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Abstract

We consider an extension of the propositional
modal logic S4 which allows ♦ to act not only on
isolated formulas, but also on sets of formulas. The
interpretation of ♦Γ is then given by the tangled
closure of the valuations of formulas in Γ, which
over finite transitive, reflexive models indicates the
existence of a cluster satisfying Γ. This extension
has been shown to be more expressive than the ba-
sic modal language: for example, it is equivalent to
the bisimulation-invariant fragment of FOL over fi-
nite S4 models, whereas the basic modal language
is weaker. However, previous analyses of this logic
have been entirely semantic, and no proof system
was available.
In this paper we present a sound proof system for
the polyadic S4 and prove that it is complete. The
axiomatization is fairly standard, adding only the
fixpoint axioms of the tangled closure to the usual
S4 axioms. The proof proceeds by explicitly con-
structing a finite model from a consistent set of for-
mulas.

1 Introduction

The archetypical modal logic of space is S4, given its topo-
logical interpreation dating back to Tarski and others [Tarski,
1938] and its renewed interest for modeling spatial reason-
ing: see for example [Artemov et al., 1997; Mints and Zhang,
2005; van Benthem and Bezhanishivili, 2007]. This logic is
also sound and complete for the class of transitive, reflexive
Kripke models.

Recently, two papers have suggested that, when dealing
with transitive models, the basic modal language strikes a
more natural balance in terms of expressive power when en-
riched with a certain polyadic operator. On a finite model,
this operator allows us to describe the existence of clusters
satisfying given sets of formulas.

It should be noted that the motivations for the two papers
are entirely distinct. The first is [Dawar and Otto, 2009],
which is quite general and characterizes the modal language

∗This research is partially supported by the IALNoC project
HUM-5844 of the Junta de Andalucı́a

over many classes of frames. However, when considering
transitive frames which are not necessarily partial orders, they
found it useful to add formulas of the form ♦∗

pϕ expressing
what we call the ‘tangled closure’ operation. They call the
extended system ML∗ and obtain the following:

Theorem (Dawar and Otto, 2007). ML∗ is expressively
equivalent to the bisimulation-invariant fragments of both
first-order logic and monadic second-order logic over the
class of finite S4 models.1

This is only one of many results of this nature proven in
[Dawar and Otto, 2009], but it is the most relevant for our
discussion.

The other paper is [Fernández-Duque, 2011], which uses a
very similar language L�. It considers the question of defin-
ability of simulability. A simulation is defined like a bisim-
ulation satisfying the ‘forth’ but not necessarily the ‘back’
clause. We say that a pointed model 〈W, w〉 simulates 〈V, v〉
if there is a simulation S between them such that w S v.

The main results presented there are:

Theorem (Fernández-Duque, 2011). There exists a finite,
pointed model 〈W, w〉 such that the property of being simu-
lated by 〈W, w〉 is not definable in the basic modal language
over the class of finite S4 models.

However, in L�, the property of being simulated by a finite
model 〈W, w〉 is always definable, even over the class of all
S4 models (including topological models).

We have expressed these results in the notation of the orig-
inal sources, but the system S4∗ that we shall use is a nota-
tional variant of both ML∗ and L� and hence they are all in-
terchangeable as far as expressivity is concerned. In fact, our
formal language is a straightforward simplification of ML∗

exploiting the fact that we are restricting attention to S4 mod-
els.

In ML∗, formulas of the form ♦∗Γ are added to the basic
modal language2, where Γ is a finite set of formulas. The
language we propose for S4∗ differs from that of ML∗ in two
ways:

1The original result demands that the models be ‘tree-like’ but
every model is bisimilar to a tree-like model.

2More specifically, [Dawar and Otto, 2009] introduces formulas
of the form ♦∗

pϕ, where p is a finite set of formulas, and goes on to
suggest ♦∗(γ0, ..., γn) as an alternative notation.
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1. We drop the standard modal operator ♦ and include only
the polyadic ♦∗. This is justified because, over the class
of S4 models, the standard ♦γ is equivalent to ♦∗ {γ}.

