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Abstract

Feature extraction for activity recognition in
context-aware ubiquitous computing applications is
usually a heuristic process, informed by underly-
ing domain knowledge. Relying on such explicit
knowledge is problematic when aiming to gen-
eralize across different application domains. We
investigate the potential of recent machine learn-
ing methods for discovering universal features for
context-aware applications of activity recognition.
We also describe an alternative data representa-
tion based on the empirical cumulative distribution
function of the raw data, which effectively abstracts
from absolute values. Experiments on accelerome-
ter data from four publicly available activity recog-
nition datasets demonstrate the significant potential
of our approach to address both contemporary ac-
tivity recognition tasks and next generation prob-
lems such as skill assessment and the detection of
novel activities.

1 Introduction

Activity recognition (AR) is a core concern of the ubiquitous
computing (ubicomp) community [Atallah and Yang, 2009]
and plays a central role in the field’s vision of context-aware
applications and interaction. In general, sensors, which are
either worn on the body and/or embedded into objects and
the environment are utilized to capture aspects of movement
or a user’s behavior. Ideally, by applying signal processing
and pattern classification techniques, this sensor data can be
automatically analyzed yielding a real-time classification of
the activities that users are engaged in.

Activity recognition is a classical (multi-variate) time-
series or sequence analysis problem, for which the task is to
detect and classify those contiguous portions of sensor data
streams that cover activities of interest for the target applica-
tion. The predominant approach to AR is based on a sliding
window procedure, where a fixed length analysis window is
shifted along the signal sequence for frame extraction. Con-
secutive frames usually overlap to some degree but are pro-
cessed separately. Preprocessing then transforms raw signal
data into feature vectors, which are subjected to statistical
classifiers that eventually provide activity hypotheses.
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As for any pattern recognition task, the keys to success-
ful AR are: (i) appropriately designed feature representations
of the sensor data; and (ii) the design of suitable classifiers.
The ubicomp literature describes a wide variety of creatively
applied classification approaches. By contrast, comparatively
little systematic research has addressed the problem of feature
design, with almost all previous work using heuristically se-
lected general measures. These features are either calculated
in the time domain, calculated on symbolic representations
of the sensor data, or spectra based. The lack of systematic
research on features has been identified as one of the major
shortcomings of current AR systems [Lukowicz et al., 2010].
For example, it is questionable whether the next generation
of applications, such as behavioral analysis, or skill assess-
ment can be realized based on the use of heuristically selected
features alone. Such problems require quantitative analyzes
of the underlying data which are beyond the capabilities of
current procedures for discriminating within limited sets of
activities and rejecting unknown samples.

The most straightforward approach to feature design is to
investigate the nature of the data to be analyzed and to de-
velop a representation that explicitly captures its core char-
acteristics. For ubicomp AR problems, no all-encompassing
model exists to afford the expert-driven design of a universal
feature representation. However, recent developments in the
general machine learning field have the potential to overcome
this shortcoming by automatically discovering universal fea-
ture representations for such ubicomp sensor data.

We present a general approach to feature extraction and in-
vestigate the suitability of feature learning for ubicomp activ-
ity recognition tasks. We utilize a learning framework, which
automatically discovers suitable feature representations that
do not rely on application-specific expert knowledge. We use
unsupervised feature learning techniques, namely (variants
of) principal component analysis and deep learning, and show
how the automatically extracted features outperform standard
features across a range of AR applications. Such an auto-
matic feature extraction procedure has important implications
for the development future applications since no manual op-
timization is required. The deep learning approach allows for
in-depth analysis of the underlying data since the new repre-
sentation implicitly highlights the most informative portions
of the analyzed data. This is likely to be important for new
classes of activity analysis such as skill assessment.



