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Abstract

Constrained partially observable Markov deci-
sion processes (CPOMDPs) extend the standard
POMDPs by allowing the specification of con-
straints on some aspects of the policy in addition
to the optimality objective for the value function.
CPOMDPs have many practical advantages over
standard POMDPs since they naturally model prob-
lems involving limited resource or multiple ob-
jectives. In this paper, we show that the opti-
mal policies in CPOMDPs can be randomized, and
present exact and approximate dynamic program-
ming methods for computing randomized optimal
policies. While the exact method requires solv-
ing a minimax quadratically constrained program
(QCP) in each dynamic programming update, the
approximate method utilizes the point-based value
update with a linear program (LP). We show that
the randomized policies are significantly better than
the deterministic ones. We also demonstrate that
the approximate point-based method is scalable to
solve large problems.

1 Introduction

Partially observable Markov decision processes (POMDPs)
are widely used for modeling stochastic sequential decision
problems under partial or uncertain observations. The stan-
dard POMDP model has the reward function which encodes
the immediate utility of executing actions in environment
states, and the optimal policy is obtained by maximizing the
long-term reward. However, since the utility depends on mul-
tiple objectives in practice, it is often required to manually
balance different objectives into the single reward function
until the corresponding optimal policy is satisfactory to the
domain expert. In addition, application domains of POMDPs
generally have well-established measures for evaluating sys-
tems, and the domain experts typically have a hard time un-
derstanding the concept of value functions.

Constrained POMDPs (CPOMDPs) concern the situation
where there is one criterion (reward) to be maximized while
making other criteria (costs) below the prescribed thresholds.
Each criterion is represented using its own reward or cost
function. A typical situation is a resource-limited agent, e.g.,

a battery-equipped robot whose goal is to accomplish as many
tasks as possible given a finite amount of energy. In fact,
many problems in practice can be naturally formulated us-
ing a set of constraints. For example, POMDP-based spo-
ken dialogue systems [Williams and Young, 2007] have to
successfully complete dialogue tasks while minimizing the
length of dialogues. We can use the CPOMDP to represent
these two criteria by assigning a constant reward of −1 for
each dialogue turn and a cost of 1 for each unsuccessful di-
alogue. By bounding the aggregate cost, the optimal pol-
icy from the CPOMDP is guaranteed to achieve certain level
of dialogue success rate, i.e., task completion rate (TCR),
the performance measure which dialogue system experts are
more comfortable with than the value function in standard
POMDPs. Another example is POMDP-based opportunistic
spectrum access (OSA) [Zhao et al., 2007] in wireless com-
munications. OSA seeks to maximize the utilization of wire-
less spectrum by allowing secondary devices to communicate
through the wireless channel that is already allocated to pri-
mary devices. Since the communication collision with the
primary device is potentially dangerous, there are regulatory
requirements on the maximum collision rate that secondary
devices have to meet in order to be approved. Such require-
ments can be naturally modeled as cost constraints, while the
communication bandwidth is the reward that should be max-
imized.

Despite these advantages, the CPOMDP has not received
as much attention as its MDP counterpart, i.e., constrained
MDPs (CMDPs) [Altman, 1999], with the exception of the
dynamic programming method for finding deterministic opti-
mal policies [Isom et al., 2008]. In this paper, we first present
a motivating CPOMDP example where the best determinis-
tic policy is suboptimal. We then present our exact and ap-
proximate algorithms for finding randomized optimal poli-
cies in CPOMDPs. The exact algorithm is only of theoretical
interest, since it is based on solving minimax quadratically
constrained programs (QCPs) to prune useless policies. The
approximate algorithm is motivated by point-based value it-
eration (PBVI) [Pineau et al., 2006] in standard POMDPs,
where we collect the samples of admissible costs [Piunovskiy
and Mao, 2000] in addition to belief points. It thereby solves
linear programs (LPs) instead of computationally demand-
ing minimax QCPs. We demonstrate the scalability of our
method on the constrained version of a POMDP problem with
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thousands of states.

2 Preliminaries

In this section, we briefly review the definitions of CMDPs
and CPOMDPs. We also explain the suboptimality of deter-
ministic policies for CPOMDPs through an example.

