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 Legionnaires’ disease is a very serious type of pneumonia (lung infection) caused by bacteria called 

Legionella. In this research work, a mathematical model for the transmission dynamics of Legionnaires’ 

disease is developed. Mathematical analysis is carried out to gain relevant insight on the basic features of 

the model. Some of the findings of this research indicate the existence of a legionnaire-free equilibrium, 

which was later shown to be globally stable, provided the control reproduction number is less than one. 
Further analysis showed legionnaires’ disease to be endemic among the human population, which we proved 

to be globally asymptotically stable whenever the effective basic reproduction number is greater than unity 

and unstable whenever the effective basic reproduction number is less than unity. Furthermore, 
administering effective treatments to humans exposed to Legionnaires’ disease should be prioritized, as 

shown in the simulation results. 
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1. Introduction

Legionnaires’ disease (LD) is a chronic type of 

pneumonia, and recent studies have revealed that it can be 

transmitted from environment to humans and from humans to 

humans when contaminated aerosols (e.g., mist droplets 

containing the bacteria) are inhaled, which manifest similar 

symptoms as pneumonia [1]. However, the aerosols containing 

legionella bacteria have been produced via channels such as 

water from contaminated swimming pools, domestic hot-water 

systems, respiratory therapy devices, cooling towers, fountains, 

and other utilities where people make use of public water 

supplies [2]. Similar signs and symptoms found in pneumonia, 

such as fever, cough, and chest pain, are also observed in 

patients with Legionnaires’ disease [3]. The fundamental cause 

of Legionnaires’ diseases is the legionella bacterium, which has 

been described as a water-based organism that usually leads to 

infection when inhaled by individuals in an aerosol form [4]. It 

has been identified that the physical and chemical properties of 

water, the occurrence of heavy metals, and mineral contents are 

the major factors contributing to the survival of legionella [4]. 

This disease affects almost all age groups, most especially 

people who are advanced in age, in particular those diagnosed 

with severe pulmonary, renal, and cardiac diseases [4]. Multiple 

organs are affected, especially when patients are immune 

compromised [5]. So far, no reliable clinical laboratories or 

radiological parameters can distinguish between Legionnaires’ 

disease and other pneumonia infections [4]. Therefore, it is 

imperative to always confirm clinical doubts with special 

laboratory tests (culture, detection of antigen in respiratory 
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secretion or urine, serologic tests, and molecular diagnostics) 

[6]. 

Several species (spp) of legionella have been discovered 

to exist everywhere in nature, such as in soil and water. These 

legionella species are present in human-made water distribution 

systems, decorative fountains, cooling towers, and hot water 

tanks [7]. It is found that risk factors are high, especially in 

people with health conditions such as severe lung infection or 

people who are immune compromised [9]. Le¬gionnaires’ 

disease was initially detected in 1976 in the USA, where two 

hundred and twenty-one (221) cases were recorded and thirty-

four (34) infected persons died [3]. This upsurge has been noted 

as one of the largest community-associated outbreaks of 

Legionnaires’ disease in the United States. It was later that this 

resurgence was found to be caused by the cooling system of the 

hosting hotel, and a bacterium categorized as Legionella 

pneumophila serogroup 1 was subsequently isolated from four 

(4) persons [8]. In 2015, a scientific investigation was conducted 

to systematically find out the cause of the outbreak that led to 

the deaths of sixteen (16) patients and one hundred and twenty-

eight (128) patients that needed to be hospitalized. 

1.1. Model Formulation 

We formulate a mathematical model in which the number 

of people is classified into adults and children. The variables 

and        denote all children and adults put together, 

respectively, at time t.  Table 1 specifically shows the 

classification of the total population into the following mutually 

( )aN t ( )cN t
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exclusive compartments:                      denote susceptible children 

and adults, respectively;                        represent children and 

adults with Legionnaires’ at a latent state;  

are adults and children with mild disease;                             denote 

severe infections in both adults and children; represent the 

population of adults and children who have recovered from 

Legionnaire’s disease. Hence, we have that 

 

(1) 

 

On the other hand, susceptible adults and children contract 

Legionnaires’ disease when exposed to an infected human 

population with the force of infection given by 

 
(2) 

where       is the disease force of infection.  