2. Given that we no longer need to distinguish between or-
dinary and poliadic operators, we omit the star and write
♦Γ instead of ♦∗Γ.

This will allow us to give standard and polyadic modalities a
uniform treatment and make complex formulas easier to read.
However, we should stress that S4∗ is essentially the restric-
tion of ML∗ to S4 models.

The formula ♦Γ is then interpreted as the tangled closure
of the valuations of the elements of Γ. This is a modifica-
tion of the ‘tangle’ operator from [Fernández-Duque, 2011]
obtained, in topological terms, by taking the closure of the
latter. It is identical to the operation used in interpreting ♦∗
in [Dawar and Otto, 2009], although there it is not described
topologically.

We call the resulting system S4∗. Our objective is to give
it a sound and complete axiomatization. There are some gen-
eral completeness results available for related systems, but to
the best of our knowledge, none of these results implies the
completeness of S4∗.

Since the tangled closure can be expressed as a fixpoint
operator, S4∗ can be seen as a subsystem of the μ-calculus
[Kozen, 1983]. Kozen suggests an axiomatization which is
proven complete in [Walukiewicz, 2000]. However, the proof
uses complex syntactic manipulations which are not available
in our more restrictive language.

Meanwhile, [Santocanale and Venema, 2010] considers a
fragment of the μ-calculus which does not allow alternation
between least- and greatest-fixpoints. They obtain a family
of languages which, syntactically, generalize the language of
S4∗ and define appropriate logics for these systems which are
proven complete. However, they only consider the class of
K models. While an S4 modality could be defined in the μ-
calculus using the transitive, reflexive closure of the acces-
sibility relation, the polyadic version requires alternation be-
tween a least- and a greatest-fixpoint, which is not permitted
in the context of flat fixpoints.

Because of this we must prove completeness from scratch,
borrowing only from the completeness of the modal logic S4.

2 The tangled closure operator

The language we will consider allows us to express the tan-
gled closure of sets in a Kripke model.

Recall that a (transitive, reflexive) Kripke frame is a pair
〈W,�〉 where W is a set and � a (transitive, reflexive) binary
relation on W .

We will also use the notation w ≺ v for w � v but v �� w
and w ∼ v for w � v and v � w.

Transitive reflexive frames can be seen as topological
spaces if we consider open sets to be downward-closed sets
under �. Although we will not work directly with topology in
this paper this is the motivation for the term tangled closure,
which can also be seen as a generalization of the standard
topological closure.

Definition 2.1 (Tangled closure). Let 〈W,�〉 be a Kripke
model and S ⊆ 2W . We define S to be the union of all sets
E ⊆ W such that, for all S ∈ S and w ∈ E, there is v � w
with v ∈ E ∩ S.3

The tangled closure is a straighforward generalization of
the closure of a single set; namely, S = {S}. Thus we will
maintain the symbol ♦, but allow sets of formulas under its
scope. We consider the language L∗, where ♦ acts on finite
sets of propositions of arbitrary size; that is, if γ0, ..., γn are
formulas of L∗ then so is ♦ {γ0, ..., γn}. We will use L to
denote the standard modal language, i.e., the fragment of L∗
where all occurrences of ♦ are monadic.

Formally, our grammar is built from a countable set of
propositional variables PV; if ϕ, ψ are formulas then ¬ϕ, ϕ∧
ψ are formulas and, if Γ ⊆ L∗ is finite, then ♦Γ is also a
formula.

A Kripke model is a Kripke frame 〈W,�〉 equipped with
a valuation �·� : L∗ → 2W such that4 �¬α� = W \ �α�,
�α ∧ β� = �α� ∩ �β� and

�♦ {ϕ0, ..., ϕn}� = {�ϕ0� , ..., �ϕn�}.

Note that ♦Γ can be defined in the μ-calculus in terms of
the unary ♦ by

♦Γ = νp.
∧
γ∈Γ

♦(p ∧ γ).

In general, we will write ♦γ instead of ♦ {γ}. We also
write �Γ as a shorthand for ¬♦¬Γ, where ¬Γ is to be under-
stood as {¬γ : γ ∈ Γ}.

