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Abstract

We investigate the problem of mining numerical
data with Formal Concept Analysis. The usual way
is to use a scaling procedure –transforming numer-
ical attributes into binary ones– leading either to
a loss of information or of efficiency, in particu-
lar w.r.t. the volume of extracted patterns. By con-
trast, we propose to directly work on numerical data
in a more precise and efficient way. For that, the
notions of closed patterns, generators and equiva-
lent classes are revisited in the numerical context.
Moreover, two algorithms are proposed and tested
in an evaluation involving real-world data, showing
the quality of the present approach.

1 Introduction

In this paper, we investigate the problem of mining numerical
data. This problem arises in many practical situations, e.g.
analysis of gene and transcriptomic data in biology, soil char-
acteristics and land occupation in agronomy, demographic
data in economics, temperatures in climate analysis, etc. We
introduce an original framework for mining numerical data
based on advances in itemset mining and in Formal Concept
Analysis (FCA, [Ganter and Wille, 1999]), respectively con-
densed representations of itemsets and pattern structures in
FCA [Ganter and Kuznetsov, 2001]. The mining of frequent
itemsets in binary data, considering a set of objects and a set
of associated attributes or items, is studied for a long time
and usually involves the so-called “pattern flooding” problem
[Bastide et al., 2000]. A way of dealing with pattern flooding
is to search for equivalence classes of itemsets, i.e. itemsets
shared by the same set of objects (or having the same image).
For an equivalence class, there is one maximal itemset, which
corresponds to a “closed set”, and possibly several minimal
elements corresponding to “generators” (or “key itemsets”).
From these elements, families of association rules can be ex-
tracted. These itemsets are also related to FCA , where a con-
cept lattice is built from a binary context and where formal
concepts are closed sets of objects and attributes.

The present work is rooted both in FCA and pattern mining
with the objective of extracting interval patterns from numeri-
cal data. Our approach is based on “pattern structures” where

complex descriptions can be associated with objects. In [Kay-
toue et al., 2011] we introduced closed interval patterns in
the context of gene expression data mining. Intuitively, an
interval pattern is a vector of intervals, each dimension cor-
responding to a range of values of a given attribute ; it is
closed when composed of the smallest intervals characteriz-
ing a same set of objects.

In the present paper, we complete and extend this first at-
tempt. Considering numerical data, some general character-
istics of equivalence classes remain, e.g. one maximal ele-
ment which is a closed pattern and possibly several genera-
tors which are minimal patterns w.r.t. a subsumption relation
defined on patterns. We show that directly extracting patterns
data from numerical is more efficient using pattern structures
than working on binary data with associated scaling proce-
dures. We also provide a semantics to interval patterns in the
Euclidean space, design and experiment algorithms to extract
frequent closed interval patterns and their generators.

The problem of mining patterns in numerical data is usu-
ally referred as quantitative itemset/association rule min-
ing [Srikant and Agrawal, 1996]. Generally, an appropriate
discretization splits attribute ranges into intervals maximiz-
ing some interest functions, e.g. support, confidence. How-
ever, none of these works covers the notion of equivalence
classes, closed patterns, and generators, and this is one of the
originality of the present paper.

The plan of the paper is as follows. Firstly, we introduce
the problem of mining numerical data and interval patterns.
Then, we recall the basics of FCA and interordinal scaling.
We pose a number of questions that we propose to answer us-
ing our framework of interval pattern structures dealing with
numerical data. We then detail two original algorithms for
extracting closed interval patterns and their generators. These
algorithms are evaluated in the last section on real-world data.
Finally, we end the paper in discussing related work and giv-
ing perspectives to the present research work. As a comple-
ment, an extended version of this paper is given in [Kaytoue
et al., 2010], providing algorithms pseudo-code and a longer
discussion on the usefulness of interval patterns in classifica-
tion problems and privacy preserving data-mining.