2 State-of-the-Art

A recent survey of preprocessing techniques for AR [Figo
et al., 2010] distinguished the principal classes of calcula-
tion scheme according to the domain of the preprocessing:
(i) time domain; and (ii) the frequency domain. The most
widely used feature extraction scheme calculates statistical
metrics directly on the raw sensor data, independently for ev-
ery frame extracted by a sliding window procedure. Com-
monly used metrics include the mean, standard deviation, en-
ergy, entropy, and correlation coefficients. Feature extraction
in the frequency domain is usually based on Fourier coeffi-
cients calculated for the analysis frames. Huynh and Schiele
conducted an experimental evaluation of the capabilities of
feature representations, namely statistical metrics and Fourier
coefficients [Huynh and Schiele, 2005]. They concluded that
Fourier coefficient based representations are more appropri-
ate than statistical metrics.

Whereas the majority of published work utilizes stan-
dard features a small number of alternative approaches have
been proposed. Recently, time-delay embeddings have been
used for activity and gait recognition [Frank et al., 2010].
Time-delay embedding is a technique borrowed from physics,
where it is used to describe the state of complex systems by
means of phase space analysis. This novel representation of
sensor data has proved as significant utility in the analysis
of repetitive (i.e periodic or quasi-periodic) activities. How-
ever, classifiers based on time-delay embedding representa-
tions are less appropriate for non-periodic activities. Another
emerging approach is to use discrete domain features and to
calculate distance measures on string representations of the
sensor data, which has a particular relevance for activity dis-
covery applications (e.g. [Minnen et al., 2006]). However, the
quantization of the sensor data required removes detailed in-
formation that is important for the in-depth analysis of certain
activities of interest.

3 Feature Learning for Activity Recognition

Feature learning is a well-studied approach for static data
(e.g., object recognition in computer vision). The goal is
to automatically discover meaningful representations of data
to be analyzed. Contrary to heuristic feature design, where
domain specific expert knowledge is exploited to manually
specify features, feature learning seeks to optimize an objec-
tive function that captures the appropriateness of the features.
Standard approaches include energy minimization [LeCun et
al., 2006], manifold learning [Huo ef al., 2004], and deep
learning using auto-encoders [Hinton, 2007].

We have developed a feature extraction framework for se-
quential data based on feature learning, which is integrated
into a general activity recognition work-flow (Fig. 1). A
sliding window procedure extracts overlapping, fixed length
frames from continuous sensor data streams, which in our ex-
periments were the x, y, z data values for tri-axial accelerom-
eters (upper left part of Fig. 1). Frames extracted from raw
data are used to estimate the parameters of the actual feature
learning procedure (see “fex” block in Fig. 1). This feature
extractor is then used to transform raw sensor data to be ana-
lyzed by the application.
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Figure 1: Feature learning for activity recognition — overview.

Our design criteria for feature learning (“fex” in Fig. 1) are as
follows:

1. Capable of extracting generally applicable representa-

tions — not be limited to specific AR tasks.

. Must not rely on the availability of ground truth annota-
tions of the training data.

Benefits from larger datasets, but not dependent on them.
4. Provides intrinsic information (for sub-frame analysis).

Must be computationally feasible and applicable in real-
time application contexts.

Given these design requirements we focused on two learning
techniques: PCA and auto-encoder based deep learning.

3.1 PCA based Feature Learning

PCA is a well established technique used for decorrelation
and dimensionality reduction of data. PCA is a basic form
of feature learning since it automatically discovers compact
and meaningful representations of raw data without relying
on domain specific (or expert) knowledge. The eigenvectors
of a sample set’s covariance, which correspond to its largest
eigenvalues, are utilized to span a lower-dimensional sub-
space that concentrates the variance of the original data. The
projection of the original data onto the variance-maximizing
sub-space serves as a feature representation and can be used
either for visualization or fed into a subsequent classifier. Au-
tomatic analysis of the eigenvalue spectrum of the sample
covariance uncovers the appropriate target-dimensionality of
the feature space.

ECDF-based sensor data representation It is well known
that PCA performs poorly if the input data are not properly
normalized. Unfortunately, blind range normalization often
introduces more problems when components relate to com-
pletely different aspects of a phenomena; in the context of AR



this becomes problematic when large frame-sizes are used.
To address this issue we developed an alternative raw data
representation based on the empirical camulative distribution
function (ECDF) of the sample data. The idea is to derive
a representation of the input data, which is independent of
the absolute ranges but preserves structural information. This
representation is inspired by approaches used in other appli-
cation domains of time-series analysis, e.g., bioinformatics
[Chou, 1995].

