DOI QR코드

DOI QR Code

Corrosion Behaviors of Laser-welded Super Duplex Stainless Steel(UNS S32506) Tube with Post-Weld Heat Treatment Conditions

슈퍼 듀플렉스 스테인리스강(UNS S32506) 레이저 조관용접 튜브의 용접 후 열처리에 따른 부식거동

  • Cho, Dong Min (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Park, Jin-seong (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Hong, Seung Gab (POSCO Technical Research Laboratories) ;
  • Hwang, Joong-Ki (School of Mechanical Engineering, Tongmyong University) ;
  • Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
  • 조동민 (순천대학교 신소재공학과) ;
  • 박진성 (순천대학교 신소재공학과) ;
  • 홍승갑 (포스코 기술연구원) ;
  • 황중기 (동명대학교 기계공학부) ;
  • 김성진 (순천대학교 신소재공학과)
  • Received : 2021.04.06
  • Accepted : 2021.05.20
  • Published : 2021.06.30

Abstract

The corrosion behaviors of laser-welded super duplex stainless steel tubes with post-weld heat treatment(PWHT) conditions(950, 1000, 1050, 1100 ℃ for 5 and 30 min) were evaluated by electrochemical potentiodynamic polarization and critical pitting temperature measurements. This study showed that the critical metallurgical factors affecting the degradation of corrosion resistance of a steel tube in as-welded condition were the unbalanced phase fraction(ferrite:austenite = 94:4), Cr2N precipitation, and phase transformation from the austenite phase to ɛ-martensite(via stress-induced phase transformation). The improvement in the corrosion resistance of the welded specimen depends greatly on the PWHT conditions. The specimens after PWHT conducted below 1000 ℃ showed inferior corrosion resistance, caused by precipitation of the sigma phase enriched with Cr and Mo. At 1100 ℃ for a longer duration in PWHT, the ferrite phase grows, and its fraction increases, leading to an unbalanced phase fraction in the microstructure. As a result, pitting can be initiated primarily at the interface between the ferrite/austenite phase, particularly in base metal.

Keywords

Acknowledgement

This work was supported by a Research promotion program of SCNU.

References

  1. J. O. Nilsson, Super duplex stainless steel, Mater. Sci. Technol. 8 (1992) 685-700. https://doi.org/10.1179/mst.1992.8.8.685
  2. L. Weber, P. J. Uggowitzer, Partitioning of chromium and molybdenum in super duplex stainless steels with respect to nitrogen and nickel content, Mater. Sci. Eng. 242A (1998) 222-229.
  3. R. A. Perren, T. A. Suter, P. J. Uggowitzer, L. Weber, R. Magdowski, H. Bohni, M. O. Speidel, Corrosion resistance of super duplex stainless steels in chloride ion containing environments: investigations by means of a new microelectrochemical method I. Precipitation-free states, