Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2019, 163(2):95-106 | DOI: 10.5507/bp.2019.030

The effect of quercetin on microRNA expression: A critical review

Zdenek Dostala,b, Martin Modrianskya,b
a Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palackż University, Olomouc, Czech Republic
b Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palackż University, Olomouc, Czech Republic

Quercetin, a flavonoid with multiple proven health benefits to both man and animals, displays a plethora of biological activities, collectively referred to as pleiotropic. The most studied of these are antioxidant and anti-inflammatory but modulation of signalling pathways is important as well. One of the lesser-known and recently discovered roles of quercetin, is modulation of microRNA (miRNA) expression. miRNAs are important posttranscriptional modulators that play a critical role in health and disease and many of these non-coding oligonucleotides are recognized as oncogenic or tumor suppressor miRNAs. This review is an evaluation of the recent relevant literature on the subject, with focus on the ability of quercetin to modulate miRNA expression. It includes a summary of recent knowledge on miRNAs deregulated by quercetin, an overview of quercetin pharmacokinetics and miRNA biogenesis, for the interested reader.

Keywords: polyphenols, microRNA, biogenesis, expression

Received: February 27, 2019; Accepted: June 11, 2019; Published: June 25, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Dostal, Z., & Modriansky, M. (2019). The effect of quercetin on microRNA expression: A critical review. Biomedical papers163(2), 95-106. doi: 10.5507/bp.2019.030
Download citation

References

  1. Ovaskainen ML, Torronen R, Koponen JM, Sinkko H, Hellstrom J, Reinivuo H, Mattila P. Dietary intake and major food sources of polyphenols in Finnish adults. J Nutr 2008;138(3):562-6. doi: 10.1093/jn/138.3.562 Go to original source... Go to PubMed...
  2. Grosso G, Stepaniak U, Topor-Madry R, Szafraniec K, Pajak A. Estimated dietary intake and major food sources of polyphenols in the Polish arm of the HAPIEE study. Nutrition 2014;30(11-12):1398-403. doi: 10.1016/j.nut.2014.04.012 Go to original source... Go to PubMed...
  3. Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 1998;56(11):317-33. Go to original source... Go to PubMed...
  4. Di Ferdinando M, Brunetti C, Agati G, Tattini M. Multiple functions of polyphenols in plants inhabiting unfavorable Mediterranean areas. Environ Exp Bot 2014;103:107-16. doi: 10.1016/j.envexpbot.2013.09.012 Go to original source...
  5. Hussain T, Tan B, Yin YL, Blachier F, Tossou MCB, Rahu N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid Med Cell Longev 2016. doi: 10.1155/2016/7432797 Go to original source... Go to PubMed...
  6. Moosavi F, Hosseini R, Saso L, Firuzi O. Modulation of neurotrophic signaling pathways by polyphenols. Drug Des Dev Ther 2016;10:23-42. doi: 10.2147/DDDT.S96936 Go to original source... Go to PubMed...
  7. Mansuri ML, Parihar P, Solanki I, Parihar MS. Flavonoids in modulation of cell survival signalling pathways. Genes Nutr 2014;9(3). doi: 10.1007/S12263-014-0400-Z Go to original source... Go to PubMed...
  8. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 1987;262(12):5592-5. Go to original source...
  9. Kelly GS. Quercetin. Monograph. Altern Med Rev 2011;16(2):172-94.
  10. Cao J, Zhang Y, Chen W, Zhao XJ. The relationship between fasting plasma concentrations of selected flavonoids and their ordinary dietary intake. Brit J Nutr 2010;103(2):249-55. doi: 10.1017/S000711450999170x Go to original source... Go to PubMed...
  11. Kawabata K, Mukai R, Ishisaka A. Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability. Food Funct 2015;6(5):1399-417. doi: 10.1039/c4fo01178c Go to original source... Go to PubMed...
  12. D'Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 2015;106:256-71. doi: 10.1016/j.fitote.2015.09.018. Go to original source... Go to PubMed...
  13. Wang WY, Sun CX, Mao LK, Ma PH, Liu FG, Yang J, Gao YX. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci Tech 2016;56:21-38. doi: 10.1016/j.tifs.2016.07.004 Go to original source...
