검색
Article Search

JMB Journal of Microbiolog and Biotechnology

OPEN ACCESS eISSN 0454-8124
pISSN 1225-6951
QR Code

Articles

Kyungpook Mathematical Journal 2019; 59(1): 149-161

Published online March 31, 2019

Copyright © Kyungpook Mathematical Journal.

Curvature Properties of η-Ricci Solitons on Para-Kenmotsu Manifolds

Abhishek Singh*, and Shyam Kishor

Department of Mathematics and Astronomy, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
e-mail : lkoabhi27@gmail.com and skishormath@gmail.com

Received: August 4, 2017; Accepted: October 23, 2018

In the present paper, we study curvature properties of η-Ricci solitons on para-Kenmotsu manifolds. We obtain some results of η-Ricci solitons on para-Kenmotsu manifolds satisfying R(ξ, X).C = 0, R(ξ, X). = 0, R(ξ, X).P = 0, R(ξ, X). = 0 and R(ξ, X).H = 0, where C, , P, and H are a quasi-conformal curvature tensor, a M-projective curvature tensor, a pseudo-projective curvature tensor, and a concircular curvature tensor and conharmonic curvature tensor, respectively.

Keywords: η-Ricci solitons, almost paracontact structure, pseudo-projective curvature tensor, M-projective curvature tensor, conharmonic curvature tensor, quasi-conformal curvature tensor, concircular curvature tensor.

In 1982, Hamilton [12] introduced the notion of the Ricci flow to find a canonical metric on a smooth manifold. The Ricci flow is an evolution equation for metrics on a Riemannian manifold:

tgij(t)=-2Rij.

A Ricci soliton is a natural generalization of an Einstein metric and is defined on a Riemannian manifold (M, g). A Ricci soliton is a triple (g, V, λ) with g a Riemannian metric, V a vector field and λ a real scalar such that

LVg+2S+2λg=0,

where S is a Ricci tensor of M and LV denotes the Lie derivative operator along the vector field V. The Ricci soliton is said to be shrinking, steady and expanding accordingly as λ is negative, zero and positive, respectively [10]. Ricci solitons have been studied in many contexts: on Kähler manifolds [11], on contact and Lorentzian manifolds [2, 14, 15, 17, 18], on Sasakian [13], α-Sasakian [1] and K-contact manifolds [19, 7], on Kenmotsu [3] and f-Kenmotsu manifolds [8] etc. In paracontact geometry, Ricci solitons firstly appeared in the paper of G. Calvaruso and D. Perrone [16]. Recently, C. L. Bejan and M. Crasmareanu dealed with Ricci solitons on 3-dimensional normal paracontact manifolds [4]. A more general notion is that of η-Ricci soliton introduced by J. T. Cho and M. Kimura [9], which was treated by C. Calin and M. Crasmareanu on Hopf hypersurfaces in complex space forms [8]. η-Ricci solitons on para-Kenmotsu manifolds were studied by A. M. Blaga [5] and η-Ricci solitons on Lorentzian Para-Sasakian Manifolds were also studied by A. M. Blaga [6]. Let (M, g), n =dimM ≥ 3, be a connected semi-Riemannian manifold of class C and ∇ be its Levi-Civita connection. The Riemannian-Christoffel curvature tensor R, the quasi-conformal curvature tensor C; the M-projective curvature tensor ; pseudo-projective curvature tensor P; the concircular curvature tensor and the conharmonic curvature tensor H of (M, g) are defined by

R(X,Y)Z=XYZ-YXZ-[X,Y]Z,C(X,Y)Z=aR(X,Y)Z+b[S(Y,Z)X-S(X,Z)Y+g(Y,Z)QX-g(X,Z)QY]-rn(an-1+2b)   [g(Y,Z)X-g(X,Z)Y],M(X,Y)Z=R(X,Y)Z-12(n-1)[S(Y,Z)X-S(X,Z)Y+g(Y,Z)QX-g(X,Z)QY],P(X,Y)Z=aR(X,Y)Z+b[S(Y,Z)X-S(X,Z)Y]-rn(an-1+b)   [g(Y,Z)X-g(X,Z)Y],C˜(X,Y)Z=R(X,Y)Z-rn(n-1)[g(Y,Z)X-g(X,Z)Y],

and

H(X,Y)Z=R(X,Y)Z-1(n-2)[S(Y,Z)X-S(X,Z)Y+g(Y,Z)QX-g(X,Z)QY],

respectively, where Q is the Ricci operator, defined by S(X, Y) = g(QX, Y), S is the Ricci tensor, r = tr(S) is the scalar curvature and X, Y, Zχ(M), χ(M) being the Lie algebra of vector fields of M.

