement data, due to their spatio-
temporal nature, requires consideration from multiple perspec-
tives at different scales. In paper [4], we review the key properties
of movement data and, on their basis, create a typology of possi-
ble data quality problems and suggest approaches to identifying
these types of problems. In particular, we systematically consider
different approaches to position recording and related properties
of movement data, taking into account properties of the mover
set, spatial properties, temporal properties and data collection
properties.

However, while [4] lays the foundation for a structured ap-
proach to detect and rectify data quality issues, cleaning and
repairing data for curation purposes are still largely manual tasks
that rely on a combination of tools and technologies such as data-
base SQL, scripts, and functionality available in the VA toolkit.
Especially when handling large data sets (many moving entities,
long time periods) these tasks can become tedious and time-
consuming. Therefore, as one facet of datAcron objective is to
create advanced and scalable spatio-temporal data integration
and management solutions, a modular framework is being de-
veloped that combines Big Data processing technologies with
interactive visual reporting to automatically evaluate the quality
of large movement data sets.

To support preparatory data analysis for building appropriate
detection and prediction models, specifically patterns targeting
at trajectories, events, spatial time series and spatial situations,
novel methods are required that combine interactive visualiza-
tions with appropriate computational methods such as clustering,
event detection, summarization and abstraction, as well as provid-
ing possibilities for manipulating parameters of computational
methods and evaluating sensitivity to parameters.

In [6] we introduced the concept of time mask, which is a type
of temporal filter suitable for selection of multiple disjoint time
intervals in which some query conditions on arbitrary attributes
hold. Such a filter can be applied to time-referenced objects, such
as events and trajectories, for selecting those objects or segments

Figure 9: Principal components of the VA toolset.

Figure 10: (Top)A time series display shows the counts
of the vessels (upper row) and the near-location events
(lower row) by 1-hour time steps. A query selects the inter-
vals containing at least one event (yellow markers). (Bot-
tom) The density of the trajectories in the times of occur-
rence of near-location events (left) and in the remaining
times (right) [6].

of trajectories that fit in one of the selected time intervals. The
selected subsets of objects or segments are dynamically summa-
rized in various ways, and the summaries are represented visually
on maps and/or other displays to enable exploration. The time
mask filtering can be especially helpful in analysis of disparate
data (e.g., event records, positions of moving entities, and time
series of measurements), which in the considered scenarios even
come from different sources.

To detect relationships between such data, the analyst may set
query conditions based on one data set and investigate the subsets
of objects and values in the other data sets that co-occurred in
time with these conditions (e.g., see Figure 10).

Clustering of trajectories of moving entities by similarity is
an important technique in movement analysis. Existing distance
functions assess the similarity between trajectories based on prop-
erties of the trajectory points or segments [3]. The properties
may include the spatial positions, times, and thematic attributes.
There may be a need to focus the analysis on certain parts of
trajectories, i.e., points and segments that have particular prop-
erties. According to the analysis focus, the analyst may need to
cluster trajectories by similarity of their relevant parts only. For
example, when analysing routing decisions taken by airlines in
the ATM context, only the cruise phase of a flight is relevant for
comparison, but not holding patterns nor takeoff and landing
runway directions [5]. Throughout the analysis process, the focus
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Figure 11: (Top) Bars in a time histogram show the counts
of the flight arrivals in hourly intervals. Bar segments are
painted in the colors of the clusters the flights belong to.
(Bottom) The final parts of the flight trajectories in days
1 and 3 are colored according to the cluster membership
[5].

may change, and different parts of trajectories may become rele-
vant, e.g., due to weather conditions. In paper [5], we propose an
analytical workflow that uses interactive filtering tools to attach
relevance flags to elements of trajectories; subsequent clustering
uses a distance function that ignores irrelevant elements. The
resulting clusters are summarized for further analysis. The paper
demonstrates how this workflow can be useful for different anal-
ysis tasks in three case studies related to ATM flow management
(Figure 11). The paper [5] further proposes a suite of generic
techniques and visualization guidelines to support movement
data analysis by means of relevance-aware trajectory clustering.

For developing and evaluating trajectory prediction algorithms
it is important to have the possibility of detailed comparison of
predicted trajectories to actual ones, to see how accurate the
prediction is. It is also necessary to compare predictions obtained
with different parameter settings, to understand the impact of
the parameters and to choose the most suitable settings.

On the real-time layer, in-stream processing algorithms oper-
ate directly on data streams under predefined parameter settings
for monitoring purposes, i.e., trajectory & location prediction
(Section 5) as well as event forecasting (Section 6). The main goal
here is to provide a visual interface to the detection and predic-
tion model output, presented in the context of real-time spatio-
temporal data comprising the current situational picture (vessel
trajectories, specific areas, weather information etc.). These visu-
alizations provide a limited set of interaction for confirmatory
analysis of detected outliers and patterns, as well as in-context
validation of model predictions, and typically are offered as dash-
board components.

A novel technique is the point matching method that is sup-
plemented by interactive visual interfaces enabling the analyst
to view and explore the results of point matching (Figure 12).

For the purposes of situation monitoring, a real-time visu-
alization approach has been developed as an endpoint in the

Figure 12: Detail view of a significantly mismatched pair
of actual (blue) vs. predicted (red) trajectories. The his-
togram shows the statistical distribution of the propor-
tions of the matched points; the map shows the spatial
footprints of both trajectories.

Figure 13: Real-time visualization dashboard formaritime
situation monitoring.

Kafka-based communication infrastructure (Figure 13). The visu-
alization visually encodes a selectable subset of information lay-
ers from the enriched stream provided by the data manager. This
stream, as described in previous sections, includes pre-processed
position data (i.e., trajectory synopses), dynamic and static con-
text information (e.g., weather conditions, maritime areas), trajec-
tory and location predictions, as well as detected and forecasted
events (e.g., initiation of a turn manoeuvre, danger of collision).

Further work will evaluate which visual encodings and inter-
action capabilities (e.g., to interactively adjust event detection
parameters) best match different use case requirements in both
domain.

8 CONCLUSIONS
Given the user-defined challenges and the fact that more and
more data of different nature and purposes is generated in the
air traffic management and the maritime domains, this article
reports on significant progress achieved in datAcron towards
the real-time processing and analysis of big data for improving
the predictability of trajectories and events regarding moving
entities in those domains.

Albeit the progress, there are also significant challenges ahead
in both domains: Discovery of spatio-temporal relations among
entities in a timely manner, efficient query answering of very
large knowledge graphs for online and offline analytics tasks,
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cross-streaming synopses generation, long-term online full tra-
jectory predictions and improvements in forecasting complex
events together with learning/refining their patterns by exploit-
ing examples; as well as, the provision of online visual analytics
workflows.
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