  14. Kiviranta J, Huovinen K, Hiltunen R. Variation of phenolic substances in onion. Acta Pharm Fenn 1988;97:67-72.
  15. Fang N, Yu SG, Mabry TJ. Flavonoids from Ageratina-Calophylla. Phytochemistry 1986;25(11):2684-6. doi: 10.1016/S0031-9422(00)84545-8 Go to original source...
  16. Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJ, Morgan MR, Williamson G. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett 1998;436(1):71-5. doi: 10.1016/S0014-5793(98)01101-6 Go to original source... Go to PubMed...
  17. Walle T, Browning AM, Steed LL, Reed SG, Walle UK. Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. J Nutr 2005;135(1):48-52. doi: 10.1093/jn/135.1.48 Go to original source... Go to PubMed...
  18. McDonald MS, Hughes M, Burns J, Lean ME, Matthews D, Crozier A. Survey of the Free and Conjugated Myricetin and Quercetin Content of Red Wines of Different Geographical Origins. J Agric Food Chem 1998;46(2):368-75. Go to original source... Go to PubMed...
  19. Ferry DR, Smith A, Malkhandi J, Fyfe DW, deTakats PG, Anderson D, Baker J, Kerr DJ. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 1996;2(4):659-68.
  20. Priprem A, Watanatorn J, Sutthiparinyanont S, Phachonpai W, Muchimapura S. Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine 2008;4(1):70-8. doi: 10.1016/j.nano.2007.12.001 Go to original source... Go to PubMed...
  21. Gao L, Liu G, Wang X, Liu F, Xu Y, Ma J. Preparation of a chemically stable quercetin formulation using nanosuspension technology. Int J Pharm 2011;404(1-2):231-7. doi: 10.1016/j.ijpharm.2010.11.009 Go to original source... Go to PubMed...
  22. Gugler R, Leschik M, Dengler HJ. Disposition of quercetin in man after single oral and intravenous doses. Eur J Clin Pharmacol 1975;9(2-3):229-34. Go to original source... Go to PubMed...
  23. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79(5):727-47. doi: 10.1093/ajcn/79.5.727 Go to original source... Go to PubMed...
  24. Kuhnau J. The flavonoids. A class of semi-essential food components: their role in human nutrition. World Rev Nutr Diet 1976;24:117-91. Go to original source...
  25. Griffiths LA, Barrow A. Metabolism of flavonoid compounds in germ-free rats. Biochem J 1972;130(4):1161-2. Go to original source... Go to PubMed...
  26. Walle T, Walle UK, Halushka PV. Carbon dioxide is the major metabolite of quercetin in humans. J Nutr 2001;131(10):2648-52. doi: 10.1093/jn/131.10.2648 Go to original source... Go to PubMed...
  27. Ueno I, Nakano N, Hirono I. Metabolic fate of [14C] quercetin in the ACI rat. Jpn J Exp Med 1983;53(1):41-50.
  28. Zhang Z, Peng X, Li S, Zhang N, Wang Y, Wei H. Isolation and identification of quercetin degrading bacteria from human fecal microbes. PLoS One 2014;9(3):e90531. doi: 10.1371/journal.pone.0090531 Go to original source... Go to PubMed...
  29. Day AJ, Canada FJ, Diaz JC, Kroon PA, McLauchlan R, Faulds CB, Plumb GW, Morgan MR, Williamson G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett 2000;468(2-3):166-70. doi: 10.1016/S0014-5793(00)01211-4 Go to original source... Go to PubMed...
  30. Aziz AA, Edwards CA, Lean ME, Crozier A. Absorption and excretion of conjugated flavonols, including quercetin-4'-O-beta-glucoside and isorhamnetin-4'-O-beta-glucoside by human volunteers after the consumption of onions. Free Radic Res 1998;29(3):257-69. doi: 10.1080/10715769800300291 Go to original source... Go to PubMed...
  31. Hollman PC, de Vries JH, van Leeuwen SD, Mengelers MJ, Katan MB. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr 1995;62(6):1276-82. doi: 10.1093/ajcn/62.6.1276 Go to original source... Go to PubMed...
