DOI QR코드

DOI QR Code

Microstructural and Mechanical Characteristics of TiZrAlN Nanocomposite Thin Films by CFUBMS

CFUBMS을 이용한 TiZrAlN 나노복합 박막의 미세 구조와 기계적 특성

  • Kim, Youn-J. (Center for Advanced Plasma Surface Technology, School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Lee, Ho-Y. (Center for Advanced Plasma Surface Technology, School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Kim, Yong-M. (Center for Advanced Plasma Surface Technology, School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Kim, Kab-S. (Center for Advanced Plasma Surface Technology, School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Han, Jeon-G. (Center for Advanced Plasma Surface Technology, School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • 김연준 (성균관대학교 신소재공학과, 플라즈마 응용 표면기술 연구센터) ;
  • 이호영 (성균관대학교 신소재공학과, 플라즈마 응용 표면기술 연구센터) ;
  • 김용모 (성균관대학교 신소재공학과, 플라즈마 응용 표면기술 연구센터) ;
  • 김갑석 (성균관대학교 신소재공학과, 플라즈마 응용 표면기술 연구센터) ;
  • 한전건 (성균관대학교 신소재공학과, 플라즈마 응용 표면기술 연구센터)
  • Published : 2007.02.28

Abstract

Quaternary TiZrAlN nanocomposite thin films were synthesized by Closed-Field Unbalanced Magnetron Sputtering (CFUBMS), and their microstructure and mechanical characteristics were examined. The grain refinement of the TiZrAlN nanocomposite thin films was controlled by adjusting the $N_2$ partial pressure. The hardness of the film varied with the $N_2$ partial pressure and the maximum value was obtained approximately 47 GPa. It was also confirmed that there is a critical value of the grain size($d_c$) to need maximum hardness.

Keywords

References

  1. H. K. Tnshoff, Int. J. Mach. Tools Manufact., Vol. 38, No. 5-6, 469 https://doi.org/10.1016/S0890-6955(97)00091-6
  2. H. K. Tnshoff, Surf. & Coat. Technol., 93 (1997) 88 https://doi.org/10.1016/S0257-8972(97)00027-3
  3. E. Lugscheider, Surf. & Coat. Technol., 112 (1999) 146 https://doi.org/10.1016/S0257-8972(98)00775-0
  4. H. Ehrhardt, Surf. & Coat. Technol., 74-75 (1995) 29
  5. P. Rogl, J. C. Schuster, Phase Diagrams of Ternary Boron Nitride and Silicon Nitride Systems, ASM International, Metals Park, OH (1992)
  6. S. Veprek, Surf. & Coat. Technol., 86-87 (1996) 394
  7. J. Musil, J. Vlcek Surf. & Coat. Technol., 142-144 (2001) 557-566
  8. B. D. Cullity, in: Elements of X-Ray Diffraction, 2nd edn., Addison-Wesley, Reading, MA, 1978, p.102, pp.352-360
  9. J. Musil, F. Kunc, H. Zeman et al., Surf. & Coat. Technol., 154 (2002) 304-313 https://doi.org/10.1016/S0257-8972(01)01714-5
  10. J. Musil, Surf. & Coat. Technol., 125 (2000) 322 https://doi.org/10.1016/S0257-8972(99)00586-1
  11. S. Zhang, D. Sun et al., Surf. & Coat. Technol., 198 (2005) 74-84 https://doi.org/10.1016/j.surfcoat.2004.10.021
  12. S. Zhang, D. Sun et al., Surf. & Coat. Technol., 198 (2005) 2-8 https://doi.org/10.1016/j.surfcoat.2004.10.020
  13. B. Mills, Journal of Materials Processing Technology, 56 (1996) 16-23 https://doi.org/10.1016/0924-0136(95)01816-6
  14. A. Leyland, Wear, 246 (2000) 1 https://doi.org/10.1016/S0043-1648(00)00488-9
  15. S. Veprek et al., Surf. & Coat. Technol., 108-109 (1998) 138
  16. A. Mathew, The Value of Deposition Processes for Industrial Tools, Proceedings of the 1st Conference on Materials Engineering, Institution of Metallurgists, (1984) 175
  17. G. M. Pharr, Mater. Sci. Eng., A253 (1-2) (1998) 151
  18. R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., Wiley, New York, 1989
  19. Hall, E. O., The Deformation and Ageing of Mild Steel: III Discussion and Result. Proc. Phys. Soc., B64 (1953) 747-753
  20. Petch, N. J., The Cleavage Strength of Polycrystals. J. Iron Steel Inst., 174 (1953) 25-28