2 Problem definition

We propose a definition of interval patterns for numerical
data. Intuitively, each object of a numerical dataset corre-
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sponds to a vector of numbers, where each dimension stands
for an attribute. Accordingly, an interval pattern is a vector of
intervals, and each dimension describes the range of a numer-
ical attribute. We only consider finite intervals and that the set
of attributes/dimensions is assumed to bed (canonically) or-
dered.

Numerical dataset. A numerical dataset is given by a set of
objects G, a set of numerical attributes M , where the range
of m ∈ M is a finite set noted Wm. m(g) = w means that w
is the value of attribute m for object g.

m1 m2 m3

g1 5 7 6

g2 6 8 4

g3 4 8 5

g4 4 9 8

g5 5 8 5

Table 1: A numerical dataset.

Interval pattern and support. In a numerical dataset, an in-
terval pattern is a vector of intervals d = 〈[ai, bi]〉i∈{1,...,|M|}

where ai, bi ∈ Wmi
, and each dimension corresponds to an

attribute following a canonical order on vector dimensions,
and |M | denotes the number of attributes. An object g is
in the image of an interval pattern 〈[ai, bi]〉i∈{1,...,|M|} when

mi(g) ∈ [ai, bi], ∀i ∈ {1, ..., |M |}. The support of d, de-
noted by sup(d), is the cardinality of the image of d.

Running example. Table 1 is a numerical dataset with objects
in G = {g1, ..., g5}, attributes in M = {m1,m2,m3}. The
range of m1 is Wm1

= {4, 5, 6}, and we have m1(g1) = 5.
Here, we do not consider either missing values or multiple
values for an attribute. 〈[5, 6], [7, 8], [4, 6]〉 is an interval pat-
tern in Table 1, with image {g1, g2, g5} and support 3.

Interval pattern search space. Given a set of attributes
M = {mi}i∈{1,|M|}, the search space of interval patterns

is the set D of all interval vectors 〈[ai, bi]〉i∈{1,...,|M|}, with
ai, bi ∈ Wmi

. The size of the search space is given by

|D| =
∏

i∈{1,...,|M|}

(|Wmi
| × (|Wmi

|+ 1))/2

Example. All possible intervals for m1 are in
{[4, 4], [5, 5], [6, 6], [4, 5], [5, 6], [4, 6]}. Considering also
attributes m2 and m3, we have 6× 6× 10 = 360 patterns.

The classical problem of “pattern flooding” in data-mining
is even worst for numerical data. Indeed, with three attributes,
there are only 23 = 8 possible itemsets, compared to the 360
interval patterns in the above example with same number of
attributes. A solution widely investigated in itemset-mining
for minimizing the effect of pattern flooding relies on con-
densed representations including closed itemsets and gener-
ators [Bastide et al., 2000]. By contrast, the analysis of nu-
merical datasets can be considered within the formal concept
analysis framework (FCA) [Ganter and Wille, 1999], which
is closely related to itemset-mining [Stumme et al., 2002].
Accordingly, we are interested in adapting the notions of (fre-
quent) closed itemsets and their generators to interval patterns
within the FCA framework, and in providing an appropriate
semantics to these patterns.

3 Interval patterns in FCA

[Ganter and Wille, 1999] define a discretization procedure,
called interordinal scaling, transforming numerical data into
binary data that encodes any interval of values from a numeri-
cal dataset. We recall here the basics on FCA and interordinal
scaling.

3.1 Formal concept analysis

FCA starts with a formal context (G,N, I) where G de-
notes a set of objects, N a set of attributes, or items, and
I ⊆ G × N a binary relation between G and N . The
statement (g, n) ∈ I , or gIn, means: “the object g has at-
tribute n”. Two operators (·)′ define a Galois connection be-
tween the powersets (P(G),⊆) and (P(N),⊆), with A ⊆ G
and B ⊆ N : A′ = {n ∈ N | ∀g ∈ A : gIn} and
B′ = {g ∈ G | ∀n ∈ B : gIn}. A pair (A,B), such that
A′ = B and B′ = A, is called a (formal) concept, while A is
called the extent and B the intent of the concept (A,B).