For every frame f = (&;)” we derive the empirical cumu-
lative distribution functions ECDF &; of the (whitened) sam-
ples Z; along each axis ¢ = {1, 2, 3} using standard Kaplan-
Meier estimation [Cox and Oakes, 1984]. These ECDFs,
which monotonically increase within the range of zero to
one, describe the probability that the sensor readings are less
than or equal to some specific value. By means of a cu-
bic interpolation CP we estimate the values of the inverse of
the ECDF Si_l at a fixed set of N points p = {p1...pn},
which serve as the representation &, of the sensor data. Us-
ing this procedure, sample data are normalized to a com-
mon range without destroying inherent structural dependen-
cies (for i = {1,2,3}):

7 = CP(& Y (xy)) eRY (1
and C° = cubic interpolation using 5’ = {p1 ...pn}

3.2 Deep Learning for Feature Extraction

Autoencoder networks have proved to be a powerful tool for
the generic semi-supervised discovery of features [Hinton,
2007]. These aim to learn a lower-dimensional represen-
tation of input data, which produces a minimal error when
used for reconstructing the original data. As an alternative to
PCA based feature extraction for continuous sensor streams
we employed deep learning methods for autoencoder based
feature learning on sequential data. The desired representa-
tion is discovered by means of a feed-forward neural network
that consists of one input layer, one output layer and an odd
number of hidden layers. Every layer is fully connected to the
adjacent layers and a non-linear activation function is used.
The objective function during training is the reconstruction of
the input data at the output layer. The autoencoder transmits
a description of the input-data across each layer of the net-
work. Since the innermost layer of the network has a lower
dimensionality, the transmission of a description through this
bottleneck can only be achieved as result of a meaningful en-
coding of the input. This non-linear low-dimensional encod-
ing is hence an automatically learned feature representation.
For robust model training we follow the suggestions given
in [Hinton et al., 2006], i.e., we learn the layers of the autoen-
coder network greedily in a bottom-up procedure, by treating
each pair of subsequent layers in the encoder as a Restricted
Boltzmann Machine (RBM). An RBM is a fully connected,
bipartite, two-layer graphical model, which is able to gener-
atively model data. It trains a set of stochastic binary hidden
units which effectively act as low-level feature detectors. One
RBM is trained for each pair of subsequent layers by treat-
ing the activation probabilities of the feature detectors of one
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RBM as input-data for the next. Once the stack of RBMs is
trained, the generative model is unrolled to obtain our final
fully initialized autoencoder network for feature learning.

Different methods exist to model real-valued input units
in RBMs. We employ Gaussian visible units for the first
level RBM that activate binary, stochastic feature detectors
(Gaussian-binary). The subsequent layers can then rely on
the common binary-binary RBM. The final layer is a binary-
linear RBM, which effectively performs a linear projection.

During training the sample data is processed batch-wise,
where each batch ideally comprises samples from all classes
in the training-set. Note that the availability of the class infor-
mation is not mandatory. RBMs can also be trained in a com-
pletely unsupervised manner. However, balancing the batches
with respect to the distribution of the classes, i.e. performing
semi-supervised training, improves the model quality since it
removes the potential for artificial biases.

4 Experimental Evaluation

To evaluate the effectiveness of feature learning for AR
we conducted a number of experiments using published
datasets that compared the proposed approach to state-of-the-
art heuristically selected features. Sensor data was analyzed
by means of a (previously optimized) sliding window pro-
cedure, extracting frames of n 64 contiguous samples,
which overlap by p = 50 percent. Feature extraction was
then performed on a frame-by-frame basis. The focus of our
evaluation was on the capabilities of the particular feature
representations. Accordingly, we did not focus on classifier
optimization but on the features themselves. In accordance
with the state-of-the-art in ubicomp AR we selected a stan-
dard, instance-based classification approach, Nearest Neigh-
bor (NN), and applied it “as is” to all tasks.