  32. Walle T, Otake Y, Walle UK, Wilson FA. Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption. J Nutr 2000;130(11):2658-61. doi: 10.1093/jn/130.11.2658 Go to original source... Go to PubMed...
  33. Spencer JPE, Chowrimootoo G, Choudhury R, Debnam ES, Srai SK, Rice-Evans C. The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett 1999;458(2):224-30. doi: 10.1016/S0014-5793(99)01160-6 Go to original source... Go to PubMed...
  34. Graf BA, Ameho C, Dolnikowski GG, Milbury PE, Chen CY, Blumberg JB. Rat gastrointestinal tissues metabolize quercetin. J Nutr 2006;136(1):39-44. doi: 10.1093/jn/136.1.39 Go to original source... Go to PubMed...
  35. Moon YJ, Wang L, DiCenzo R, Morris ME. Quercetin pharmacokinetics in humans. Biopharm Drug Dispos 2008;29(4):205-17. doi: 10.1002/bdd.605 Go to original source... Go to PubMed...
  36. Elbarbry F, Ung A, Abdelkawy K. Studying the Inhibitory Effect of Quercetin and Thymoquinone on Human Cytochrome P450 Enzyme Activities. Pharmacogn Mag 2018;13(Suppl 4):S895-S9. doi: 10.4103/0973-1296.224342 Go to original source... Go to PubMed...
  37. Noratto GD, Kim Y, Talcott ST, Mertens-Talcott SU. Flavonol-rich fractions of yaupon holly leaves (Ilex vomitoria, Aquifoliaceae) induce microRNA-146a and have anti-inflammatory and chemopreventive effects in intestinal myofibroblast CCD-18Co cells. Fitoterapia 2011;82(4):557-69. doi: 10.1016/j.fitote.2011.01.013 Go to original source... Go to PubMed...
  38. Krizkova J, Burdova K, Stiborova M, Kren V, Hodek P. The effects of selected flavonoids on cytochromes P450 in rat liver and small intestine. Interdiscip Toxicol 2009;2(3):201-4. doi: 10.2478/v10102-009-0018-y Go to original source... Go to PubMed...
  39. Dian LH, Yu EJ, Chen XN, Wen XG, Zhang ZZ, Qin LZ, Wang QQ, Li G, Wu CB. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res Lett 2014;9. doi: 10.1186/1556-276x-9-684 Go to original source... Go to PubMed...
  40. Conquer JA, Maiani G, Azzini E, Raguzzini A, Holub BJ. Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J Nutr 1998;128(3):593-7. doi: 10.1093/jn/128.3.593 Go to original source... Go to PubMed...
  41. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75(5):843-54. doi: 10.1016/0092-8674(93)90529-Y Go to original source... Go to PubMed...
  42. Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ, Tsai TR, Ho SY, Jian TY, Wu HY, Chen PR, Lin NC, Huang HT, Yang TL, Pai CY, Tai CS, Chen WL, Huang CY, Liu CC, Weng SL, Liao KW, Hsu WL, Huang HD. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 2016;44(D1):D239-D47. doi: 10.1093/nar/gkv1258 Go to original source... Go to PubMed...
  43. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004;23(20):4051-60. doi: 10.1038/sj.emboj.7600385 Go to original source... Go to PubMed...
  44. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006;125(5):887-901. doi: 10.1016/j.cell.2006.03.043 Go to original source... Go to PubMed...
  45. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425(6956):415-9. doi: 10.1038/nature01957 Go to original source... Go to PubMed...
  46. Kohler A, Hurt E. Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 2007;8(10):761-73. doi: 10.1038/nrm2255 Go to original source... Go to PubMed...
  47. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003;17(24):3011-6. doi: 10.1101/gad.1158803 Go to original source... Go to PubMed...
  48. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001;409(6818):363-6. doi: 10.1038/35053110 Go to original source... Go to PubMed...
  49. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001;293(5531):834-8. doi: 10.1126/science.1062961 Go to original source... Go to PubMed...
  50. Kwak PB, Tomari Y. The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat Struct Mol Biol 2012;19(2):145-51. doi: 10.1038/nsmb.2232. Go to original source... Go to PubMed...