From an itemset-mining point of view, concept intents cor-
respond to closed itemsets, since (.)′′ is a closure operator.
An equivalence class is a set of itemsets with same closure
(and same image). For any subset B ⊆ N , B′′ is the largest
itemset w.r.t. set inclusion in its equivalence class. Dually,
generators are the smallest itemsets w.r.t. set inclusion in an
equivalence class. Precisely, B ⊆ N is closed iff �C such as
B ⊂ C with C′ = B′ ; B ⊆ N is a generator iff �C ⊂ B
with C ′ = B′.

3.2 Interordinal scaling

Given a numerical attribute m with range Wm, Interordinal
Scaling builds a binary table with 2× |Wm| binary attributes.
They are denoted by “m ≤ w” and “m ≥ w”, ∀w ∈ Wm, and
called IS-items. An object g has an IS-item “m ≤ w” (resp.
“m ≥ w”) iff m(g) ≤ w (resp. m(g) ≥ w). Applying this
scaling to our example gives Table 2. It is possible to apply
classical mining algorithms to process this table for extracting
itemsets composed of IS-items. These itemsets are called IS-
itemsets in the following.

IS-itemsets can be turned into interval patterns, since an
IS-item gives a constraint on the range Wm of an attribute
m. For example, the IS-itemset {m1 ≤ 5,m1 ≤ 6,m1 ≥
4,m2 ≤ 9,m2 ≥ 7} corresponds to the interval pattern
〈[4, 5], [7, 9], [4, 8]〉. We have here the interval [4, 8] for at-
tribute m3: [4, 8] covers the whole range of m3 since no con-
straint is given for m3.

Therefore, mining interval patterns can be considered with
a scaling of numerical data. However, this scaling produces
a very important number of binary attributes compared to the
original ones. Hence, when original data are very large, the
size of the resulting formal context involves hard computa-
tions. Accordingly, this raises the following questions:

(i) Can we avoid scaling and directly work on numerical
data instead of searching for IS-itemsets? (ii) Can we adapt
the notions of condensed representations such as closed pat-
terns and generators for numerical data, and efficiently com-
pute those patterns? (iii) What would be the semantics that
could be provided to closed patterns and generators?
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g1 × × × × × × × × × × × × ×
g2 × × × × × × × × × × × × ×
g3 × × × × × × × × × × × × ×
g4 × × × × × × × × × × × × ×
g5 × × × × × × × × × × × × ×

Table 2: Interordinally scaled context encoding the numerical dataset from Table 1.

4 Revisiting numerical pattern mining

In this section, we answer those questions. First, we show that
a closure operator can be defined for interval patterns based
on their image. Then, we provide interval patterns with an
appropriate semantics for defining the notion of equivalence
classes of patterns, closed and generator patterns. After dis-
cussing why working with interordinal scaling is not accept-
able thanks to the semantics of interval patterns, we propose
two efficient algorithms for mining closed interval patterns
and generators. Experiments follow in Section 5.

4.1 A closure operator for interval patterns

We introduce the formalism of pattern structures [Ganter and
Kuznetsov, 2001], an extension of formal contexts for dealing
with complex data in FCA. It defines a closure operator for a
partially ordered set of object descriptions called patterns.

Formally, let G be a set of objects, (D,
) be a semi-
lattice of object descriptions, and δ : G → D be a mapping:
(G, (D,
), δ) is called a pattern structure. Elements ofD are
called patterns, and are ordered as follows c 
 d = c ⇐⇒
c � d. Intuitively, objects in G have descriptions in (D,
).
For example, g1 in Table 1 has description 〈[5, 5], [7, 7], [6, 6]〉
where D is the set of all possible interval patterns ordered
with 
, as made precise below. Consider the two operators

(.)� defined as follows, with A ⊆ G and d ∈ (D,
)

d� = {g ∈ G|d � δ(g)} A� =
�

g∈A δ(g)

These operators form a Galois connection between

(P(G),⊆) and (D,�). (.)�� is a closure operator,

meaning that any pattern d such as d = d�� is closed.