Given ground truth annotations we report the classification
accuracy as percentages of correct predictions provided by
the NN-classifiers. The experiments were performed as N =
10-fold cross validations (unless mentioned otherwise). Folds
were created by randomly choosing samples from the original
dataset thereby respecting fold-wise balanced distributions of
all classes (i.e. activities to be recognized).

4.1 Datasets

We selected four standard datasets for our evaluation, each of
which is described in the literature and is publicly available.
All datasets relate to human activities in different contexts
and have been recorded using tri-axial accelerometers. Sen-
sors were either worn or embedded into objects that subjects
manipulated.

Ambient Kitchen 1.0 (AK) Pham et al. [Pham and Olivier,
2009] describe a dataset in which twenty participants pre-
pared either a sandwich or a salad using sensor-equipped
kitchen utensils. Modified Wii-controllers were integrated
into the handles of knives, spoons and scoops, serving as a
sensing platform for continuous recording of tri-axial accel-
eration data. In total the dataset comprises almost 4 hours of
sensor data, approximately 50% of which cover ten typical
food preparation activities. Given the sampling frequency of
40Hz, the sliding window procedure produced almost 55,000
frames.



Darmstadt Daily Routines (DA) In [Huynh et al., 2008]
the analysis of activities of daily living (ADL) is addressed
by means of worn sensors used to monitor the daily activ-
ities of individual subjects in a living lab-like experiment.
Two tri-axial accelerometers (wrist-worn and carried in the
pocket) recorded movements at 100Hz. Preprocessing and
subsampling yields an overall sampling frequency of 2.5Hz.
In total more than 24,000 frames were extracted for both the
wrist-worn and pocket-carried sensors using our sliding win-
dow procedure. Ground truth annotation used 35 activities of
different levels of abstraction. Cross-validation experiments
were conducted based on class-wise balanced, random selec-
tion of frames for creating the folds. We report results only
for pocket-sensor experiments, which, as reported in the orig-
inal publication, yielded significantly better results than those
based on the wrist-worn sensor data.

Skoda Mini Checkpoint (Skoda) [Zappi et al., 2008] de-
scribe the problem of recognizing activities of assembly-line
workers in a car production environment. In the study a
worker wore a number of accelerometers while undertaking
manual quality checks for correct assembly of parts in newly
constructed cars (10 manipulative gestures of interest). We
restrict our experiments to a single sensor, which is sufficient
to identify all 10 activities (i.e. right arm). In total the dataset
comprises 3 hours of recordings from one subject (sampled at
96Hz resulting in 22,000 frames). As a result of the unequal
distribution of the samples across the classes we were only
able to perform 4-fold cross evaluation.

Opportunity — Preview (Opp) The final dataset relates to
a home environment (kitchen) and the analysis of ADL using
multiple worn and embedded sensors [Roggen et al., 2010].
Although the activities of multiple subjects, on different days
have been recorded, an official excerpt of annotated data for
a single subject has recently been released. Our analysis was
based on the sensor data recorded by the accelerometer at-
tached to the right arm of the subject. We considered 10 low-
level activities of interest plus an unknown activity category.
The acceleration data were sampled with 64Hz yielding ap-
proximately 4,200 frames.

4.2 Features Analyzed: Overview

To analyze the performance of learned features for activ-
ity recognition we performed classification experiments that
compared the capabilities of state-of-the-art representations
of sensor data streams and learned features as already dis-
cussed. To allow comparison of the resulting feature rep-
resentations we ensured that the target dimensionality of
each was in approximately the same range. Since we used
instance-based classifiers there was no requirement to use
identical dimensionalities for objective comparisons. This
stands in contrast to generative models (such as mixture den-
sities) where small differences in the dimensionality of the
underlying data can have a significant impact on the estima-
tion procedure and hence on the capabilities of the models.

Statistical Metrics Probably the most common approach
to feature extraction for activity recognition is to use a set of
statistical measures to represent frames of contiguous multi-
dimensional sensor data. Given the 192-dimensional analysis
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frames (64 x 3) provided by our sliding window procedure,
we first calculated pitch and roll values. Subsequently, for
each source channel (i.e. x, vy, z, pitch, and roll) we then cal-
culated mean, standard deviation, energy, and entropy. To-
gether with three correlation coefficients (estimated for all
combinations of the x, y, z axes) this yielded a 23-D repre-
sentation of the raw signal data covered by an analysis frame.