We will only be dealing with finite models in this paper,
and in this setting the meaning of ♦Γ becomes much simpler.5

Recall that a cluster in a Kripke frame 〈W,�〉 is a set C ⊆
W such that, for all v, w ∈ C, v ∼ w; every world w belongs
to a unique cluster, which we denote [w].

Lemma 2.1. If 〈W,�, �·�〉 is a finite S4 model and w ∈ W ,
w ∈ �♦Γ� if and only if there is v � w such that, for all
γ ∈ Γ there is u ∼ v with u ∈ �γ�.

Proof. If w ∈ �♦Γ�, pick v � w such that v is minimal
among all worlds satisfying ♦Γ. Then, by the definition of
the tangled closure for every γ ∈ Γ there is u � v with
v ∈ �γ�, but by minimality this implies that u ∼ v.

For the other direction, if there is v � w such that, for all
γ ∈ Γ there is u ∼ v with v ∈ �γ�, it is clear that {w} ∪
[v] satisfies the fixpoint property defining the tangled closure.

3For readers familiar with [Fernández-Duque, 2011], we have
that S = S�, and similarly S� = S ∩⋃S.

4Note that we use � conversely to many authors in the definition
of ♦; here, w satisfies ♦γ if some v � w satisfies γ.

5Note, however, that our system is also sound for the class of ar-
bitrary S4 models; the results proven here show that it is also com-
plete and has the finite model property.
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3 Polyadic S4
Our proposed axiomatization for S4∗ consists of the follow-
ing:
Taut All propositional tautologies.

Axioms for ♦:
K �(p → q)→ (�p → �q)
T

∧
Γ→ ♦Γ

4 ♦♦Γ→ ♦Γ
Fix ♦Γ→ ∧

γ∈Γ ♦(γ ∧ ♦Γ)
Ind Induction schema for ♦:

♦
(
p ∧�

(
p →

∧
γ∈Γ

♦(p ∧ γ)
))

→ ♦Γ.

Rules:
MP Modus ponens
Subs Substitution

N Necessitation:
ψ

�ψ
.

This system is sound for the class of S4 Kripke models
and, more generally, for the class of all topological models.
Although we focus on finite models in this paper, we shall
state this in its more general form:

Theorem 3.1. If S4∗ � ϕ, then ϕ is valid on the class of all
topological S4 models.

Proof. It suffices to check that all axioms and rules preserve
validity. For simplicity we shall restrict our proof to finite
S4 models. Most cases should be familiar, except for those
involving the polyadic modality, and we shall only consider
these.
T Suppose 〈W,�, �·�〉 is a model with w ∈ �

∧
Γ�.

Then, using Lemma 2.1, it is enough to observe that [w]
satisfies all formulas in Γ, since w itself does. Hence
w ∈ �♦Γ�, as desired.

4 Suppose that w satisfies ♦♦Γ; then there is u � w satisfy-
ing ♦Γ, and thus v � u such that [v] satisfies Γ. But by
transitivity v � w, so w satisfies ♦Γ.

Fix This is the fixpoint condition satisfied by the tangled clo-
sure.

Ind Suppose w satisfies the antecedent, so that there is v � w
satisfying

p ∧�
(
p →

∧
γ∈Γ

♦(p ∧ γ)
)
.

We can assume v is �-minimal among such worlds,
given that we are working over finite models.
Then, for any γ ∈ Γ, v satisfies ♦(p ∧ γ), so that there
is u � v satisfying p ∧ γ. By transitivity we have that
u satisfies �

(
p → ∧

γ∈Γ ♦(p ∧ γ)
)

; but v is minimal
among such worlds and hence we have that u ∼ v.
Hence we can use Lemma 2.1 to conclude that w satis-
fies ♦Γ.

The remainder of this paper will be devoted to proving that
S4∗ is also complete. The symbol � refers to derivability in
this system unless specified otherwise.

4 Typed models

We define a type to be a finite set of formulas. For a type
Φ, define sub±(Φ) as the set of all formulas which are either
subformulas of some ϕ ∈ Φ or of the form ¬ψ, where ψ does
not begin with a negation and is a subformula of some ϕ ∈ Φ.
It is to be understood that all γ ∈ Γ are subformulas of ♦Γ.