As shown in Figure 1, recruitment rates                  for the child 

and adult populations are different. We assume that a slight 

percentage               of adults    and   children  who  have  latent  

Table 1. Description of the variables and parameters of the 

Legionnaires’ model 

Variables    Descriptions 

 Number of susceptible children and adults 

 Number of exposed children and adults 

 Number of children and adults with mild infection 

 Number of children and adults with severe infection 

 Recovered children and adult population 

 Total number of children and adult respectively 

 Total human population 

Parameters Descriptions 

 Human recruitment rate for children and adults 

 Natural death rate for children and adults 

 Transmission probability per contact for adults and 

children 

 Rate of progression from exposed children and 

adults’ class to mild phase of infection 

 
Fraction of exposed human (children and adults) 

who become infected at mild stages 

 
Remaining fraction of exposed human (children and 

adults) who acquire severe infection 

 
Progression rate to severe stages of infection from 

mild stage for children and adult 

 
Death rates due to infection for adults at mild and 
severe stages 

 Death rates due to infection for children at mild and 

severe stages 

 
Recovery rates for children having mild and severe 
infection 

 
Recovery rates for adult having mild and severe 

infection 

 Growth and maturation rate 

 
Proportion of recovered children and adults who 

clear all the bacteria from the body 

 Proportion of those that still carry the bacteria 

 
Reversion rate from recovered class to susceptible 

class for children and adults 

 Public health awareness rate 

 Modification parameter 

 
Modification parameters for children and adults due 

to infection 

infections have moved to the mild class of infections as a result 

of public awareness (at rates               respectively). The remainder 

1      ,                     of infected adults and children develop 

serious infections at rates                 that are higher, respectively. 

The parameter β  denotes the probability that adults and children 

acquire infection per contact with infected persons. The class of 

adults at mild and severe stages of infection is reduced due to 

recovery at rates σam, σas respectively, while children at mild and 

severe stages recover at rates σcm, σcs respectively. Adults and 

children with mild and severe infection suffer additional 

disease-induced deaths at rates δcm, δcs, δam, δas. However, ωa, 

ωc denotes the rate at which recovered adults and children revert 

to susceptible classes while θ represents public enlightenment 

awareness. ϥa ,ϥc represent the proportion of recovered humans 

that clear all the bacteria from the body while (1-ϥa)(1-ϥc) is a 

proportion of those that still carry the bacteria. 

The equation below describes the Legionnaires’ 

transmission dynamics. 

 

 

 

(3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Flow Diagram of Legionnaires’ 
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1.2. Fundamental Properties of Model Equations 

For the Legionnaires’ model to be epidemiologically 

meaningful, we can establish that all associated variables are 

non-negative for all time. This can be proved by 

showing that all solutions of the model (3.0) with non-negative 

initial data will continue to be positive for . Thus, the 

feasible region for the model is given by  

Lemma 1.1: There exists a region , where the model (3) is 

positively invariant and bounded in .  

Proof: On adding the equations of system (3), we get the total 

population as 

 (4) 

By the standard comparison theorem, we have 

 

 

 

(5) 

where min . (6)  

By using the method of integrating factor, we have 

                                                                 ,                                                                                     

                                                                                   

(7) 

Therefore, if  , then      

    for all .      

Therefore, Δ is positively invariant and contains the solution of 

the model. This implies that the solutions to the Legionnaires’ 

model are non-negative and are contained in the feasible region 

Δ                                                     . 

Hence, the dynamics of system (3) is biologically useful and 

necessary to study in Δ. 

Lemma 1.2: Let the initial data for system (3) be
                                                                 

                                               
 

 

then, the solutions of (Sc, Ec, Icm, Ics, Rc, Sa, Ea, Iam, Ias, Ra) to the 

model equation (3) with starting conditions will remain positive 

for all time t > 0. 

Proof: 

The initial conditions of the model are assumed to be non-

negative, and the procedure in [18] will be adopted to prove that 

the model solutions are positive. 

Let (8) 

From the first equation in system (3) 

 (9) 

this implies  

 (10) 

Adopting the integrating factor procedure gives 

 (11) 

Integrating from 0 to, we have  

 (12) 

 

(13) 

A similar procedure as shown above can be adopted to prove that the remaining solutions of system (3) are positive for all time        . 

 

 

2. Model Analysis 

2.1. Control Reproduction Number of the Legionnaires-Free Equilibrium (LFE) 

Using the approach in [10], system (3) has a distinct Legionnaires-free equilibrium defined as 

 (14) 

The control reproduction number (RE) was previously computed in [22] to give 
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Where; , (16) 
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                                                                                                                                                   , 
(19) 

 

2.2. Analysis of the Reproduction Numbers,                              

and 

Recall the quantitative parameter,      , we explore the 

after-effect of control measures for individuals on the mild and 

severe phases of Legionnaires’ disease and the change in the 

movement from the mild to the severe phase of infection on the 

control of legionnaires disease in the human population. 

From (16), we have 
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It is evident from (        ) that   
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Similarly,  
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Therefore, a Legionnaires’ control program that leads to high 

control rates for various treatments (σcm, σcs, σam, σas→∞)  and a 

condition whereby the movement of children and adults changes 

from the mild to the severe phase of infection(         →∞)  are 

high (accounting for rapid progression) and can lead to effective 

Legionnaires’ control if the right-hand sides of (23–25) can be 

reduced below one. 