FFT coefficients Characteristic differences in certain activ-
ities are apparent from changes in the particular spectra and
consequently we can apply frequency transformations to ex-
tract feature representations for such classes of activity recog-
nition problems. We performed a channel-wise Fourier anal-
ysis on the raw signal data of an analysis frame. Given the
resulting spectra we selected the first f coefficients per chan-
nel (z,y, 2) and concatenated these into a single feature vec-
tor. For our experiments we evaluated different choices of f.
For our dimensionality range (23-39), differences in classi-
fication accuracy were negligible — for succinctness we only
report the results for f = 10 (target dimensionality of 30).

PCA We performed experiments utilizing PCA-based fea-
tures where the projection sub-space is spanned by those
eigenvectors that correspond to the ¢ = 18, 23, 30, and 39
largest eigenvectors. These selections of ¢ are justified by
significant drops in the eigenvalue spectrum of the data and
correspond to the selected target dimensionalities of the other
approaches investigated. No significant changes in classifica-
tion accuracy were observed for the four choices of ¢, hence
we present the results for c 30. Experiments were per-
formed both for the raw sensor data and for the ECDF-based
representation. Note that kernel PCA based approaches were
ruled out for our unsupervised feature extraction approach
due to their exorbitant turnaround times during training.

Deep Belief Networks Auto-encoder networks contain a
number of free parameters, including the network topology,
i.e., the number of internal layers and its dimensionalities.
To show the general applicability of the method, the learn-
ing parameters and the network layout (one for the raw data,
and one for the ECDF-representation) were tuned on the AK
dataset via cross-validation and then used as is for the remain-
ing tasks. The optimized network layout consists of a 4-layer
model with 1024 units in each hidden layer and 30 units in
the top one (192-1024-1024-30). In all experiments, the first
layer was trained for 100 epochs while the subsequent layers
were trained for 50 epochs. For the DA dataset, which in-
corporates a large number of classes (35), the distribution of
samples in each batch corresponds to that of the training set,
while for the other sets each batch is split equally among all
classes, holding 10 samples for each.

4.3 Results

Classification accuracy The first set of experiments was
devoted to the evaluation of the classification performance as
it can be achieved when using the particular feature repre-
sentations. Fig. 2 presents the results for the four analyzed
datasets. Contrasting our results with those already published
for these datasets, we found our results to be broadly com-
parable (accuracies between 74% and 90%). Interestingly,
traditional statistical features performed rather poorly on the
Skoda and the Opportunity datasets.
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Figure 2: Classification results for experimental evaluation of learned features and heuristically chosen metrics.

Both variants of learned features lead to statistically signif-
icant improvements of the classification accuracy (95% con-
fidence) for all datasets analyzed. These improvements on
statistical features and FFT based representations are mean-
ingful, especially when we consider that the feature rep-
resentations have been learned automatically without rely-
ing on domain-specific expert knowledge. The results also
demonstrate that our feature learning approach greatly ben-
efits from the ECDF-based representation of the input data
which yielded significant improvements in classification ac-
curacy for the majority of cases.'

In summary, both learning techniques can be used across
different AR tasks to discover compact and meaningful fea-
ture representations which outperform classical approaches.
Features are discovered in an unsupervised manner. For op-
timization of the deep learning approach prior knowledge
about the underlying distributions of the classes is exploited,
resulting in a semi-supervised approach.

Influence of Sample Set Size The second set of experi-
ments addressed the sparse data problem. Feature learning re-
lies on the availability of sufficient quantities of sample data.
The construction of the projection sub-space for the PCA pro-
cedure relies on a statistically robust analysis of the sample
set covariance. For small datasets the empirical estimation of
covariance matrices can result in singularities, which under-
mines the sub-space creation. Estimating parameters of the
auto-encoders for the second learning approach also relies on
a representative sample set. Non-representative sample sets
bias the parameter estimation procedure such that the result-
ing features are not flexible enough to capture unknown data.