2.1 Constrained POMDPs

The standard, unconstrained POMDP is defined as a tuple
〈S,A, Z, T,O,R, γ, b0〉: S is the set of states s; A is the set
of actions a; Z is the set of observations z; T is the transition
function where T (s, a, s′) denotes the probability P (s′|s, a)
of changing to state s′ from state s by taking action a; O is
the observation function where O(s, a, z) denotes the proba-
bility P (z|s, a) of making observation z when executing ac-
tion a and arriving in state s; R is the reward function where
R(s, a) denotes the immediate reward of executing action a
in state s; γ ∈ [0, 1) is the discount factor; b0 is the initial
belief where b0(s) is the probability that we start in state s.

The constrained POMDP (CPOMDP) is defined as a tuple
〈S,A, Z, T,O,R, {Ck}Kk=1, {ĉk}

K
k=1, γ, b0〉 with the follow-

ing additional components:

• Ck(s, a) ≥ 0 is the cost of type k incurred for executing
action a in state s,

• ĉk is the upper bound on the cumulative cost of type k.

Solving a CPOMDP corresponds to finding an optimal pol-
icy π:

maximize Eπ [
∑∞

t=0 γ
tR(st, at)]

subject to the cumulative cost constraints:

Eπ [
∑∞

t=0 γ
tCk(st, at)] ≤ ĉk ∀k. (1)

Since the state is not directly observable in POMDPs and
CPOMDPs, we often use the notion of belief, which is
the probability distribution b over the current states. b′ =
τ(b, a, z) denotes the successor of belief b upon executing a
and observing z, which is computed using Bayes theorem:

b′(s′) = O(s′, a, z)
∑

s T (s, a, s
′)b(s)/P (z|b, a). (2)

2.2 Suboptimality of deterministic policies

It is well known that optimal policies for CMDPs may be
randomized. In [Altman, 1999], it is shown that when a
CMDP is feasible, the number of randomizations under an
optimal stationary policy is related to the number of con-
straints. More specifically, if we define the number of ran-
domizations m(s, π∗) under an optimal policy π∗ in state s
as |{a|π∗(a|s) > 0}|−1, the total number of randomizations
is m(π∗) =

∑
s∈S m(s, π∗) ≤ K where K is the number of

constraints.
It has also been shown that, under the special condition

of non-atomic initial distribution and transition probabilities,
searching in the space of deterministic policies is sufficient
to find optimal policies in CMDPs with uncountable state
spaces [Feinberg and Piunovskiy, 2002]. A probability dis-
tribution is defined to be non-atomic if its cumulative distri-
bution function is continuous. Since a POMDP can be formu-
lated as an MDP with the continuous belief space [Kaelbling

Figure 1: State transition diagram for the counter example.
The edges are labeled with actions, followed by the cor-
responding transition probabilities, immediate rewards and
costs.

et al., 1998], we may regard a CPOMDP as a CMDP with an
uncountable state space. The non-atomic condition is how-
ever not met. The initial distribution is atomic since the b0
is the only possible initial state. The transition probabilities,
which are defined as

p(b′|b, a) =
∑

z∈Z p(b′|b, a, z)P (z|b, a)

where

p(b′|b, a, z) =

{
1 if τ(b, a, z) = b′,
0 otherwise,

are also atomic because the probability mass of the tran-
sition function is concentrated at a finite number of points
τ(b, a, z1), . . . , τ(b, a, z|Z|), i.e., their cumulative distribution
functions are not necessarily continuous. Therefore, the exis-
tence result of deterministic optimal policies for uncountable
state CMDPs cannot be directly applied to CPOMDPs.

We can construct examples of CPOMDPs where determin-
istic policies are suboptimal. The simplest case is the degen-
erate CPOMDP with perfectly observable states. It is equiva-
lent to a finite-state CMDP which may not have any optimal
policy that is deterministic. While the degenerate CPOMDP
has a finite number of reachable belief states, the following
example has infinitely many reachable beliefs.

Consider a CPOMDP with S = {s1, s2, s3}, A =
{a1, a2}, Z = {z}. The reward function is defined by as-
signing 1 for performing a2 in s2 and zero for all other cases.
The cost function is defined by assigning 1 for performing
a2 in s1 or s2, and zero for all other cases. The transition
probabilities are shown in Fig. 1, where action a2 leads to the
absorbing state s3. Since there is only one observation, the
agent cannot exactly figure out the current state. Therefore,
given the initial belief b0 = [0, 1, 0], the set of reachable be-
liefs is {bt = [1 − 0.9t, 0.9t, 0]}∞t=0. Note that bt is reached
only at time step t, and that the agent has only one chance of
receiving a non-zero reward R(bt, a2) = 0.9t by executing
a2 while this will incur a cost of 1.