From                  and                 ,    a near-total   eradication   of 

Legionnaires’ is achievable.  

Here, the effective treatment is to focus on treating 

individuals in the mild stage of infection since they contribute 

less to the spread of the disease and have a high treatment rate 

(σcm →∞). This is very effective since subsequent disease 

progressions proceed from this mild stage of the Legionnaires’ 

infection. 

Solving for the partial derivatives of                              with 

respect       to       the       parameters     under       investigation, 

(                           and       ) reveals the influence of these 

parameters in reducing the spread of Legionnaires’ disease in 

the community. Thus, 
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 (31) 

Clearly, it follows from (27) and (30) that the partial 

derivatives are less than zero, categorically. Therefore, the 

actual treatment rate of Legionnaires’ (for both mild and severe 

phases of infection) and the swift movement beginning from the 

severe phase to the recovered phase of Legionnaire 

manifestation will have the optimal impact on dropping the 

burden of Legionnaires’ in the human community, 

notwithstanding the values of the other parameters in the 

expressions on the right-hand sides of (27) and (30). 

Lemma 1.3 Effective treatment rates (σcm and σam )for 

both children and adults) for mild and severe phases of 

legionnaire and at a faster rate of progression from severe to the 

recovered phases of the disease (σas)  will have an optimum 

impact in dropping the Legionnaires’ problem in human 

community, notwithstanding the values of the other parameters 

in the actual reproduction number.  

It therefore, can be shown that   

 

if                                                                                                        and  (32) 

                       if                                                                                                                                          and              

 

 (33) 

 

That is, a Legionnaires’ disease control program becomes 

necessary if the control (treatment) rate of individuals 

manifesting symptoms in the severe phases of infection is 

greater than the control rate of individuals manifesting 

symptoms in the mild stage of Legionnaires’ disease. This is 

because people at a mild stage of infection contribute less to the 

spread of the disease. Thus, it is certain that rapid changes in the 

movement from the primary to the advanced phase of the 

Legionnaires’ disease manifestation will have a notable effect 

on dropping the Legionnaires’ disease threat in the community 

when the changes in control of individuals in the severe stage of 

the disease quadruple the changes in individuals in the mild 

stage of the disease. A likely approach is applied to the 

remaining basic reproduction numbers. It follows from (28) and 

(29), that a faster movement from the mild stage of 

Legionnaires’ disease to the severe stage could show an 

insignificant effect on Legionnaires’ disease control in the 

human population. The breakdown in this section examines the 

effect of changes from the mild and severe phases of 

Legionnaires’ disease through the changes in control measures 

administered to individuals in the mild and severe phases of the 

infection in the human population. 

2.3. Existence of Legionnaires -Endemic Equilibrium Point 

(LEE) 

Lemma 1.4: A  distinct  (positive)  Legionnaires-endemic 

equilibrium exist for the special case if  ωc = ωa = γ = 0 

whenever       >1. 

Proof: To establish the existence of the Legionnaires- endemic 
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(37) 

  

Substituting the values of                                     and N into the force of infection (   ), where   

 
(38) 

 
(39) 

gives  

 (40) 

which implies either                or  

 

(41) 

As a result, there exists a Legionnaires-free equilibrium point at               and a Legionnaires-endemic equilibrium point (LEE) 
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                         =  (45) 

Solving the reduced system (44) and taking   limit as          

proves       is globally stable in    .  

The solution for           in (44) is obtain as follows: 
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From model of system (3), we have that  

 

(60) 

Substituting (63) into (62) gives  

 

(61) 

Now assuming that  

 

(62) 

Substituting (62) into (61) yields  

 

(63) 

 

(64) 

This implies that   

 

(65) 

 

The derivative           is negative and              if and only if                

     (66) 

 (67) 

Also, every solution of system (3) with the starting condition moves nearer to    as   

 

This implies   that    the biggest compact invariant solution  

set in                                                                           is a singleton  

set      . Thus, following Lasalle’s invariant principle [12], the 

Legio nnaires-endemic equilibrium      is globally asymptotically 

stable in     with the condition that  

 

3. Numerical Simulation 
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Table 2. The Legionnaire’s Disease State Variables and 

Parameters  

Symbols                       value                                                References  

                          
500      Estimated 

                       
1000        Estimated 

                       0.002         [14] 

                        0.05    Estimated 

                0.1, 0.001    [15] 

                0.05, 0.20    [15] 

               0.0109,      [15] 

             0.33, 0.067   [21] 

            0.33, 0.03          [21] 

          0.0221, 0.3545  [15] 

          
0.33, 0.34                                [16] 

                          0.002         Estimated 

                0.5, 1          [16] 

               0.0952, 0.0241  [14] 

                       0.05          Estimated 

                          0.56             [15] 

                          0.3                           Estimated 

                         0.10            [15] 

We adopt theoretical values that denotes the parameters, 

variables, and starting conditions to carry out respective 

simulations. The model equations were solved and graphical 

profiles obtained with parameters given in Table 2 using the 

Runge-Kutta built-in Maple 15 software. 