We evaluated classification accuracies which can be
achieved when the training sets used for estimating the feature
extraction procedures are artificially limited. Given the origi-
nal NV-fold cross validation procedures we gradually removed
samples from the training set, performed feature learning as
before, and ran classification experiments. Fig. 3 illustrates
the dependency of the classification results on the amount
of sample data available for training the feature extractors.
For comparability the x-axis indicates fractions of the original

"The drop in accuracy for RBM+ECDF on Skoda (compared
to plain RBM) is reasoned by an overfitting artifact of the unsu-
pervised approach, which could easily be solved by employing the
semi-supervised approach as used for the DA experiments.
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Figure 3: Exemplary evaluation of sparse data problem.

dataset and the y-axis indicates the relative changes in classi-
fication accuracy. We ran the evaluation for all four datasets
but for the sake of clarity we limit our presentation to the re-
sults achieved for the Skoda dataset which is representative
of the others (for which similar results were achieved). From
the results (Fig. 3) it is clear that the size of the sample set
does not substantially influence the capabilities of the result-
ing classifiers. However, it seems that PCA has a stronger
reliance on the quantity of available training-data compared
to RBMs. Given the results of the second set of experiments
we can conclude that feature learning meets the third design
criteria for practical AR applications.

Further Analysis The learned representations can be used
for in-depth analysis of the underlying sensor data (the fourth
criteria as described in section 3). For example, a frame-wise
analysis of the reconstruction error provides insights into the
quality of the performed activity. Beyond simple clustering,
the default choice for quality assessment of activities, more
appropriate metrics can be developed that are potentially the
key to quantitative activity analysis.

Once the parameters of the feature learning scheme have
been estimated (offline) the extraction of learned features cor-
responds to simple matrix multiplication. Consequently, the
results of feature learning can be applied in online interactive
applications (fifth design criteria). For some applications the
classifiers might even be implemented on the sensors them-
selves, which would result in a substantial reduction in data
transmission and in practical terms a more responsive system.



5 Conclusion

One of the major shortcomings of activity recognition for
ubiquitous computing is the lack of systematic approaches to
feature extraction. By explicitly addressing this shortcoming
we have demonstrated the suitability of feature learning for
AR providing the basis for next generation AR applications.
We identified practical design criteria for such activity recog-
nition systems with respect to which we developed an activ-
ity recognition framework that employs PCA and deep belief
networks for feature learning. An alternative representation
of the sensor data, based on an estimation of the frame-wise
empirical cumulative distribution of the signal, has been de-
veloped. The capabilities of feature learning methods were
evaluated by means of recognition experiments on four pub-
licly available AR datasets. Automatically estimated features
outperformed classic heuristic features for all the analyzed
AR tasks we considered. We also demonstrated that feature
learning benefits from larger datasets but does not rely on
them. The learning approach is computationally feasible and
can be applied directly for interactive applications.

Our feature extraction framework has general applicabil-
ity in ubicomp AR applications, particularly in circumstances
where little is known about the target domain. The framework
can be used “as is” for activity recognition tasks. Our ex-
perimental evaluation provides evidence that feature learning
provides reasonable representations, which are immediately
usable for further analysis tasks. The deep learning proce-
dure provides sub-frame insights, which is important for a
thorough analysis of the captured data.

Based on our findings a number of extensions can also be
considered. Although it somewhat circumvents the learning
approach we espouse, we could overcome the limitation of
current frame-wise analysis procedures that they (typically)
treat every sample independently, by explicitly incorporating
derivatives into the feature representations. In addition, the
linearity assumption could be relaxed during modeling. Non-
linear dependencies within the temporal data could be cap-
tured by means of kernel PCA approaches for the sub-space
projection procedures.

The methodological key to the next generation of activ-
ity recognition lies in the systematic analysis of the analyzed
sensor data. Beyond discriminating fixed numbers of certain
activities of interest, domains such as behavior monitoring or
skill assessment require quantitative classifications of the un-
derlying sequential data streams. Our study represents a start-
ing point for systematic research in such sensor data analysis.
Given the promising results of the experimental evaluation,
feature learning can be considered as having enormous po-
tential for activity recognition.
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