DOI QR코드

DOI QR Code

Effects of Halogen and Light-Shielding Curtains on Acquisition of Hyperspectral Images in Greenhouses

온실 내 초분광 영상 취득 시 할로겐과 차광 커튼이 미치는 영향

  • Kim, Tae-Yang (Department of Bio-System Engineering, GyeongSang National University (Institute of Agriculture & Life Science)) ;
  • Ryu, Chan-Seok (Department of Bio-System Engineering, GyeongSang National University (Institute of Agriculture & Life Science)) ;
  • Kang, Ye-seong (Department of Bio-System Engineering, GyeongSang National University (Institute of Agriculture & Life Science)) ;
  • Jang, Si-Hyeong (Department of Bio-System Engineering, GyeongSang National University (Institute of Agriculture & Life Science)) ;
  • Park, Jun-Woo (Department of Bio-System Engineering, GyeongSang National University (Institute of Agriculture & Life Science)) ;
  • Kang, Kyung-Suk (Department of Bio-System Engineering, GyeongSang National University (Institute of Agriculture & Life Science)) ;
  • Baek, Hyeon-Chan (Department of Bio-System Engineering, GyeongSang National University (Institute of Agriculture & Life Science)) ;
  • Park, Min-Jun (Department of Bio-System Engineering, GyeongSang National University (Institute of Agriculture & Life Science)) ;
  • Park, Jin-Ki (Southern Crop Department, NICS, RDA)
  • 김태양 (경상국립대학교 바이오시스템공학과 (농업생명과학연구원)) ;
  • 유찬석 (경상국립대학교 바이오시스템공학과 (농업생명과학연구원)) ;
  • 강예성 (경상국립대학교 바이오시스템공학과 (농업생명과학연구원)) ;
  • 장시형 (경상국립대학교 바이오시스템공학과 (농업생명과학연구원)) ;
  • 박준우 (경상국립대학교 바이오시스템공학과 (농업생명과학연구원)) ;
  • 강경석 (경상국립대학교 바이오시스템공학과 (농업생명과학연구원)) ;
  • 백현찬 (경상국립대학교 바이오시스템공학과 (농업생명과학연구원)) ;
  • 박민준 (경상국립대학교 바이오시스템공학과 (농업생명과학연구원)) ;
  • 박진기 (국립식량과학원 남부작물부 생산기술개발과)
  • Received : 2021.11.11
  • Accepted : 2021.12.23
  • Published : 2021.12.30

Abstract

This study analyzed the effects of light-shielding curtains and halogens on spectrum when acquiring hyperspectral images in a greenhouse. The image data of tarp (1.4*1.4 m, 12%) with 30 degrees of angles was achieved three times with four conditions depending on 14 heights using the automatic image acquisition system installed in the greenhouse at the department of Southern Area of National Institute of Crop Science. When the image was acquired without both a light-shielding curtain and halogen lamp, there was a difference in spectral tendencies between direct light and shadow parts on the base of 550 nm. The average coefficient of variation (CV) for direct light and shadow parts was 1.8% and 4.2%, respective. The average CV value was increased to 12.5% regardless of shadows. When the image was acquired only used a halogen lamp, the average CV of the direct light and shadow parts were 2 .6% and 10.6%, and the width of change on the spectrum was increased because the amount of halogen light was changed depending on the height. In the case of shading curtains only used, the average CV was 1.6%, and the distinction between direct light and shadows disappeared. When the image was acquired using a shading curtain and halogen lamp, the average CV was increased to 10.2% because the amount of halogen light differed depending on the height. When the average CV depending on the height was calculated using halogen and light-shielding curtains, it was 1.4% at 0.1m and 1.9% at 0.2 m, 2 .6% at 0.3m, and 3.3% at 0.4m of height, respectively. When hyperspectral imagery is acquired, it is necessary to use a shading curtain to minimize the effect of shadows. Moreover, in case of supplementary lighting by using a halogen lamp, it is judged to be effective when the size of the object is less than 0.2 m and the distance between the object and the housing is kept constant.