Definition 4.1 (Saturation). Say a set of formulas Φ is satu-
rated if , whenever ϕ ∈ Φ and ψ is a subformula of ϕ which
does not begin with a negation, then either ψ ∈ Φ or ¬ψ ∈ Φ.
Ψ is a saturation of Φ if Ψ is saturated and Ψ ⊆ sub±(Φ).

We denote the set of saturations of Φ by sat(Φ), and the set
of consistent saturations of Φ by cons(Φ).

Lemma 4.1. If Φ is a consistent type, then Φ has a consistent
saturation.

Further, Φ � ∨
Ψ∈cons(Φ)

∧
Ψ.

Proof. By propositional reasoning we have that Φ �∨
Ψ∈sat(Φ)

∧
Ψ; if Ψ is inconsistent � ¬∧

Ψ, so again by
propositional reasoning we can remove all such disjuncts and
obtain Φ � ∨

Ψ∈cons(Φ)

∧
Ψ.

But then cons(Φ) must be non-empty, otherwise it would
follow that Φ is inconsistent.

Given a set of formulas Φ, we write Φ♦ for the set of for-
mulas in Φ of the form ♦Γ and Φ♦� for the set of formulas
of Φ either of the form ♦Γ or �Γ. We say a type Φ is modal
if Φ = Ψ♦� for some Ψ, and saturated modal if Φ = Ψ♦�

for some saturated Ψ.
We will work with typed models, which are very similar to

ordinary models which include additional syntactic informa-
tion. For these models to be typed correctly, it is useful to
introduce the notion of a task.

Definition 4.2. Say a type Σ of the form {♦Γ} ∪
{�Δ : Δ ∈ D} is a task.

A set C of saturations of Σ realizes Σ if (1) Γ ⊆ ⋃ C; (2)
Ψ♦� = Θ♦� whenever Ψ,Θ ∈ C and (3) for all Δ ∈ D,
there is δ ∈ Δ such that δ ∈ ⋂ C.

With this we can now define our typed models:

Definition 4.3 (typed model). We define a typed model

w = 〈|w|,�w, tw〉
as a finite preorder 〈|w|,�w〉 with a function tw assigning a
saturated type to each w ∈ |w| and such that:
• for every w ∈ |w| and ♦Γ ∈ tw(w) we have that either

{♦Γ} ∪ t�w(w) is realized by tw([w]) or else there is
v ≺w w such that ♦Γ ∈ tw(v) and

• if �Δ ∈ tw(w), ♦¬Δ is not realized by tw(w) and, for
all v �w w, �Δ ∈ tw(v).

In the above definition, t([w]) = {t(v) : v ∼ w}.
A typed model gives rise to a model ẇ in the obvious way,

by setting �p�ẇ = {w ∈ |w| : p ∈ tw(w)} .
We then have that:

Lemma 4.2. If w is a typed model, w ∈ |w| and ϕ is any
formula, ϕ ∈ tw(w) implies that w ∈ �ϕ�ẇ.
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Proof. We omit the proof, which proceeds by a standard in-
duction on formulas.

So in order to show that a formula is satisfiable, it suffices
to construct a typed model that satisfies it.

Often we will want to construct a typed models from
smaller pieces. Here we define the basic operation we will
use to do this, and establish the conditions that the pieces
must satisfy. In the following definition,

∐
denotes the dis-

joint union of sets.

Definition 4.4. Let G be a set of saturated types and 	v =
〈vi〉i<I a sequence of typed models.

Define a structure w = G ⊕ 	v by setting

|w| = G ∪
∐
i<I

|vi|,

�w = (G × |w|) ∪
∐
i<I

�vi

and

tw(u) =

{
u if u ∈ G
tvi
(u) if u ∈ |vi|.

Not all constructions of the form G⊕	v yield typed models;
for this they must satisfy the following condition:

v0 v1 v2 . . . vI−1

{Γj}j<J

�
��
��
��
��
��
��

�
�� �� �� �� �� �� �� �� �� ��

�

��
��
��
��

�
���	�	�	�	�	�	�	�	�	

Figure 1: If G = {Γj}j<J and 	v = 〈vi〉i≤I , G ⊕ 	v has a
cluster typed by G at the root and each vi as a submodel.

Definition 4.5 (coherence). Let G be a set of types and 	v =
〈vi〉i<I a sequence of typed models.

The pair
〈G,	v〉 is coherent if

• whenever ♦Γ ∈ G, either Γ ⊆ ⋃G or some vi satisfies
♦Γ and

• whenever �Δ ∈ G, ¬Δ �⊆ ⋃G and every world in every
vi satisfies �Δ.

The notion of coherence is useful because of the following:

Lemma 4.3. Let G be a set of types and	v a sequence of typed
models.

Then, G⊕	v is typed model if and only if
〈G,	v〉 is coherent.

From here on, our goal is to show that consistent types have
typed models. Whenever possible, we will isolate reasoning
that can be done within S4 to take advantage of the familiar
completeness result for this logic; an example of this is the
following lemma.

Lemma 4.4. If G is a finite set of types and ψ is any formula,
then

� ♦(ψ∧�(ψ →
∨
Γ∈G

∧
γ∈Γ

♦γ))

→
∨
Γ∈G

♦(ψ ∧�(ψ →
∧
γ∈Γ

♦γ)).

Proof. Without loss of generality we can assume that all
formulas are in the basic modal language, considering all
polyadic occurrences of ♦Γ as propositional variables. Since
S4 is complete for finite preordered models, it suffices to
show that the formula is valid over this class.

Suppose that W is a finite S4 model satisfying

♦(ψ ∧�(ψ →
∨
Γ∈G

∧
γ∈Γ

♦γ))

on some world w, so that there is v � w satisfying

ψ ∧�(ψ →
∨
Γ∈G

∧
γ∈Γ

♦γ).

Now pick u � v which is minimal among all worlds
satisfying ψ. Since u satisfies

∨
Γ∈G

∧
γ∈Γ ♦γ, u satisfies∧

γ∈Γ0
♦γ for some Γ0 ∈ G. Because u is minimal, if u′ � u

also satisfies ψ, then u′ ∼ u and hence u′ satisfies
∧

γ∈Γ0
♦γ.

But this shows that u satisfies ψ ∧�(ψ → ∧
γ∈Γ0

♦γ), so
w satisfies ∨

Γ∈G
♦(ψ ∧�(ψ →

∧
γ∈Γ

♦γ)),

as desired.

Lemma 4.5. If Θ is a modal type and

Θ �
∨

�Γ∈Θ

∧
γ∈Γ

♦(¬γ ∧
∧

Θ),

then Θ is inconsistent.6

Proof. Let θ =
∧
Θ.

If
� θ →

∨
�Γ∈Θ

∧
γ∈Γ

♦(¬γ ∧ θ),

then
� θ → θ ∧�(θ →

∨
�Γ∈Θ

∧
γ∈Γ

♦(¬γ ∧ θ)),

which by Lemma 4.4 implies that

� θ →
∨

�Γ∈Θ

♦(θ ∧�(θ →
∧
γ∈Γ

♦(¬γ ∧ θ))).

But then we can apply Ind(θ) to get

θ �
∨

�Γ∈Θ

♦¬Γ,

which shows that Θ is inconsistent, given that ♦¬Γ is the
negation7 of �Γ.

6We use Θ � ϕ merely as a shorthand for � ∧
Θ → ϕ.

7Strictly speaking one must show here that ♦Γ ↔ ♦¬¬Γ is
derivable, but this can be done by noting that each satisfies the
other’s fixpoint property.
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Lemma 4.6. A saturated type Ψ is satisfiable if and only if,
for all �Δ ∈ Ψ, Δ �⊆ Ψ and, for all ♦Γ ∈ Ψ, {♦Γ} ∪Ψ� is
satisfiable.

Proof. For each ♦Γ ∈ Ψ let vΓ be a state satisfying ♦Γ ∧∧
Ψ�.
Then, by Lemma 4.3, w = {Ψ} ⊕ 〈vΓ : ♦Γ ∈ Ψ〉 is a

model satisfying Ψ, as desired.

Definition 4.6. Suppose that 	Σ = 〈Σi〉i<I and 	Θ = 〈Θj〉j<J

are finite sequences of types.
A choice function on 	Σ is a sequence 〈σi〉i<I such that

σi ∈ Σi for all i < I .
We say that 	Σ covers 	Θ if, given any choice function 	σ on

	Σ, there is j < J such that, for every θ ∈ Θj , there is i < I
for which σi → θ is a tautology.

Lemma 4.7. If 	Σ covers Θ, then

S4 � ( ∧
i<I

♦
∨

σ∈Σi

σ
) → ∨

j<J

∧
θ∈Θj

♦θ.

Proof. Once again we can, without loss of generality, assume
that all formulas are in the basic modal language. It suffices
to show that the formula is valid over the class of finite S4
models.

Let 〈W,�, �·�〉 be any S4 model and suppose w ∈ W sat-
isfies ∧

i<I

♦
∨

σ∈Σi

σ.

Then, for every i < I there is vi � w such that vi satis-
fies

∨
σ∈Σi

σ, and hence there is some σi ∈ Σi such that vi
satisfies σi. This gives us a choice function 	σ.

Now, because 	Σ covers 	Θ, there is j < J such that for
all θ ∈ Θj there is i < I such that σi → θ is a tautology,
hence vi satisfies θ. It follows that w satisfies ♦θ, and since
θ ∈ Θj was arbitrary we have that w satisfies

∧
θ∈Θj

♦θ, so
it satisfies ∨

j<J

∧
θ∈Θj

♦θ,

as desired.

Lemma 4.8. If a taskΣ is unrealizable, then it is inconsistent.

Proof. Let

Σ = {♦Γ} ∪ {�Δ : Δ ∈ D} .
For each γ ∈ Γ let

Σγ = {γ} ∪ {�Δ : Δ ∈ D}
and let Cγ be the set of all formulas of the form

∧
Θ, where

Θ is a consistent saturation of Σγ .
We claim that ifΣ is unrealizable, then 〈Cγ : γ ∈ Γ〉 covers

D; indeed, suppose otherwise.
Following the definition of cover, this means that there ex-

ist 〈Θγ : γ ∈ Γ〉 such that
∧
Θγ ∈ Cγ and for every Δ ∈ D

there is δ ∈ Δ such that
∧
Θγ → δ is not a tautology for any

γ, which in particular implies that δ �∈ Θγ .

Then, 〈Θγ : γ ∈ Γ〉 clearly realizes Σ, contradicting our
assumption.

But by Lemma 4.7 we then have that

Σ �
∨

Δ∈D

∧
δ∈Δ

♦(¬δ ∧
∧

Σ),

which by Lemma 4.5 implies that Σ is inconsistent.

Lemma 4.9. If a modal type Ψ is consistent, it is satisfiable.

Proof. Assume that Ψ is consistent.
We work by induction on #Ψ♦; that is, suppose that for

any Θ with #Θ♦ < #Ψ♦, Θ is satisfiable if and only if it is
consistent.

Let C be the set of all Γ such that ♦Γ ∈ Ψ and there is
no consistent saturated type Θ with ♦Γ ∈ Θ♦ � Ψ♦ and
Ψ� ⊆ Θ.

Let D be the set of all Δ with �Δ ∈ Ψ.
First we note that, for Σ ∈ C we have

� ♦Σ ∧
∧

Δ∈D
�Δ→

∧
Γ∈C

♦Γ; (1)

indeed, for any Γ ∈ C distinct from Σ,

¬♦Γ ∧ ♦Σ ∧
∧

Δ∈D
�Δ

is inconsistent by our induction hypothesis.
We now claim that

�
∧
Γ∈C

♦Γ ∧
∧

Δ∈D
�Δ→ ♦

⋃
C.