  51. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009;10(2):126-39. doi: 10.1038/nrm2632 Go to original source... Go to PubMed...
  52. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003;115(2):199-208. doi: 10.1016/S0092-8674(03)00759-1 Go to original source... Go to PubMed...
  53. Farazi TA, Juranek SA, Tuschl T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 2008;135(7):1201-14. doi: 10.1242/dev.005629 Go to original source... Go to PubMed...
  54. Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell 2007;25(5):635-46. doi: 10.1016/j.molcel.2007.02.011 Go to original source... Go to PubMed...
  55. Ouyang M, Li Y, Ye S, Ma J, Lu L, Lv W, Chang G, Li X, Li Q, Wang S, Wang W. MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer. PLoS One 2014;9(5):e96228. doi: 10.1371/journal.pone.0096228 Go to original source... Go to PubMed...
  56. Kollinerova S, Dostal Z, Modriansky M. MicroRNA hsa-miR-29b potentiates etoposide toxicity in HeLa cells via down-regulation of Mcl-1. Toxicol In Vitro 2017;40:289-96. doi: 10.1016/j.tiv.2017.02.005 Go to original source... Go to PubMed...
  57. Tao SF, He HF, Chen Q. Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells. Mol Cell Biochem 2015;402(1-2):93-100. doi: 10.1007/s11010-014-2317-7 Go to original source... Go to PubMed...
  58. Shen J, Ambrosone CB, DiCioccio RA, Odunsi K, Lele SB, Zhao H. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis 2008;29(10):1963-6. doi: 10.1093/carcin/bgn172 Go to original source... Go to PubMed...
  59. Li Y, Vandenboom TG, 2nd, Wang Z, Kong D, Ali S, Philip PA, Sarkar FH. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res 2010;70(4):1486-95. doi: 10.1158/0008-5472.CAN-09-2792 Go to original source... Go to PubMed...
  60. Gao W, Hua J, Jia Z, Ding J, Han Z, Dong Y, Lin Q, Yao Y. Expression of miR-146a-5p in breast cancer and its role in proliferation of breast cancer cells. Oncol Lett 2018;15(6):9884-8. doi: 10.3892/ol.2018.8589 Go to original source... Go to PubMed...
  61. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 2006;103(33):12481-6. doi: 10.1073/pnas.0605298103 Go to original source... Go to PubMed...
  62. Del Follo-Martinez A, Banerjee N, Li X, Safe S, Mertens-Talcott S. Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutr Cancer 2013;65(3):494-504. doi: 10.1080/01635581.2012.725194 Go to original source... Go to PubMed...
  63. Li W, Liu M, Xu YF, Feng Y, Che JP, Wang GC, Zheng JH. Combination of quercetin and hyperoside has anticancer effects on renal cancer cells through inhibition of oncogenic microRNA-27a. Oncol Rep 2014;31(1):117-24. doi: 10.3892/or.2013.2811 Go to original source... Go to PubMed...
  64. Yang FQ, Liu M, Li W, Che JP, Wang GC, Zheng JH. Combination of quercetin and hyperoside inhibits prostate cancer cell growth and metastasis via regulation of microRNA21. Mol Med Rep 2015;11(2):1085-92. doi: 10.3892/mmr.2014.2813 Go to original source... Go to PubMed...
  65. Wang PW, Phan T, Gordon D, Chung S, Henning SM, Vadgama JV. Arctigenin in combination with quercetin synergistically enhances the antiproliferative effect in prostate cancer cells. Mol Nutr Food Res 2015;59(2):250-61. doi: 10.1002/mnfr.201400558 Go to original source... Go to PubMed...
  66. Frixa T, Donzelli S, Blandino G. Oncogenic MicroRNAs: Key Players in Malignant Transformation. Cancers (Basel) 2015;7(4):2466-85. doi: 10.3390/cancers7040904 Go to original source... Go to PubMed...
  67. Tofigh R, Tutunchi S, Akhavan S, Panahi G. The effects of Quercetin on miRNA-21 expression in MCF-7 cells. Arch Med Lab Sci 2017;3(3):15-20.