Suppose γ < ĉ < 1. A deterministic policy cannot execute
action a2 earlier than t = 1 because executing it at t = 0 will
violate the cumulative cost constraint. Hence, the maximum
value achievable by a deterministic policy is 0.9γ with the
cumulative cost of γ. However, consider a randomized policy
that executes action a2 with probability ĉ at t = 0, and then,
if action a1 was executed at t = 0, always executes action a1
at t ≥ 1. This policy achieves the value of 1 · ĉ+0 · (1− ĉ) =
ĉ > 0.9γ with the cumulative cost of exactly ĉ.

1969



3 Exact Dynamic Programming for CPOMDP

In [Isom et al., 2008], a dynamic programming (DP) method
was proposed to find deterministic policies in CPOMDPs. We
briefly review the method in order to present our contribution.

For the sake of presentation, we shall refer to the value
function of a CPOMDP as the joint function of cumulative
reward and cost functions and assume only one constraint
(K = 1) unless explicitly stated otherwise. The DP method
by Isom et al. [2008] constructs the set of α-vector pairs for
the value function, one for the cumulative reward function
and the other for the cumulative cost function. Therefore, for
each pair of vectors 〈α′

i,r, α
′
i,c〉 in the value function V ′, the

DP update should compute:1

αa,z
i,r (s) =

R(s,a)
|Z| + γ

∑
s′∈S T (s, a, s′)O(s′, a, z)α′

i,r(s
′)

αa,z
i,c (s) =

C(s,a)
|Z| + γ

∑
s′∈S T (s, a, s′)O(s′, a, z)α′

i,c(s
′)

V = ∪a∈A ⊕z∈Z {〈α
a,z
i,r , α

a,z
i,c 〉|∀i},

which in the worst case will generate |A||V ′||Z| pairs of vec-
tors. To mitigate the combinatorial explosion, the method
uses incremental pruning [Cassandra et al., 1997] which in-
terleaves pruning useless vectors with generating α-vectors
for each action and observation. For the pruning step, we de-
termine whether to include the newly created pair of vectors
〈αr, αc〉 in the value function using the following mixed in-
teger linear program (MILP):

max
h,b,di

h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

αc · b ≤ ĉ,

(αr − αi,r) · b ≥ h− diM ∀i,

αi,c · b ≥ diĉ ∀i,

di ∈ {0, 1} ∀i,∑
s∈S b(s) = 1,

b(s) ≥ 0 ∀s ∈ S,

h ≥ 0,

(3)

where 〈αi,r , αi,c〉 is the i-th vector pair in the value function
V , and M is a sufficiently large positive constant. 〈αr, αc〉
should be included if there exists a belief b where it is useful
to represent the value function. For 〈αr, αc〉 to be useful at
b, αc should satisfy the cumulative cost constraint as stated
in the first constraint in Eqn. 3, and αr should have a higher
cumulative reward than any other 〈αi,r, αi,c〉 ∈ V that sat-
isfies the cumulative cost constraint αi,c · b ≤ ĉ as stated in

the second and third constraints. A variable di ∈ {0, 1} in-
dicates whether αi,c violates the cumulative cost constraint at

b. If di = 1, the third constraint αi,c · b ≥ ĉ indicates that
αi,c violates the cumulative cost constraint at b and the sec-

ond constraint is trivially satisfied. If di = 0, αr must have a
higher cumulative reward than αi,r by satisfying the second
constraint. If this program is feasible, we have found a belief
where 〈αr , αc〉 is useful, hence the newly created vector will
not be pruned.

1the cross-sum operator ⊕ is defined as A ⊕ B = {a + b|a ∈
A, b ∈ B} with the summation of pairs as 〈a1, a2〉 + 〈b1, b2〉 =
〈a1 + b1, a2 + b2〉.

Algorithm 1: regress V ′

input : V ′

output: {〈αa,∗
r , αa,∗

c 〉}, {Γa,z}
foreach a ∈ A and z ∈ Z do
〈αa,∗

r , αa,∗
c 〉 ← 〈R(·, a), C(·, a)〉

Γa,z ← ∅
foreach 〈α′

i,r , α
′
i,c〉 ∈ V ′ do

αa,z
i,r (s) =

∑
s′∈S T (s, a, s′)O(s′, a, z)α′

i,r(s
′)

αa,z
i,c (s) =

∑
s′∈S T (s, a, s′)O(s′, a, z)α′

i,c(s
′)

Γa,z ← Γa,z ∪ 〈αa,z
i,r , α

a,z
i,c 〉

However, this pruning algorithm has a number of issues.
First, as described in the previous section, deterministic poli-
cies can be suboptimal in CPOMDPs. Hence, we have to
consider randomized policies which involves taking a con-
vex combination of α-vectors when checking for dominance.
Second, the method will prune away every vector that violates
the cumulative cost constraint in each DP update. This may
lead to a suboptimal deterministic policy since it effectively
ensures that every intermediate t-step policy should satisfy
the cumulative cost constraint; satisfying the long-term cu-
mulative cost constraint in Eqn. 1 does not necessarily mean
that the constraint should be satisfied at every time step.

We therefore revise the MILP to the following minimax
quadratically constrained program (QCP):

min
b

max
wi,h

h

∣∣∣∣∣∣∣∣∣∣∣∣∣

αc · b ≥ b ·
∑

i wiαi,c + h,

b ·
∑

iwiαi,r − αr · b ≥ h,∑
s∈S b(s) = 1,

b(s) ≥ 0 ∀s ∈ S,∑
i wi = 1,

wi ≥ 0 ∀i.

(4)

The first and second constraints state that, if h ≥ 0, there
exists a convex combination of vectors which incurs less cu-
mulative cost than αc while achieving a higher cumulative
reward than αr at belief b. Hence, if we obtain a nonnegative
h by maximizing it for belief b, then 〈αr, αc〉 is not useful
at belief b because we have a better or equally performing
randomized policy. Since we minimize the maximum h over
the entire belief simplex, if the final solution h is nonnega-
tive, then 〈αr, αc〉 is not useful at any belief b, and thus it can
be pruned. Unfortunately, this minimax QCP is computation-
ally demanding to solve, and thus we propose a point-based
approximate method for CPOMDPs in the next section.

4 Approximate Method for CPOMDP

4.1 Point-based value iteration

The point-based value iteration (PBVI) algorithm [Pineau et
al., 2006] for the standard POMDP uses a finite set of reach-
able beliefs B = {b0, b1, . . . , bq}, instead of the entire belief
simplex, for planning. Performing DP updates only at the be-
liefs b ∈ B eliminates the need to solve linear programs (LPs)
for pruning α-vectors in standard POMDPs.
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Algorithm 2: update V = H̃V ′

input : B, V ′

output: V
V ← ∅
{〈αa,∗

r , αa,∗
c 〉}, {Γa,z} ← regress(V ′)

foreach a ∈ A do
Γa ← 〈αa,∗

r , αa,∗
c 〉 ⊕

⊕
z∈Z γΓa,z

Γ←
⋃

a∈A Γa

foreach b ∈ B do
V ← V ∪ prune(b, Γ)

Algorithm 3: prune

input : b, Γ
output: Γ̃
Γ̃← ∅
foreach 〈αr, αc〉 ∈ Γ do

Solve the LP (Eqn. 5) and get the solution h
if h < 0 then

Γ̃← Γ̃ ∪ {〈αr, αc〉}

We can adapt the point-based DP update to CPOMDPs in
a simple way. For each b ∈ B, we enumerate the regressions2

of α-vectors using Alg. 1. We then prune the dominated vec-
tors using only b ∈ B. The complete point-based DP update
is shown in Alg. 2. Since pruning is confined to B, we check
the dominance of α-vectors for each b ∈ B, thereby reducing
the minimax QCP in Eqn. 4 to the following LP:

max
wi,h

h

∣∣∣∣∣∣∣∣

αc · b ≥ b ·
∑

i wiαi,c + h,

b ·
∑

iwiαi,r − αr · b ≥ h,∑
i wi = 1,

wi ≥ 0 ∀i,

(5)

which has the same formulation as the maximization problem
in Eqn. 4 except that b is no longer a variable. The pruning
algorithm using the above LP is shown in Alg. 3.