Interval pattern structures. This general closure operator
can be used for interval patterns. Indeed, interval patterns
can be ordered within a meet-semi-lattice when the infimum
is defined as follows. Let c = 〈[ai, bi]〉i∈{1,...,|M|}, and d =
〈[ei, fi]〉i∈{1,...,|M|} two intervals patterns. Their infimum is

given by c 
 d = 〈[min(ai, ei),max(bi, fi)]〉i∈{1,...,|M|}.
The ordering relation induced by this definition is: c �
d ⇐⇒ [ei, fi] ⊆ [ai, bi], ∀i ∈ {1, ..., |M |}.

Consider now a numerical dataset, e.g. Table 1. (D,�) is
the finite ordered set of all interval patterns. δ(g) ∈ D is the
pattern associated to an object g ∈ G. Then:

〈[5, 6], [7, 8], [4, 8]〉� = {g ∈ G|〈[5, 6], [7, 8], [4, 8]〉 � δ(g)}
= {g1, g2, g5}

{g1, g2, g5}
� = δ(g1) 
 δ(g2) 
 δ(g3)
= 〈[5, 6], [7, 8], [4, 6]〉

This means that 〈[5, 6], [7, 8], [4, 8]〉 is not a closed interval
pattern, its closure being 〈[5, 6], [7, 8], [4, 6]〉.

4.2 Semantics

An interval pattern d is a |M |-dimensional vector of intervals
and can be represented by a hyper-rectangle (or rectangle for

short) in Euclidean spaceR|M|, whose sides are parallel to the
coordinate axes. This geometrical representation provides a
semantics for interval patterns. In formal terms, an interpre-

tation is given by I = (R|M|, (.)I) where R|M| is the in-

terpretation domain, and (.)I : D → R|M| the interpretation
function. Figure 1 gives four interval pattern representations
in R2, with only attributes m1 and m3 of our example. The
image of d1 is given by all objects g whose description δ(g)
is included in the rectangle associated with d1, i.e. the set

{g1, g3, g4, g5}. We can interpret the closure operator (.)��

according to this semantics. The first operator (.)� applies
to a rectangle and returns the set of objects whose descrip-

tion is included in this rectangle. The second operator (.)�

applies to a set of objects and returns the smallest rectangle
that contains their descriptions, i.e. the convex hull of their
corresponding descriptions.

Figure 1: Interval patterns in the Euclidean space.

4.3 Closed interval patterns and generators

Now, we can revisit the notion of equivalence classes of item-
sets as introduced in [Bastide et al., 2000]: an equivalence
class of interval patterns is a set of rectangles containing the
same object descriptions (based on all rectangles in the search
space as given in Section 2). This enables to define the no-
tions of (frequent) closed interval patterns ((F)CIP) and (fre-
quent) interval pattern generators ((F)IPG), adapted itemisets.

Equivalence class. Two interval patterns c and d with same

image are equivalent, i.e. c� = d� and we write c ∼= d. ∼= is
an equivalence relation, i.e. reflexive, transitive and symmet-
ric. The set of patterns equivalent to a pattern d is denoted by
[d] = {c|c ∼= d} and called the equivalence class of d.

Closed interval pattern (CIP). A pattern d is closed if there
does not exist any pattern e such as d � e with d ∼= e.
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Interval pattern generator (IPG). A pattern d is a genera-
tor if there does not exist a pattern e such as e � d with d ∼= e.
Frequent Interval pattern. A pattern d is frequent if its im-
age has a higher cardinality than a given minimal support
threshold minSup.

We illustrate these definitions with two dimensional in-
terval patterns, and their representation in Figure 1, i.e.
considering attributes m1 and m3 only. 〈[4, 5], [6, 8]〉 ∼=
〈[4, 6], [6, 8]〉 with image {g1, g4}. 〈[4, 6], [6, 8]〉 is not closed
as 〈[4, 6], [6, 8]〉 � 〈[4, 5], [6, 8]〉, these two patterns having
same image, i.e. {g1, g3, g4, g5}. 〈[4, 5], [5, 8]〉 is closed.
〈[4, 6], [5, 8]〉 and 〈[4, 5], [4, 8]〉 are generators in the class of
the closed interval pattern d1 = 〈[4, 5], [5, 8]〉 with image
{g1, g3, g4, g5}. Among the four patterns in Figure 1, d1 is
the only frequent interval pattern with minSup = 3.

Based on the above semantics, an equivalence class is a set
of rectangles containing the same set of object descriptions,
with a (unique) closed pattern corresponding to the smallest
rectangle, and one or several generator(s) corresponding to
the largest rectangle(s).

These definitions are counter-intuitive w.r.t. itemsets: the
smallest rectangles subsume the largest ones. This is due to
the definition of infimum as set intersection for itemsets while
this is convex hull for intervals, which behaves dually as a
supremum.

4.4 IS-itemsets versus interval patterns

Interordinal scaling allows to build binary data encoding all
interval of values from a numerical dataset. Therefore, one
may attempt to mine closed itemsets and generators in these
data with existing data-mining algorithms. Here we show
why this should be avoided.

Local redundancy of IS-itemsets. Extracting all IS-
itemsets in our example (from Table 2) gives 31, 487 IS-
itemsets. This is surprising since there are at most 360 pos-
sible interval patterns. In fact, many IS-itemsets are locally
redundant. For example, {m1 ≤ 5} and {m1 ≤ 5,m1 ≤ 6}
both correspond to interval pattern 〈[4, 5], [7, 9], [4, 8]〉: the
constraint m1 ≤ 6 is redundant w.r.t. m1 ≤ 5 on the set of
values Wm1

. Hence there is no 1-1-correspondence between
IS-itemsets and interval patterns. It can be shown that there
is a 1-1-correspondence only between closed IS-itemsets and
CIP [Kaytoue et al., 2011]. Later we show that local redun-
dancy of IS-itemsets makes the computation of closed sets
very hard.

Global redundancy of IS-itemset generators. Since IS-
itemset generators are the smallest itemsets, they do not
suffer of local redundancy. However, we can remark an-
other kind of redundancy, called global redundancy: it hap-
pens that two different and incomparable IS-itemset genera-
tors correspond to two different interval pattern generators,
but one subsuming the other. In Table 2, both IS-itemsets
N1 = {m1 ≤ 4,m3 ≤ 5} and N2 = {m1 ≤ 4,m3 ≤ 6}
have the same image {g3} and are generators, i.e. there does
not exist a smaller itemset of these itemsets with same image.
However, their corresponding interval pattern are respectively
c = 〈[4, 4], [7, 9], [4, 5]〉 and d = 〈[4, 4], [7, 9], [4, 6]〉 and we

have d � c, while c� = d�, hence c is not an interval pattern
generator.

4.5 Algorithms

We detail a depth-first enumeration of interval patterns, start-
ing with the most frequent one. Based on this enumeration,
we design the algorithms MinIntChange and MinIntChangeG
for extracting respectively frequent closed interval patterns
(FCIP) and frequent interval pattern generators (FIPG).