  68. Pratheeshkumar P, Son YO, Divya SP, Wang L, Turcios L, Roy RV, Hitron JA, Kim D, Dai J, Asha P, Zhang Z, Shi XL. Quercetin inhibits Cr(VI)-induced malignant cell transformation by targeting miR-21-PDCD4 signaling pathway. Oncotarget 2017;8(32):52118-31. doi: 10.18632/oncotarget.10130 Go to original source... Go to PubMed...
  69. Cao YC, Hu JL, Sui JY, Jiang LM, Cong YK, Ren GQ. Quercetin is able to alleviate TGF-β-induced fibrosis in renal tubular epithelial cells by suppressing miR-21. Exp Ther Med 2018;16(3):2442-8. doi: 10.3892/etm.2018.6489 Go to original source... Go to PubMed...
  70. Boesch-Saadatmandi C, Loboda A, Wagner AE, Stachurska A, Jozkowicz A, Dulak J, Doring F, Wolffram S, Rimbach G. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. J Nutr Biochem 2011;22(3):293-9. doi: 10.1016/j.jnutbio.2010.02.008 Go to original source... Go to PubMed...
  71. Appari M, Babu KR, Kaczorowski A, Gross W, Herr I. Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. Int J Oncol 2014;45(4):1391-400. doi: 10.3892/ijo.2014.2539 Go to original source... Go to PubMed...
  72. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 MicroRNA family. Cell 2005;120(5):635-47. doi: 10.1016/j.cell.2005.01.014 Go to original source... Go to PubMed...
  73. Nwaeburu CC, Bauer N, Zhao Z, Abukiwan A, Gladkich J, Benner A, Herr I. Up-regulation of microRNA Let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl. Oncotarget 2016;7(36):58367-80. doi: 10.18632/oncotarget.11122 Go to original source... Go to PubMed...
  74. Nwaeburu CC, Abukiwan A, Zhao Z, Herr I. Quercetin-induced miR-200b-3p regulates the mode of self-renewing divisions in pancreatic cancer. Mol Cancer 2017;16(1):23. doi: 10.1186/s12943-017-0589-8 Go to original source... Go to PubMed...
  75. Lesjak M, Hoque R, Balesaria S, Skinner V, Debnam ES, Srai SK, Sharp PA. Quercetin inhibits intestinal iron absorption and ferroportin transporter expression in vivo and in vitro. PLoS One 2014;9(7):e102900. doi: 10.1371/journal.pone.0102900 Go to original source... Go to PubMed...
  76. Ward DM, Kaplan J. Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys Acta 2012;1823(9):1426-33. doi: 10.1016/j.bbamcr.2012.03.004 Go to original source... Go to PubMed...
  77. Sonoki H, Sato T, Endo S, Matsunaga T, Yamaguchi M, Yamazaki Y, Sugatani J, Ikari A. Quercetin Decreases Claudin-2 Expression Mediated by Up-Regulation of microRNA miR-16 in Lung Adenocarcinoma A549 Cells. Nutrients 2015;7(6):4578-92. doi: 10.3390/nu7064578 Go to original source... Go to PubMed...
  78. Zhang X, Guo Q, Chen J, Chen Z. Quercetin Enhances Cisplatin Sensitivity of Human Osteosarcoma Cells by Modulating microRNA-217-KRAS Axis. Mol Cells 2015;38(7):638-42. doi: 10.14348/molcells.2015.0037 Go to original source... Go to PubMed...
  79. MacKenzie TN, Mujumdar N, Banerjee S, Sangwan V, Sarver A, Vickers S, Subramanian S, Saluja AK. Triptolide induces the expression of miR-142-3p: a negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation. Mol Cancer Ther 2013;12(7):1266-75. doi: 10.1158/1535-7163.MCT-12-1231 Go to original source... Go to PubMed...
  80. Zhou JB, Gong J, Ding C, Chen GQ. Quercetin induces the apoptosis of human ovarian carcinoma cells by upregulating the expression of microRNA-145. Mol Med Rep 2015;12(2):3127-31. doi: 10.3892/mmr.2015.3679 Go to original source... Go to PubMed...
  81. Wein SA, Laviano A, Wolffram S. Quercetin induces hepatic gamma-glutamyl hydrolase expression in rats by suppressing hepatic microRNA rno-miR-125b-3p. J Nutr Biochem 2015;26(12):1660-3. doi: 10.1016/j.jnutbio.2015.08.010 Go to original source... Go to PubMed...