본 연구는 유리온실 내에서 초분광 영상을 취득하였을 때 차광 커튼과 할로겐이 DN value스펙트럼에 미치는 영향에 관한 것이다. 국립식량과학원 남부작물부 유리온실에 설치된 자동영상취득시스템을 이용하였으며 30° 기울어진 보정용 Tarp (1.4×1.4 m, 12%)를 설치한 후 하우징과 거리별(0.7~2.1 m) 영상데이터를 4가지 조건으로 3반복 취득했다. 차광 커튼과 할로겐을 모두 사용하지 않고 영상을 취득하였을 경우, 직달광부분과 그림자부분은 550 nm를 기준으로 스펙트럼의 변동성이 커졌다. 직달광부분과 그림자부분의 평균 변동계수(Coefficient of variation, CV)값은 각각 1.8%, 4.2%이며 그림자 유무에 관계없이 CV값을 계산 할 경우 12.5%로 증가되었다. 차광 커튼을 사용하지 않고 할로겐만을 이용한 경우 직달광부분과 그림자 부분의 CV 값은 2.6%, 10.6%이고 그림자 유무에 관계없이 CV 값을 계산할 경우 11.2%로 나타났으며 하우징과 거리에 따른 할로겐 보광량 차이로 인해 스펙트럼 변화폭이 증가되었다. 차광커튼만을 사용한 경우 CV 값은 1.6%이며 직달광과 그림자부분의 구분이 사라졌다. 차광 커튼과 할로겐을 모두 사용한 경우 하우징과 거리에 따른 할로겐의 보광량 차이로 CV 값은 10.2%로 증가했다. 할로겐과 차광 커튼을 모두 사용한 영상의 높이 범위 별 CV 값을 계산하였을 때 0.1 m 범위는 1.4%, 0.2 m범위는 1.9%, 0.3 m 범위는 2.6%, 0.4 m 범위는 3.3%로 나타났다. 따라서 온실에서 표준화된 영상데이터를 취득하기 위해서는 차광 커튼을 이용해 광을 균일하게 해야하고 할로겐램프를 이용해 보광 할 경우 대상의 수직 높이가 0.2 m 미만이며 대상과 하우징의 거리가 일정하게 유지 되었을 때 유효하다고 판단된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구개발사업(과제명: 콩 논 재배시 수분 스트레스 진단을 위한 센싱기반 영상분석기술 개발, 과제번호: PJ01499202)의 지원에 의해 이루어진 것임.

References

  1. Bruning, B., B. Berger, M. Lewis, H. Liu, and T. Garnett, 2020: Approaches, applications, and future directions for hyperspectral vegetation studies: An emphasis on yield-limiting factors in wheat. The Plant Phenome Journal 3(1), e20007.
  2. Choi, K. I., H. M. Noh, S. H. Jeong, and C. J. Yoo, 2019: Classification of growth conditions in crops using hyperspectral images and deep neural network: Case study of paprika leaf. The Journal of Korean Institute of Information Technology 17(12), 1-12. (in Korean with English abstract) https://doi.org/10.14801/jkiit.2019.17.12.1
  3. Ge, Y., G. Bai, V. Stoerger, and J. C. Schnable, 2016: Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Computers and Electronics in Agriculture 127, 625-632. https://doi.org/10.1016/j.compag.2016.07.028
  4. Kang, K. S., C. S. Ryu, S. H. Jang, Y. S. Kang, S. R. Jun, J. W. Park, H. Y. Song, and S. H. Lee, 2019: Application of hyperspectral imagery to decision tree classifier for assessment of spring potato (Solanum tuberosum) damage by salinity and drought. Korean Journal of Agricultural and Forest Meteorology 21(4), 317-326. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2019.21.4.317
  5. Kim, J. W., and J. I. Moon, 2016: Results of performance analysis for farms introduced smart farms. Ministry of Agriculture, Food and Rural Affairs.
  6. Kim, Y. J., J. Y. Park, and Y. G. Park, 2016: An analysis of the current status and success factors of smart farms. Korea Rural Economic Institute, 1-74. (in Korean with English abstract)
  7. Kim, Y. J., J. Y. Park, Y. G. Park, and H. K. Seo, 2017: Smart agricultural development plan in response to the fourth industrial revolution. Korea Rural Economic Institute, 1-136. (in Korean with English abstract)
  8. Ma, D., H. Maki, S. Neeno, L. Zhang, L. Wang, and J. Jin, 2020: Application of non-linear partial least squares analysis on prediction of biomass of maize plants using hyperspectral images. Biosystems Engineering 200, 40-54. https://doi.org/10.1016/j.biosystemseng.2020.09.002
  9. Moghadam, P., D. Ward, E. Goan, S. Jayawardena, P. Sikka, and E. Hernandez, 2017: Plant disease detection using hyperspectral imaging. In 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA), 1-8. IEEE.
  10. Park, E., and B. K. Cho, 2014: Development of drought stress measurement method for red pepper leaves using hyperspectral short wave infrared imaging technique. Protected Horticulture and Plant Factory 23(1), 50-55. (in Korean with English abstract) https://doi.org/10.12791/KSBEC.2014.23.1.050
  11. Pinter Jr, P. J., J. L. Hatfield, J. S. Schepers, E. M. Barnes, M. S. Moran, C. S. Daughtry, and D. R. Upchurch, 2003: Remote sensing for crop management. Photogrammetric Engineering & Remote Sensing 69(6), 647-664. https://doi.org/10.14358/PERS.69.6.647
  12. Yang, W., C. Yang, Z. Hao, C. Xie, and M. Li, 2019: Diagnosis of plant cold damage based on hyperspectral imaging and convolutional neural network. Ieee Access 7, 118239-118248. https://doi.org/10.1109/access.2019.2936892
  13. Yoosefzadeh-Najafabadi, M., H. J. Earl, D. Tulpan, J. Sulik, and M. Eskandari, 2021: Application of machine learning algorithms in plant breeding: predicting yield from hyperspectral reflectance in soybean. Frontiers in plant science 11, 2169.