It suffices to check that the antecedent satisfies the fixpoint
property of ♦

⋃ C; but if γ ∈ ⋃ C, then γ ∈ Σ for some
Σ ∈ C, hence by Fix

� ♦Σ ∧
∧

Δ∈D
�Δ→ ♦(γ ∧ ♦Σ ∧

∧
Δ∈D

�Δ),

and together with 1 this implies that

� ♦Σ ∧
∧

Δ∈D
�Δ→ ♦(γ ∧

∧
Γ∈C

♦Γ ∧
∧

Δ∈D
�Δ).

But then

�
∧
Γ∈C

♦Γ ∧
∧

Δ∈D
�Δ

→
∧

γ∈⋃ C
♦(γ ∧

∧
Γ∈C

♦Γ ∧
∧

Δ∈D
�Δ),

which is precisely the fixpoint condition of ♦
⋃ C.

Now, by Lemma 4.8 we have that{
♦
⋃

C
}
∪ {�Δ : Δ ∈ D}

is realizable by some set of types G (since it cannot be in-
consistent); once again, by induction on #Ψ♦ every task
{♦Γ} ∪ Ψ� with Γ �∈ C is satisfiable in some typed model
vΓ, hence by Lemma 4.3 G ⊕ 〈vΓ : Γ �∈ C〉 is a typed model
satisfying Ψ, which by Lemma 4.2 implies that Ψ is satisfi-
able.

861



Theorem 4.1. S4∗ is complete for interpretations on finite
S4-models.

Proof. If a formula ϕ is consistent, then by Lemma 4.1, {ϕ}
has a consistent saturation Φ; then, Φ♦� is consistent, so by
Lemma 4.9 it is satisfiable in some finite typed model w. By
Lemma 4.3, {Φ} ⊕ {w} is a typed model for ϕ, which by
Lemma 4.2 implies that ϕ is satisfiable.

From this result we immediately obtain the following:

Corollary 4.1. S4∗ has the finite model property and is de-
cidable.

Proof. This result in fact follows from the decidability and
finite model property of the μ-calculus [Kozen, 1988; Streett
and Emerson, 1984], but can also be verified using Theorem
4.1.

It shows that non-valid formulas have finite countermod-
els, so S4∗ enjoys the finite model property. Since it is also
axiomatizable, it follows that it is decidable.

5 Conclusions and future work

The work presented in [Dawar and Otto, 2009; Fernández-
Duque, 2011] has already suggested that S4∗ may be better
as a basic logic for spatial reasoning than S4, given that it is
more expressive and forms a more natural fragment of famil-
iar logics without a substantial cost to syntax. However, to
make this a serious proposal there are several issues which
need to be taken care of.

One issue is that of a ‘nice’ axiomatization, which is given
by the current paper. It also gives us a finite model prop-
erty, which is useful since S4∗ should be regarded as a logic
of topological spaces, which are usually infinite and can be
rather messy.

However, axiomatizability is not enough; in future work it
would be important to analyze the complexity of reasoning in
S4∗. The methods we present here could be adapted towards
these goals: for example, one can track the model construc-
tion to measure the size of finite models, which a rough esti-
mate shows not to be much larger than models satisfying S4
formulas. Indeed, we conjecture S4∗ validity to be PSPACE
complete, just like S4, and believe a proof may be extracted
from the techniques presented here.

Once the basic S4∗ is well-understood, our goal is to con-
sider more complex logics containing it. In fact, the ba-
sic modal language is quite weak for reasoning about spa-
tial structures. Because of this, many successful applications
of S4 as a spatial logic use additional modal operators and
greater structure.

A specific example we have in mind is Dynamic Topolog-
ical Logic (DTL), introduced in [Artemov et al., 1997] and
expanded in [Kremer and Mints, 2005]. These logics in-
volve temporal and topological modalities, and can be used
to model processes where some of the variables are contin-
uous and may contain margins of error. It is our belief that
enriching DTL with the tangled closure operator will provide
benefits not only in terms of expressivity, but also in terms
of axiomatizability: indeed, no complete axiomatization for
DTL with ‘henceforth’ is known, and we have strong reasons

to believe that such an axiomatization would be easier to es-
tablish with the polyadic modality.
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