Although this algorithm is based on the enumeration al-
gorithm for standard POMDPs [Monahan, 1982], we can
easily modify it to perform incremental pruning. However,
compared to the standard PBVI which maintains only one
α-vector at each belief, this simple point-based algorithm
still suffers from the potential combinatorial explosion in the
number of α-vectors. This is mainly because, although we
have collected the finite set of reachable beliefs, we have not
collected any information on how much cost can be incurred
while still satisfying the cumulative cost constraint at those
beliefs.

4.2 PBVI with admissible cost

The main idea behind our approximate algorithm is to addi-
tionally obtain information on the cumulative cost for each

2Regression refers to the multiplication of an α-vector by the
dynamics of an action-observation pair.

collected belief. Before presenting our point-based algo-
rithm, we introduce a new variable dt representing the ex-
pected cumulative cost that can be additionally incurred for
the remaining time steps {t, t+ 1, . . .} without violating the
cumulative cost constraint. We call this admissible cost at
time step t [Piunovskiy and Mao, 2000]. Let Wt be the cumu-

lative cost up to time step t, i.e., Wt =
∑t

τ=0 γ
τC(bτ , aτ ).

Then the admissible cost at time step t + 1 is defined as
dt+1 = 1

γt+1 (ĉ − Wt). In other words, dt+1 is the differ-

ence between ĉ (the maximum expected cumulative cost al-
lowed) and Wt (the cumulative cost incurred so far) rescaled
by 1/γt+1. The admissible cost at time step t + 1 can be
recursively defined as follows:

dt+1 = 1
γt+1 (ĉ−Wt)

= 1
γt+1 (ĉ−Wt−1 − γtC(bt, at))

= 1
γ
(dt − C(bt, at)). (6)

Therefore, if the agent performs at, the admissible cost at t+1
is updated by Eqn. 6. The initial admissible cost is d0 = ĉ.

Note that we use the expected cost C(bt, at) instead of
the actually incurred cost when updating the admissible cost.
This is because the policies in CPOMDPs are not defined
to be contingent on actual costs, in the same way as the
policies in standard POMDPs are not contingent on the re-
ceived rewards. If we extend the definition of policies to
be contingent on actual costs, we can adopt some of the ap-
proaches in MDP such as incorporating actual costs into the
state space [Meuleau et al., 2009], or using the sample path
constraints [Ross and Varadarajan, 1989; 1991].

In order to use the notion of admissible cost in PBVI,
we first sample pairs of beliefs and admissible costs, B =
{(b0, d0), (b1, d1), . . . , (bq, dq)}. For a belief-cost pair (b, d),
the best action is obtained by solving the following LP:

max
wi

b ·
∑
i

wiαi,r

∣∣∣∣∣∣
b ·

∑
iwiαi,c ≤ d,∑

i wi = 1,

wi ≥ 0 ∀i,

(7)

where the resulting coefficient wi represents the probability
of choosing the action corresponding to 〈αi,r, αi,c〉. Note that
there exists a solution wi with at most two non-zero compo-
nents because the above LP contains |V | + 2 constraints and
at least |V | constraints must be active at extreme points. For
CPOMDPs with K constraints, there always exists a solution
that will have at most K + 1 non-zero components.3

The revised point-based DP update is described in Alg. 4.
For each belief-cost point (b, d) ∈ B, we construct:

α
(b,d),a
r = αa,∗

r + γ
∑

z∈Z α̃a,z
r

where α̃a,z
r is the best convex combination of the value vec-

tors with respect to the next belief and admissible cost, ob-

tained by the LP in Eqn. 7. α
(b,d),a
c is obtained as the by-

product of computing α
(b,d),a
r . Finally, we once again use the

LP in Eqn. 7 to find the best convex combination of the value
vectors with respect to the current belief and admissible cost.