The paper is organized as follows:

In the present paper, we studied curvature properties of η-Ricci solitons on para-Kenmotsu manifolds. In section 2, we recall some well known basic formulas and properties of para-Kenmotsu manifolds. Section 3 contains a brief review of Ricci and η-Ricci solitons. In sections 4–8, we obtained some interesting results on η-Ricci solitons in para-Kenmotsu manifolds satisfying R(ξ, X).C = 0, R(ξ, X). = 0, R(ξ, X).P = 0, R(ξ, X). = 0 and R(ξ, X).H = 0, where C, , P, and H are quasi-conformal curvature tensor ; M-projective curvature tensor; pseudo-projective curvature tensor; concircular curvature tensor and conharmonic curvature tensor, respectively.

Let (M, ϕ, η, ξ, g) be a n-dimensional smooth manifold, where ϕ is a tensor field of (1, 1)-type, η a 1-form, ξ a vector field and g a pseudo-Riemannian metric on M. We say that (ϕ, η, ξ, g) is an almost paracontact metric structure on M, if satisfies the conditions [5]:

Xξ=ϕ2X=X-η(X)ξ,ϕ2=I-ηξand η(ξ)=1,ϕξ=0,ηϕ=0and rank(ϕ)=n-1,g(ϕX,ϕY)=-g(X,Y)+η(X)η(Y),

for any vector fields X and Y on M.

If, moreover

(Xϕ)Y=-g(X,ϕY)ξ-η(Y)φX,

where ∇ denotes the Levi-Civita connection of g, then the almost paracontact metric structure (ϕ, η, ξ, g) is called para-Kenmotsu manifold.

From the definition, it follows that η is the g-dual of ξ:

g(X,ξ)=η(X),

ξ is a unitary vector field:

g(ξ,ξ)=1,

and ϕ is a g-skew-symmetric operator.

We shall further give some immediate properties of this structure.

Proposition 2.1

On a para-Kenmotsu manifold (M, ϕ, η, ξ, g), the following relations hold:

ξ=I-ηξ,η(Xξ)=0,ξξ=0,R(X,Y)ξ=η(X)Y-η(Y)X,R(ξ,X)Y=η(Y)X-g(X,Y)ξ,R(ξ,X)ξ=X-η(X)ξ,η(R(X,Y)Z)=-η(X)g(Y,Z)+η(Y)g(X,Z),         η(R(X,Y)ξ)=0,η=g-ηη,         ξη=0,Lξϕ=0,         Lξη=0,         Lξ(ηη)=0,         Lξg=2(g-ηη)

where R is the Riemann curvature tensor field andis the Levi-Civita connection associated to g.

Let (M,ϕ, ξ, η, g) be a paracontact metric manifold. Consider the equation

Lξg+2S+2λg+2μηη=0,

where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci curvature tensor field of the metric g, and λ and μ are real constants. Writing Lξg in terms of the Levi-Civita connection ∇, we get

2S(X,Y)=-g(Xξ,Y)-g(X,Yξ)-2λg(X,Y)-2μη(X)η(Y),

for any X, Yχ(M), or equivalent:

S(X,Y)=-(λ+1)g(X,Y)-(μ-1)η(X)η(Y),

for any X, Yχ(M).

The data (g, ξ, λ, μ) which satisfy the equation (3.1) is said to be an η-Ricci soliton on M [8]; in particular, if μ = 0, (g, ξ, λ) is a Ricci soliton [18] and it is called shrinking, steady or expanding according as λ is negative, zero or positive, respectively [19].

Taking Y = ξ in (3.3), we get

S(X,ξ)=S(ξ,X)=-(λ+μ)η(X).

On a n-dimensional paracontact manifold M, we have

S(X,ξ)=-(dim(M)-1)η(X)=-(n-1)η(X),

so:

λ+μ=n-1.