  82. Shubbar E, Helou K, Kovacs A, Nemes S, Hajizadeh S, Enerback C, Einbeigi Z. High levels of gamma-glutamyl hydrolase (GGH) are associated with poor prognosis and unfavorable clinical outcomes in invasive breast cancer. BMC Cancer 2013;13:47. doi: 10.1186/1471-2407-13-47 Go to original source... Go to PubMed...
  83. Milenkovic D, Deval C, Gouranton E, Landrier JF, Scalbert A, Morand C, Mazur A. Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols. PLoS One 2012;7(1):e29837. doi: 10.1371/journal.pone.0029837 Go to original source... Go to PubMed...
  84. Garelnabi M, Mahini H. Modulation of microRNA 21, 125 b and 451 expression by quercetin intake and exercise in mice fed atherogenic diet. J Int Soc Sports Nutr 2014;4(3):359-63. doi: 10.1016/j.bionut.2014.04.005 Go to original source...
  85. Boesch-Saadatmandi C, Wagner AE, Wolffram S, Rimbach G. Effect of quercetin on inflammatory gene expression in mice liver in vivo - role of redox factor 1, miRNA-122 and miRNA-125b. Pharmacol Res 2012;65(5):523-30. doi: 10.1016/j.phrs.2012.02.007 Go to original source... Go to PubMed...
  86. Lam TK, Shao S, Zhao Y, Marincola F, Pesatori A, Bertazzi PA, Caporaso NE, Wang E, Landi MT. Influence of quercetin-rich food intake on microRNA expression in lung cancer tissues. Cancer Epidemiol Biomarkers Prev 2012;21(12):2176-84. doi: 10.1158/1055-9965.EPI-12-0745 Go to original source... Go to PubMed...
  87. Kang J, Kim E, Kim W, Seong KM, Youn H, Kim JW, Kim J, Youn B. Rhamnetin and cirsiliol induce radiosensitization and inhibition of epithelial-mesenchymal transition (EMT) by miR-34a-mediated suppression of Notch-1 expression in non-small cell lung cancer cell lines. J Biol Chem 2013;288(38):27343-57. doi: 10.1074/jbc.M113.490482 Go to original source... Go to PubMed...
  88. Lan L, Wang Y, Pan ZY, Wang B, Yue ZS, Jiang ZS, Li L, Wang C, Tang HM. Rhamnetin induces apoptosis in human breast cancer cells via the miR-34a/Notch-1 signaling pathway. Oncol Lett 2019;17(1):676-82. doi: 10.3892/ol.2018.9575 Go to original source... Go to PubMed...
  89. Jia H, Yang Q, Wang T, Cao Y, Jiang QY, Ma HD, Sun HW, Hou MX, Yang YP, Feng F. Rhamnetin induces sensitization of hepatocellular carcinoma cells to a small molecular kinase inhibitor or chemotherapeutic agents. Biochim Biophys Acta 2016;1860(7):1417-30. doi: 10.1016/j.bbagen.2016.04.007 Go to original source... Go to PubMed...
  90. Du FJ, Feng YX, Fang JZ, Yang MW. MicroRNA-143 enhances chemosensitivity of Quercetin through autophagy inhibition via target GABARAPL1 in gastric cancer cells. Biomed Pharmacother 2015;74:169-77. doi: 10.1016/j.biopha.2015.08.005 Go to original source... Go to PubMed...
  91. Shin VY, Chu KM. MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J Gastroenterol 2014;20(30):10432-9. doi: 10.3748/wjg.v20.i30.10432. Go to original source... Go to PubMed...
  92. Feng YH, Tsao CJ. Emerging role of microRNA-21 in cancer. Biomed Rep 2016;5(4):395-402. doi: 10.3892/br.2016.747 Go to original source... Go to PubMed...
  93. Wang X, Cao L, Wang Y, Wang X, Liu N, You Y. Regulation of let-7 and its target oncogenes (Review). Oncol Lett 2012;3(5):955-60. doi: 10.3892/ol.2012.609 Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.