3We can guarantee at most (K + 1) vector pairs if we use LP
solver that always returns an extreme point, e.g., simplex method.
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Algorithm 4: update V = H̃V ′ (PBVI with admissible
cost)

input : B, V ′

output: V
V ← ∅
{〈αa,∗

r , αa,∗
c 〉}, {Γa,z} ← regress(V ′)

foreach (b, d) ∈ B do
foreach a ∈ A do

foreach z ∈ Z do

dz ←
1
γ
(d− C(b, a))P (z|b, a)

Solve the LP (Eqn. 7) with
∀〈αi,r, αi,c〉 ∈ Γa,z and (b, dz),
and get the solution w̃i.
α̃a,z
r ←

∑
i w̃iαi,r

α̃a,z
c ←

∑
i w̃iαi,c

α
(b,d),a
r = αa,∗

r + γ
∑

z∈Z α̃a,z
r

α
(b,d),a
c = αa,∗

c + γ
∑

z∈Z α̃a,z
c

Γ(b,d) ←
⋃

a∈A{〈α
(b,d),a
r , α

(b,d),a
c 〉}

Solve the LP (Eqn. 7) with Γ(b,d) and (b, d), and get
the solution wi.

V ← V ∪ {〈αi,r, αi,c〉 ∈ Γ(b,d)|wi > 0}

Note that each α̃a,z
r is computed by distributing the admis-

sible cost via 1
γ
(d−C(b, a))P (z|b, a). Ideally, we should not

impose such a constraint on each observation to obtain the
best convex combination at b. However, this will lead to a
local combinatorial explosion due to cross-summations, and
we observed that distributing the admissible cost yielded suf-
ficiently good α-vectors while ensuring that the admissible
cost constraint is satisfied at b.

In summary, the algorithm does not depend on cross-
summations and maintains at most (K + 1) vector pairs for
each belief, hence a total of at most (K + 1)|B| vector pairs.

4.3 Policy execution

In the execution phase, the agent chooses its action with re-
spect to the current belief and admissible cost. The over-
all procedure for the execution phase is shown in Alg. 5.
Specifically, at time step t, the optimal randomized action
is calculated by solving the LP in Eqn. 7 with (bt, dt), and
obtaining the solution wi. The agent selects a vector pair
〈αi,r, αi,c〉 by randomly choosing the index i with proba-
bility wi, and then the current admissible cost dt is reset to
d′t = αi,c ·b since the agent decides to follow the policy corre-
sponding to 〈αi,r, αi,c〉which incurs the expected cumulative
cost of αi,c · b for the remaining steps. The new admissible
cost d′t can be higher or lower than the original admissible
cost dt, but they will be the same in the expectation since
actions are chosen randomly according to the wi satisfying
dt =

∑
iwi(αi,c · bt). After executing the action associated

with 〈αi,r, αi,c〉, the next admissible cost dt+1 is then calcu-
lated by Eqn. 6 and the next belief is computed by Eqn. 2 with
the observation zt from the environment.

Algorithm 5: Execution

input : b = b0, d = ĉ
while true do

Solve the LP (Eqn. 7) with (b, d)
Randomly choose the index i with probability wi

Perform the action ai corresponding to 〈αi,r, αi,c〉
Receive observation z from the environment
d← αi,c · b
d← 1

γ
(d− C(b, ai))

b← τ(b, a, z)
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Figure 2: Results for the toy problem (ĉ = 0.95, γ = 0.9).

5 Experiments

5.1 Randomized vs. deterministic policies

We first experimentally confirm that deterministic policies
cannot represent optimal policies of CPOMDPs using the toy
problem in Fig. 1. Fig. 2 shows the cumulative reward and
cost of the deterministic and randomized policies obtained by
the algorithms. As demonstrated in Sec. 2.2, the determinis-
tic policy was suboptimal since it had to execute a1 at t = 0
and a2 at t = 1 in order to satisfy the cumulative cost con-
straint. Hence, the deterministic policy achieved the value of
0.9γ with the cumulative cost of γ. The randomized policy
achieved the value of ĉ while exactly satisfying the cumula-
tive cost constraint at ĉ.

5.2 Quickest change detection

We compare the policies found by the exact and the approxi-
mate methods for CPOMDPs in the Quickest Change Detec-
tion (QCD) problem [Isom et al., 2008]. The problem has
3 states consisting of PreChange, PostChange, and PostA-
larm. The agent has to alarm as soon as possible after the
state changes to PostChange, while bounding the probability
of false alarm, i.e., executing the alarm action when the state
is PreChange. We use the discounted version of the problem
with γ = 0.95, and set the false alarm probability constraint
to ĉ = 0.2.