In this case, the Ricci operator Q defined by g(QX, Y) = S(X, Y) has the expression:

QX=-(λ+1)X-(μ-1)η(X)ξ.

The above equation yields that

r=-n(λ+1)-(μ-1).

The Quasi-conformal curvature tensor C is defined by

C(X,Y)Z=aR(X,Y)Z+b[S(Y,Z)X-S(X,Z)Y+g(Y,Z)QX-g(X,Z)QY]-rn(an-1+2b)   [g(Y,Z)X-g(X,Z)Y],

where a, b ≠ 0 are constants. Putting Z = ξ in (4.1) and using (2.12), (3.3), (3.6), we obtain

C(X,Y)ξ=[a+b(2λ+μ+1)+rn(an-1+2b)]   [η(X)Y-η(Y)X].

Similarly using (2.13), (3.3), (3.4) and (3.6) in (4.1), we obtain

η(C(X,Y)Z)=[a+b(2λ+μ+1)+rn(an-1+2b)][g(X,Z)η(Y)-g(Y,Z)η(X)].

The condition that must be satisfied by R is:

R(ξ,X)C(U,V)W-C(R(ξ,X)U,V)W-C(U,R(ξ,X)V)W-C(U,V)R(ξ,X)W=0.

By virtue of (2.11) and (4.4), we get

η(C(U,V)W)X-g(X,C(U,V)W)ξ-η(U)C(X,V)W+g(X,U)C(ξ,V)W-η(V)C(U,X)W+g(X,V)C(U,ξ)W-η(W)C(U,V)X+g(X,W)C(U,V)ξ=0.

Taking the inner product with ξ, the relation (4.5) becomes:

η(C(U,V)W)η(X)-g(X,C(U,V)W)-η(U)η(C(X,V)W)+g(X,U)η(C(ξ,V)W)-η(V)η(C(U,X)W)+g(X,V)η(C(U,ξ)W)-η(W)η(C(U,V)X)+g(X,W)η(C(U,V)ξ)=0.

By virtue of (4.2), (4.3) and (4.6), we get

g(X,C(U,V)W)=[a+b(2λ+μ+1)+rn(an-1+2b)][g(X,V)g(U,W)-g(X,U)g(V,W)].

By using (4.1) in (4.7) and putting X = U = ei, summing over i = 1, 2, ..., n and on simplification, we have

[a+b(n-2)]S(V,W)=(1-n)(a+b(2λ+μ+1))g(V,W)-rbg(V,W).

Taking V = W = ξ in (4.8) and using (2.4), (3.7), we find the following equation

λ=-μ+n-1.

Thus, we can state the following theorem:

Theorem 4.1

If (ϕ, ξ, η, g) is a para-Kenmotsu structure on the n-dimensional manifold M, (ϕ, ξ, λ, μ) is an η-Ricci soliton on M and R(ξ, X).C = 0, then λ + μ − (n − 1) = 0 and (M, g) is an Einstein manifold.

The M-projective curvature tensor is defined by

M˜(X,Y)Z=R(X,Y)Z-12(n-1)[S(Y,Z)X-S(X,Z)Y+g(Y,Z)QX-g(X,Z)QY].

Putting Z = ξ in (5.1) and using (2.12), (3.3), (3.6), we obtain

M˜(X,Y)ξ=[1-(2λ+μ+1)2(n-1)]   [η(X)Y-η(Y)X].

Similarly using (2.8), (3.3), (3.4), (3.6) in (5.1), we obtain

η(M˜(X,Y)Z)=[1-(2λ+μ+1)2(n-1)][g(X,Z)η(Y)-g(Y,Z)η(X)].

The condition that must be satisfied by R is:

R(ξ,X)M˜(Y,Z)W-M˜(R(ξ,X)Y,Z)W-M˜(Y,R(ξ,X)Z)W-M˜(Y,Z)R(ξ,X)W=0.

By virtue of (2.11) and (5.4), we get

η(M˜(Y,Z)W)X-g(X,M˜(Y,Z)W)ξ-η(Y)M˜(X,Z)W+g(X,Y)M˜(ξ,Z)W-η(Z)M˜(Y,X)W+g(X,Z)M˜(Y,ξ)W-η(W)M˜(Y,Z)X+g(X,W)M˜(Y,Z)ξ=0.

Taking the inner product with ξ, the relation (5.5) becomes:

η(M˜(Y,Z)W)η(X)-g(X,M˜(Y,Z)W)-η(Y)η(M˜(X,Z)W)+g(X,Y)η(M˜(ξ,Z)W)-η(Z)η(M˜(Y,X)W)+g(X,Z)η(M˜(Y,ξ)W)-η(W)η(M˜(Y,Z)X)+g(X,W)η(M˜(Y,Z)ξ)=0.

By virtue (5.2), (5.3) and (5.6), we have

g(X,M˜(Y,Z)W)=[1-(2λ+μ+1)2(n-1)][g(X,Z)g(Y,W)-g(X,Y)g(Z,W)].

By using (5.1) in (5.7) and Putting X = Y = ei, summing over i = 1, 2, ..., n and on simplification, we have

S(Z,W)=[1-2λ-μ+r-1(n-1)]g(Z,W).

Taking V = W = ξ in (5.8) and by virtue of (3.6), (3.7), we find the following equation

(2n-1)λ+μ+1=0.

Thus, we can state the following theorem:

Theorem 5.1

If (ϕ, ξ, η, g) is a para-Kenmotsu structure on the n-dimensional manifold M, (ϕ, ξ, λ, μ) is an η-Ricci soliton on M and R(ξ, X). = 0, then (2n− 1)λ + μ + 1 = 0 and (M, g) is an Einstein manifold.

The Pseudo-projective curvature tensor P is defined by

P(X,Y)Z=aR(X,Y)Z+b[S(Y,Z)X-S(X,Z)Y]-rn(an-1+b)   [g(Y,Z)X-g(X,Z)Y],

where a, b ≠ 0 are constants. Putting Z = ξ in (6.1) and using (2.12), (3.3), (3.6), we obtain

P(X,Y)ξ=[a+(λ+μ)b+rn(an-1+b)]   [η(X)Y-η(Y)X].

Similarly using (2.13), (3.3), (3.4), (3.6) in (6.1), we obtain

η(P(X,Y)Z)=[a+(λ+μ)b+rn(an-1+b)][g(X,Z)η(Y)-g(Y,Z)η(X)].

The condition that must be satisfied by R is:

R(ξ,X)P(U,V)W-P(R(ξ,X)U,V)W-P(U,R(ξ,X)V)W-P(U,V)R(ξ,X)W=0.

By virtue of (2.11) and (6.4), we get

η(P(U,V)W)X-g(X,P(U,V)W)ξ-η(U)P(X,V)W+g(X,U)P(ξ,V)W-η(V)P(U,X)W+g(X,V)P(U,ξ)W-η(W)P(U,V)X+g(X,W)P(U,V)ξ=0.

Taking the inner product with ξ, the relation (6.5) becomes:

η(P(U,V)W)η(X)-g(X,P(U,V)W)-η(U)η(P(X,V)W)+g(X,U)η(P(ξ,V)W)-η(V)η(P(U,X)W)+g(X,V)η(P(U,ξ)W)-η(W)η(P(U,V)X)+g(X,W)η(P(U,V)ξ)=0.

By virtue of (6.2), (6.3) and (6.6), we have

g(X,P(U,V)W)=[a+(λ+μ)b+rn(an-1+b)][g(X,V)g(U,W)-g(X,U)g(V,W)].

By using (6.1) in (6.7) and Putting X = U = ei, summing over i = 1, 2, ..., n and on simplification, we obtain

aS(V,W)=(1-n)[a+b(μ-1)]g(V,W)-(n-1)(μ-1)bη(V)η(W).

Taking V = W = ξ in (6.8) and by virtue of (3.4), (3.7), we find the following equation

λ+μ-(n-1)=0.

Thus, we can state the following theorem:

Theorem 6.1

If (ϕ, ξ, η, g) is a para-Kenmotsu structure on the n-dimensional manifold M, (ϕ, ξ, λ, μ) is an η-Ricci soliton on M and R(ξ, X).P = 0, then λ + μ − (n − 1) = 0 and (M, g) is an η-Einstein manifold.

The concircular curvature tensor is defined by

C˜(X,Y)Z=R(X,Y)Z-rn(n-1)[g(Y,Z)X-g(X,Z)Y].