Fig 2 show susceptible children population receiving 

public awareness. Fig 3 shows exposed children population 

receiving public awareness. Table 1 shows the parameter values 

applied in the simulation. 

 Fig 2 shows a diminishing trend in susceptible children 

population with varying public awareness. This happens for a 

specific period before experiencing a steady rise. This decline is 

because as more children population are educated the less they 

contract the disease. Whereas Fig 2 shows that the exposed 

children population rise sharply for a while before experiencing 

a gradual steady increase with varied public awareness. This 

happens because exposed children contracted the disease for a 

while before progressing out of the class. 

Fig 4 exhibits the influence of public enlightenment on 

the susceptible adult population. Fig 5 depicts the influence of 

public enlightenment on the exposed adult population. Table 2 

shows the parameter values applied in the simulation. 

Fig 4 indicates a decreasing pattern in the susceptible 

adult population before exhibiting a gradual, steady increase 

with a varied public awareness rate. This happens because as 

susceptible adults are exposed, their population decreases for a 

while as they progress out of that class. Whereas Fig 5 shows 

that the exposed adult population grows rapidly to a certain 

value, then starts to reduce slowly whenever public awareness 

is given a positive boost. This growth is due to the influx of 

humans from the susceptible to the exposed classes. 

 

 

Fig 2 & 3. Effects of public awareness on children 

 

 

Fig 4 & 5: Effects of public awareness on adults 
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Fig 6 & 7. Effects of treatment on children 

  

Fig 8 & 9. Effects of treatment on adults 

 

Fig 6 shows the infected child population at a mild stage 

of infection. Fig 7 shows the infected child population at a 

severe stage of infection. Table 2 shows the parameter values 

applied in the simulation. Fig 6 and 7 show a decreasing 

pattern in the population of children suffering mild and severe 

infections. 

Fig 8 shows an infected adult population at mild stage 

of infection. Fig 9 shows an infected adult population at 

severe stage of infection. Table 2 shows the parameter values 

applied in the simulation. 

Fig 8 and 9 show a decreasing pattern in the adult 

population suffering mild and severe infections. This depicts 

how the population of adults suffering mild and severe 

infection responds to treatment and how the population 

decreases due to the progression into the recovered adult 

population. 

4. Discussion  

This study formulates a mathematical model to examine 

the behavior of Legionnaires’ disease. The model is structured 

into 2 age groups (the child and adult populations) and 

comprises 10 subclasses using ordinary differential equations. 

The existence of Legionnaires-free equilibrium was 

established, and by using the control reproduction number, its 

stability was investigated globally for a threshold value below 

unity. This implies that it is necessary for deliberate efforts to 

be made by concerned agencies and stakeholders to ensure 

effective control strategies are sustained. The study further 

proved the existence of legionnaires-endemic equilibrium and 

investigated its stability, which was found to be globally 

stable if the actual (effective) reproduction number is greater 

than unity. This implies that unless adequate control measures 
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are sustained in society, Legionnaires’ disease will persist in 

the environment. 

5. Conclusion  

The findings reveal that the prevalence of Legionnaires’ 

disease can be drastically reduced in the human population 

whenever the actual (effective) reproduction number that 

depicts the spreading capacity is brought below unity. 

Globally, Legionnaires’ disease changes from the mild to 

severe phase and thereafter changes from mild and severe to 

the recovered phase. The changes vary from one individual to 

another (the times that these progressions span ranges) from 

within a few weeks to some months [13-17]. In the analysis 

of the reproduction number, a high progression rate depicts a 

rapid movement from a particular phase of the disease 

manifestation to the next phase. These changes are seemingly 

determined by the environment and other related factors, such 

as in individuals already showing signs and symptoms of the 

disease. This study of Legionnaires’ disease modeling, 

probably for the first time, has demonstrated the 

correspondence between the control measure (treatment) of 

infected individuals in the mild and severe phases of infection 

and the rates of change in the movement from the mild to the 

severe. Likewise, treatment patterns from the mild and severe 

stages to the recovered phase of Legionnaires’ disease for 

controlling and preventing the disease threat are analyzed to 

understand the dynamics of Legionnaires’ disease in the 

human population. However, with the aid of relevant 

stakeholders tasked with the responsibilities of intensifying 

public awareness campaigns on the risk of Legionnaires’ 

disease in the human population, the disease burden can be 

reduced. Furthermore, administering effective treatments to 

humans exposed to Legionnaires’ disease should be 

prioritized, as shown in the simulation results. 
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