Interval pattern enumeration. Consider firstly one numer-
ical attribute of the example, say m1. The semi-lattice of
intervals (Dm1

,
) is composed of all possible intervals with
bounds in Wm1

and is ordered by the relation �. The unique
smallest element w.r.t. � is the interval with maximal size,
i.e. [4, 6] = [min(Wm1

),max(Wm1
)] and maximal fre-

quency (here 5). The basic idea of pattern generation lies
in minimal changes for generating the direct subsumers of a
given pattern. For example, two minimal changes can be ap-
plied to [4, 6]. The first consists in replacing the right bound
with the value of Wm1

immediately lower that 6, i.e. 5, for
generating the interval [4, 5]. The second consists in repeating
the same operation for the left bound, generating the interval
[5, 6]. Repeating these two operations allows to enumerate
all elements of (Dm1

,
). A right minimal change is defined
formally as, given a, b, v ∈ Wm, a �= b, mcr([a, b]) = [a, v]
with v < b and �w ∈ Wm s.t. v < w < b while a left
minimal change mcl([a, b]) is formally defined dually. Mini-
mal changes give direct next subsumers and implies a mono-
tonicity property of frequency, i.e. support of [a, v] is less
than or equal to support of [a, b]. To avoid generating several
times the same pattern, a lectic order on changes, or equiva-
lently on patterns, is defined. After a right change, one can
apply either a right or left change; after a left change one
can apply only a left change. Figure 2 shows the depth-first
traversal (numbered arrows) of diagram of (Dm1

,
). Back-
track occurs when an interval of the form [w,w] is reached
(w ∈ Wm1

), or no more change can be applied. Each minimal
change can be interpreted in term of an IS-item. For example,
if [a, b] corresponds to the IS-itemsets {m ≥ a,m ≤ b} then
mcr([a, b]) = [a, v] corresponds to {m ≥ a,m ≤ b,m ≤ v},
i.e. adding m ≤ v to the original IS-itemset. The same ap-
plies dually to left minimal changes. These IS-items charac-
terizing minimal changes are drawn on Figure 2. This figure
accordingly represents a prefix-tree, factoring out the effort to
process common prefixes or minimal changes, and avoiding
redundancy problems inherent in interordinal scaling. The
generalization to several attributes is straightforward. A lec-
tic order is classically defined on numerical attributes as a
lexicographic order, e.g. m1 < m2 < m3. Then changes are
applied as explained above for all attributes respecting this or-
der, e.g. after applying a change to attribute m2, one cannot
apply a change to attribute m1.

[4,4] [5,5] [6,6]

[4,5] [5,6]

[4,6]

m1 ≤ 4 3

2 5

4 m1 ≥ 5

9

8 m1 ≥ 6

1

m1 ≤ 5 6

10

7 m1 ≥ 5

Figure 2: Depth-first traversal of (Dm1
,
).
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Extracting FCIP with MintIntChange. The pattern enu-
meration starts with the minimal pattern w.r.t � and gener-
ates its direct subsumers with lower or equal support. The
next problem now is that minimal changes do not necessarily
generate patterns with strictly smaller support. Therefore, we
should apply changes until a pattern with different support is
generated to identify a closed interval pattern (FCIP) but this
would not be efficient. We adopt the idea of the algorithm
CloseByOne [Kuznetsov and Obiedkov, 2002]: before apply-

ing a minimal change, the closure operator (.)�� is applied
to the current pattern, allowing to skip all equivalent patterns.
Indeed, the minimal pattern d w.r.t. � is closed as it is given

by d = G�. Applying a minimal change returns a pattern
c with strictly smaller support, since d � c and d is closed.
If c is frequent, we can continue, apply the closure opera-
tor and next changes in lectic order, allowing to completely
enumerate all FCIP. Since a FCIP may have several different
associated generators, it can be generated several times. Still
following the idea of CloseByOne, a canonicity test can be
defined according to lectic order minimal changes.

Consider a pattern d generated by a change at attribute

mj ∈ M . Its closure is given by d��. If d�� differs from

d for some attributes mh ∈ M such as mh < mj , then d��

has already been generated: it is not canonically generated,
hence the algorithms backtracks.