Taking Z = ξ in (7.1) and using (2.12), (3.3), (3.6), we get

C˜(X,Y)ξ=[1+rn(n-1)]   [η(X)Y-η(Y)X].

Similarly using (2.13), (3.3), (3.4), (3.6) in (7.1), we have

η(C˜(X,Y)Z)=[1+rn(n-1)]   [g(X,Z)η(Y)-g(Y,Z)η(X)].

The condition that must be satisfied by R is:

R(ξ,X)C˜(U,V)W-C˜(R(ξ,X)U,V)W-C˜(U,R(ξ,X)V)W-C˜(U,V)R(ξ,X)W=0.

By virtue of (2.11) and (7.4), we have

η(C˜(U,V)W)X-g(X,C˜(U,V)W)ξ-η(U)C˜(X,V)W+g(X,U)C˜(ξ,V)W-η(V)C˜(U,X)W+g(X,V)C˜(U,ξ)W-η(W)C˜(U,V)X+g(X,W)C˜(U,V)ξ=0.

Taking the inner product with ξ, the relation (7.5) becomes:

η(C˜(U,V)W)η(X)-g(X,C˜(U,V)W)-η(U)η(C˜(X,V)W)+g(X,U)η(C˜(ξ,V)W)-η(V)η(C˜(U,X)W)+g(X,V)η(C˜(U,ξ)W)-η(W)η(C˜(U,V)X)+g(X,W)η(C˜(U,V)ξ)=0.

By virtue of (7.2), (7.3) and (7.6), we get

g(X,C˜(U,V)W)=[1+rn(n-1)][g(X,V)g(U,W)-g(X,U)g(V,W)].

By using (7.1) in (7.7) and Putting X = U = ei, summing over i = 1, 2, ..., n and on simplification, we obtain

S(V,W)=(1-n)g(V,W).

Taking V = W = ξ in (7.8) and by virtue of (3.4), (3.7), we find the following equation

λ+μ-(n-1)=0.

Thus, we can state the following theorem:

Theorem 7.1

If (ϕ, ξ, η, g) is a para-Kenmotsu structure on the n-dimensional manifold M, (ϕ, ξ, λ, μ) is an η-Ricci soliton on M and R(ξ, X). = 0, then λ + μ − (n − 1) = 0 and (M, g) is an Einstein manifold.

The conharmonic curvature tensor H is defined by

H(X,Y)Z=R(X,Y)Z-1(n-2)[S(Y,Z)X-S(X,Z)Y+g(Y,Z)QX-g(X,Z)QY].

Putting Z = ξ in (8.1) and using (2.12), (3.3), (3.6), we obtain

H(X,Y)ξ=[1-(2λ+μ+1)(n-2)]   [η(X)Y-η(Y)X].

Similarly using (2.8), (2.13), (2.14), (3.5) in (8.1), we have

η(H(X,Y)Z)=[1-(2λ+μ+1)(n-2)][g(X,Z)η(Y)-g(Y,Z)η(X)].

The condition that must be satisfied by R is:

R(ξ,X)H(Y,Z)W-H(R(ξ,X)Y,Z)W-H(Y,R(ξ,X)Z)W-H(Y,Z)R(ξ,X)W=0.

By virtue of (2.11) and (8.4), we get

η(H(Y,Z)W)X-g(X,H(Y,Z)W)ξ-η(Y)H(X,Z)W+g(X,Y)H(ξ,Z)W-η(Z)H(Y,X)W+g(X,Z)H(Y,ξ)W-η(W)H(Y,Z)X+g(X,W)H(Y,Z)ξ=0.

Taking the inner product with ξ, the relation (8.5) becomes:

η(H(Y,Z)W)η(X)-g(X,H(Y,Z)W)-η(Y)η(H(X,Z)W)+g(X,Y)η(H(ξ,Z)W)-η(Z)η(H(Y,X)W)+g(X,Z)η(H(Y,ξ)W)-η(W)η(H(Y,Z)X)+g(X,W)η(H(Y,Z)ξ)=0.

By virtue of (8.2), (8.3) and (8.6), we get

g(X,H(Y,Z)W)=[1-(2λ+μ+1)(n-2)][g(X,Z)g(Y,W)-g(X,Y)g(Z,W)].