Fig. 3 compares the results of the exact and approximate
methods for the discounted QCD problem. Due to the com-
plexity of the MILP in Eqn. 3 and the minimax QCP in Eqn. 4,
the exact methods using MILP and QCP pruning were not
able to perform DP updates more than 6 and 5 time steps,
respectively. The approximate method used 500 belief-cost
sample pairs, and it was able to perform DP updates more

1972



1 2 3 4 5 6 7 8 9 10

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Planning horizon

C
um

ul
at

iv
e 

re
w

ar
d/

co
st

cost (rand,QCP)

reward (rand,QCP)

cost (det, MILP)

reward (det, MILP)

cost (rand,PBVI)

reward (rand,PBVI)

Figure 3: Results of the exact and approx. algorithms (PBVI
with admissible cost) for the discounted QCD problem.
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Figure 4: Planning time for the discounted QCD problem.

than 10 time steps without difficulty. Furthermore, the pol-
icy from the approximate method performed close to the one
from the exact method. Fig. 4 compares the planning time for
each method.4 Note that the exact method takes large amount
of time due to the combinatorial explosion in the number of
α-vectors even though the useless ones are pruned, whereas
the approximate method exhibits its running time linear in the
planning horizon.

5.3 n-city ticketing

In order to demonstrate the usefulness of the CPOMDP for-
mulation in spoken dialogue systems and the scalability of
our approximate method, we show experimental results on
the n-city ticketing problem [Williams et al., 2005]. The
problem models the dialogue manager agent which inter-
acts with the user to figure out the origin and the destination
among n cities for flight reservation. At each time step, the
agent asks the user for the information about the origin and/or
the destination, and submit the ticket purchase request once
it has gathered sufficient information. However, due to the
speech recognition errors, the observed user’s response can be
different from the true response. We denote the probability of
speech recognition error as Pe which is incorporated into the
observation probability of the model. We used a constant re-
ward function of−1 for each time step till the terminal submit

4All the experiments were done on a Linux platform with the In-
tel Xeon 2.66GHz CPU and 32GB memory. All the algorithms were
implemented in Matlab; MILPs and LPs were solved using CPLEX
12.1; minimax QCPs were solved using fmincon in Matlab for the
outer minimization and CPLEX 12.1 for the inner maximization.
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Figure 5: Results of PBVI with admissible cost for 3-City
Ticketing problem (Pe = 0.2). Vertical axis represents the
average cumulative reward/cost over 1000 simulations. Error
bars represent 95% confidence intervals.

action, and a constant cost function of 1 for issuing a ticket
with wrong origin or destination and 0 otherwise. Hence, the
reward part represents the efficiency (dialogue length) and the
cost part represents the accuracy (task completion rate).

Fig. 5 shows the results from the approximate method us-
ing 50 belief-cost sample pairs for n = 3 with Pe = 0.2. This
problem has |S| = 1945, |A| = 16, |Z| = 18, and γ = 0.95.
Note that the policy uses more dialogue turns for smaller ĉ,
since it needs more information gathering steps to be more
accurate about the origin and the destination.

6 Conclusion

We showed that optimal policies in CPOMDPs can be ran-
domized, and presented exact and approximate methods for
finding randomized policies for CPOMDPs. Experimen-
tal results show that randomized optimal policies are bet-
ter then deterministic ones, and our point-based method ef-
ficiently finds approximate solutions. Although we demon-
strated CPOMDPs with one constraint, our algorithms nat-
urally extend to multiple constraints and different discount
factors for each reward or cost function.

Careful readers may note that the policy from our point-
based method can violate the cost constraints because the cu-
mulative cost function is constructed using the sampled be-
liefs in the same way PBVI approximates the value function.
If such violation is a serious issue, we can use upper bound
approximation techniques [Hauskrecht, 2000] for represent-
ing the cumulative cost functions to absolutely guarantee sat-
isfying the cost constraints. However, in our experiments, us-
ing the lower bound representation (α-vectors) yielded fairly
good results.

There are several future works worth pursuing. First, the
proposed method can benefit from adopting state-of-the-art
POMDP solvers with heuristic belief exploration. Second,
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it would be interesting to extend this approach to average re-
ward and cost criterion models, since a lot of well-established
measures are defined using such criterion in practice. Lastly,
it is an open question whether we can extend this approach to
factored representation for CPOMDPs.
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