Example. We start from the minimal pattern d =
〈[4, 6], [7, 9], [4, 8]〉. The first minimal change in lectic or-
der is a right change on attribute m1. We obtain pattern
c = 〈[4, 5], [7, 9], [4, 8]〉, and obviously d � c. However,

c�� = 〈[4, 5], [7, 9], [5, 8]〉, hence c is not closed. c�� is
stored as FCIP and next changes will be applied to it.

Now consider the pattern obtained by minimal change on
left border for attribute m3, i.e. e = 〈[4, 6], [7, 9], [5, 8]〉.
We have e�� = 〈[4, 5], [7, 9], [5, 8]〉. e and e�� differ for
attribute m1, but e has been generated from a change on

m3. Since m1 < m3, e�� is not canonical and has al-
ready been generated (previous example), hence the algo-
rithm backtracks.

Extracting FIPG with MintIntChangeG. We now adapt
MinIntChange to extract FIPG, following a well-known prin-
ciple in itemset-mining algorithms [Calders and Goethals,
2005]. For any FCIP d, a minimal change implies that the
support of the resulting pattern c is strictly smaller than the
support of d. Therefore, c is a good generator candidate of
the next FCIP. Accordingly, at each step of the depth-first
enumeration a FIPG candidate c is generated from the pre-
vious one b, by applying a minimal change characterized by

b��. Then, each candidate c has to be checked whether it is
a generator or not. We know that the candidate has no sub-
sumers in its branch with same support. However, it could
exist a branch with another FIPG e with same image and re-
sulting from less changes. Considering the lectic order on
minimal changes, we use a reverse traversal of the tree (see
Figure 2: 7,8,9,10,1,4,5,2,3,6), as already suggested in the
binary case in [Calders and Goethals, 2005]. Since genera-
tors correspond to largest rectangles, i.e. on which the fewest
minimal changes have been applied, if c is not a generator,

a generator e associated to its equivalence class has already
been generated, and c is discarded. To check the existence of
e, we look up in an auxiliary data-structure storing already ex-
tracted FIPG. Precisely, if the data structure contains a FIPG
e with same support than candidate c, such that e � c, c
is discarded, and the algorithm backtracks. Otherwise c is
declared as a FIPG and stored. We have experimented the
MinIntChangeG algorithm with two well-known and adapted
data structures, a trie and a hashtable.

5 Experiments

We evaluate the performances of the algorithms designed in
Java, namely MinIntChange, MinIntChangeG-h with aux-
iliary hashtable and MinIntChangeG-t with auxiliary trie.
Recalling that closed IS-itemsets and CIP are in 1-1-
correspondence, we compare the performance for mining
interordinal scaled data with the closed-itemset-mining al-
gorithm LCMv2 [Uno et al., 2004]. For studying the
global redundancy effect of IS-itemset generators, we use
the generator-mining-algorithm GrGrowth [Liu et al., 2006].
Both implementations in C++ are available from the authors.
All experiments are conducted on a 2.50Ghz machine with
16GB RAM running under Linux 2.6.18-92.e15. We choose
dataset from the Bilkent repository1, namely Bolts (BL), Bas-
ketball (BK) and Airport (AP), AP being worst case where
each attribute value is different.

First experiments compare MinIntChange for extracting
FCIP and LCMv2 for extracting equivalent frequent closed
IS-itemsets in Table 3. Second experiments consist in ex-
tracting frequent interval pattern generators (FIPG) with
MinIntChange-h and MinIntChange-t. We also extract fre-
quent itemset generators (FISG) in corresponding binary data
after interordinal scaling with GrGrowth for studying the
global redundancy effect in Table 4.

Dataset minSupp MinIntChange LCMv2 |FCIP |

BL 80% < 50 < 50 1,130

50% 252 100 32,107

25% 1,215 1,060 171,192

10% 1,821 1,950 268975

1 1,905 2,090 272,223

AP 80% 4,595 1,470 346,741

50% 143,939 149,580 16,214,345

25% 413,805 899,180 58,373,631

10% 506,985 6,810,125 80,504,566

1 517,548 6,813,591 82,467,124

Table 3: Execution time for extracting FCIP (in ms).