By using (8.1) in (8.7) and Putting X = Y = ei, summing over i = 1, 2, ..., n and on simplification, we obtain

[r(n-2)+(1-(2λ+μ+1)(n-2))   (1-n)]g(Z,W)=0,

where g(Z, W) ≠ 0. Therefore, we get

[r(n-2)+(1-(2λ+μ+1)(n-2))   (1-n)]=0,

on simplification, we obtain

λ+μ-(n-1)=0.

Thus, we can state the following theorem:

Theorem 8.1

If (ϕ, ξ, η, g) is a para-Kenmotsu structure on the n-dimensional manifold M, (ϕ, ξ, λ, μ) is an η-Ricci soliton on M and R(ξ, X).H = 0, then λ + μ − (n − 1) = 0.

  1. C. S. Bagewadi, and G. Ingalahalli. Ricci solitons in α-Sasakian manifolds. ISRN Geom., (2012) Article ID 421384, 13 pp.
  2. C. S. Bagewadi, and G. Ingalahalli. Ricci solitons in Lorentzian α-Sasakian manifolds. Acta Math. Acad. Paedagog. Nyházi (NS)., 28(1)(2012), 59-68.
  3. C. S. Bagewadi, G. Ingalahalli, and S. R. Ashoka. A study on Ricci solitons in Kenmotsu manifolds. ISRN Geom., (2013) Article ID 412593, 6 pp.
    CrossRef
  4. C. L. Bejan, and M. Crasmareanu. Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry. Anal. Global. Anal. Geom., 46(2014), 117-127.
    CrossRef
  5. A. M. Blaga. η-Ricci solitons on para-Kenmotsu manifolds. Balkan J. Geom. Appl., 20(1)(2015), 1-13.
  6. A. M. Blaga. η-Ricci solitons on Lorentzian para-Sasakian manifolds. Filomat., 30(2)(2016), 489-496.
    CrossRef
  7. J. L. Cabrerizo, L. M. Fernández, M. Fernández, and G. Zhen. The structure of a class of K-contact manifolds. Acta Math. Hungar., 82(4)(1999), 331-340.
    CrossRef
  8. C. Călin, and M. Crasmareanu. η-Ricci solitons on Hopf hypersurfaces in complex space forms. Revue Roumaine Math. pures Appl., 57(1)(2012), 55-63.
  9. J. T. Cho, and M. Kimura. Ricci solitons and real hypersurfaces in a complex space form. Tohoku Math. J., 61(2)(2009), 205-212.
    CrossRef
  10. B. Chow, P. Lu, and L. Ni. Hamilton’s Ricci flow. Graduate Studies in Mathematics, 77, AMS, Providence, RI, USA, 2006.
    CrossRef
  11. F. T-H. Fong, and O. Chodosh. Rotational symmetry of conical Kahler-Ricci solitons. Math. Ann., 364(2016), 777-792.
    CrossRef
  12. R. S. Hamilton. The Ricci flow on surfaces. Math. and general relativity (Santa Cruz, CA, 1986), Contemp. Math., 71(1988) AMS, 237-262.
    CrossRef
  13. C. He, and M. Zhu. . Ricci solitons on Sasakian manifolds., arXiv:1109.4407v2, 2011.
  14. K. Matsumoto. On Lorentzian paracontact manifolds. Bull. Yamagata Univ. Natur. Sci., 12(2)(1989), 151-156.
  15. I. Mihai, and R. Rosca. On Lorentzian P-Sasakian manifolds. Classical Analysis, , World Sci. Publ, Singapore, 1992:155-169.
  16. D. Perrone, and G. Calvaruso. Geometry of H-paracontact metric manifolds. Publ. Math. Debrecen., 86(2015), 325-346.
  17. A. A. Shaikh, I. Mihai, and U. C. De. On Lorentzian para-Sasakian manifolds. Rendiconti del Seminario Matematico di Messina, Serie II., (1999).
  18. M. M. Tripathi. . Ricci solitons in contact metric manifolds., arXiv:0801.4222, 2008.
  19. G. Zhen. Conformal symmetric K-contact manifolds. Chinese Quart. J. Math., 7(1992), 5-10.