DOI QR코드

DOI QR Code

Effects of TiN/Ti Multilayer Coating on the Ti-30Ta-xZr Alloy Surface

Ti-30Ta-xZr 합금의 표면에 TiN/Ti 다층막코팅효과

  • Kim, Y.U. (Department of Dental Science, Chonnam National University) ;
  • Jeong, Y.H. (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University) ;
  • Cho, J.Y. (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University) ;
  • Choe, H.C. (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University) ;
  • Vang, M.S. (Department of Dental Science, Chonnam National University)
  • 김영운 (전남대학교 치의학전문대학원 보철과) ;
  • 정용훈 (조선대학교 치과대학 치과재료학교실) ;
  • 조주영 (조선대학교 치과대학 치과재료학교실) ;
  • 최한철 (조선대학교 치과대학 치과재료학교실) ;
  • 방몽숙 (전남대학교 치의학전문대학원 보철과)
  • Published : 2009.08.31

Abstract

Effects of TiN/Ti multilayer coating on the Ti-30Ta-xZr alloy surface were studied by using various experiments. The Ti-30Ta containing Zr (5, 10 and 15 wt%) were melted 10 times to improve chemical homogeneity by using a vacuum furnace. And then samples were homogenized for 24 hrs at $1000^{\circ}C$. The specimens were prepared for TiN/Ti coating by cutting and polishing. The prepared specimens were coated with TiN/Ti multilayers by using DC magnetron sputtering method. The analyses of coated surface and coated layer were carried out by field emission scanning electron microscope(FE-SEM), EDX, and X-ray diffractometer(XRD). From the microstructure and XRD analysis of Ti-30Ta-xZr alloys, The equiaxed structure was changed to needle-like structure with increasing Zr content. And $\alpha$-peak and elastic modulus increased as Zr content increased. The $\alpha$ and $\beta$ phase predominantly were found in the specimen containing high Zr content. According to the analysis of TiN/Ti coating layer, the surface defects and structures of Ti-30Ta-xZr were covered with TiN/Ti coating layer and surface roughness decreased.

Keywords

References

  1. B. Kasemo, J. Prosthet. Dent, 49 (1983) 832 https://doi.org/10.1016/0022-3913(83)90359-1
  2. Y. Okazaki, M. Ohota, Y. Ito, T. Tateishi, J. Japan Inst. Metals, 59 (1995) 229 https://doi.org/10.2320/jinstmet1952.59.2_229
  3. J. A. Davidson, P. Kovacks, U.S. Patent no. 5, 169 (1992) 597
  4. P. O. Ganrot, Environ. Health Perspect, 65 (1986) 363 https://doi.org/10.2307/3430204
  5. S. Ghosh, A. Sharma, G. Talukder, Biol. Trace. Elem. Res., 35 (1992) 247 https://doi.org/10.1007/BF02783770
  6. B. D. Boyan, T. W. Hummert, D. D. Dean, Z. Schwartz, Biomaterials, 17 (1996) 137 https://doi.org/10.1016/0142-9612(96)85758-9
  7. T. L. Yau, T. T. Webster, Corrosion of Zirconium and Hafnium, Metal Handbook, 9th eds, Corrosion, 13 (1987) 707
  8. K. Wang, Mater. Sci. Eng., A 213 (1996) 134
  9. I. Dion, X. Rogues, N. More, L. Larousse, J. Caix, F. Lefebvre, F. Rouais, J. Gautreau, C. H. Baguey, Biomaterials, 14 (1993) 712 https://doi.org/10.1016/0142-9612(93)90070-I
  10. C. Chu, J. Zhu, Z. Yin, P. Lin, Mater. Sci. Eng., A 348 (2003) 244
  11. D. Q. MArtins, W. R. Osorio, M. E. P. Souza, R. Caram, A. Garcia, Electrochemica Acta, 53 (2008) 2809 https://doi.org/10.1016/j.electacta.2007.10.060
  12. M. Y. Oh, W. G. Kim, H. C. Choe, J. Kor. Inst. Met. & Mater., 46 (2008) 691
  13. A. Elbance Bauer, M. Herranen, H. Ljungcrantz, J. O. Carlsson, J. E. Sundgren, Surf. Coat. Technol. 91 (1997) 208 https://doi.org/10.1016/S0257-8972(97)00003-0
  14. H. C. Choe, Y. M. Ko, J. Korean Res. Soc. Dent Mater., 3 (2004) 217
  15. T. C. Nilson, Oliveira, A. Elivelton, Ferreira, T. Las, Duarte, R. Sonia Biaggio, C. Romeu, Rocha-Filho, Nerilso Bocchi, Electrochemica Acta, 51 (2006) 2068 https://doi.org/10.1016/j.electacta.2005.07.015
  16. V. H. Pham, S. K. Kim, V. V. Le, B. S. Kwon, J. Kor. Inst. Surf. Eng., 41(6) (2008) 264 https://doi.org/10.5695/JKISE.2008.41.6.264