In both cases, using binary data is better when the mini-
mal support is high (e.g. 90%). For low supports, a critical
issue, our algorithms deliver better execution times. Most
importantly, the global redundancy effect discards the use of
binary data, e.g. only 1.6% of all FISG are actually FIPG in
dataset BL. Finally, the algorithm MinIntChangeG-t outper-
forms MinIntchangeG-h. MinIntChangeG-t however needs
more memory since it stores each closed set of objects as a
word in the trie, and to each word the list of associated FIPG.

It is very interesting to analyse the compression ability of
closed interval patterns and generators. For that, we compare

1http://funapp.cs.bilkent.edu.tr/
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Dataset minSupp GrGrowth MinIntChangeG-h MinIntChangeG-t |FIPG| |FISG| |FIPG|
|FISG|

|FCIP | |FIPG|
|FCIP |

BL 90% < 50 < 50 < 50 176 194 90% 112 1.57

80% < 50 < 50 < 50 1,952 2,823 69% 1,130 1.73

50% 150 1,212 529 66,350 222,088 29% 32,107 2

25% 3,432 27,988 3,893 411,442 3,559,419 11% 171,192 2.4

1 123,564 438,214 24,141 1,165,824 69,646,301 1.6% 272,223 4.3

BK 90% < 50 1,268 1,207 67,737 75,058 84% 48,847 1.3

85% 4,565 26,154 12,139 554,956 799,574 69% 403,562 1.37

80% Untractable 512,126 107,700 2,730,812 NA NA 1,938,984 1.40

Table 4: Execution time for extracting FIPG and global redundancy evaluation.

in each dataset the number of those patterns w.r.t. to all pos-
sible interval patterns. It gives the ratio of closed (generators)
in the whole search space. In both cases, ratio varies between
10−7 and 10−9. This means that the volume of useful inter-
val patterns, either closed or generators, is very low w.r.t. the
set of all possible interval patterns, justifying our interest in
equivalence classes for interval patterns.

6 Conclusion

We discussed the important problem of pattern discovery in
numerical data with a new and original formalization of in-
terval patterns. The classical FCA/itemset-mining settings
are adapted accordingly: from a closure operator naturally
rise the notions of equivalence classes, closed and genera-
tor patterns, and we designed corresponding algorithms. An
appropriate semantics of interval patterns shows from a theo-
retical (redundancy) and practical (computation times) points
of view that mining equivalent binary data (encoding all pos-
sible intervals) is not acceptable. This is due to the fact that
interval patterns are provided with a stronger partial ordering
than IS-itemsets (classical set inclusion), hence pattern struc-
tures yield significantly less generators w.r.t. their semantics.

Dealing with interval patterns has applications in com-
putational geometry, machine learning and data-mining,
e.g. [Boros et al., 2003] and references therein. It is indeed
highly related to the actual problem of (maximal) k-boxes
which corresponds to interval patterns (generators) with sup-
port k. When k = 0, it corresponds to largest empty sub-
spaces of the data. Our contribution to this field is the char-
acterization of smaller subsets (closed and generators).

In data-mining, closed patterns and their generators are
crucial for extracting valid and informative association
rules [Bastide et al., 2000], while generators can be prefer-
able to closed patterns following the minimum descriptions
length principle for so-called itemset-based classifiers [Li et
al., 2006]. How these notions can be shifted to interval pat-
terns is an original perspective of research rising questions
concerning missing values, fault-tolerant patterns, and inter-
estingness measures that are critical issues even in classical
itemset mining: although the compression ability of closed
interval patterns and generators is spectacular, the number of
patterns remains too high for large datasets. However, bring-
ing the problem of numerical pattern mining into well known
settings in favor of these perspectives of research.
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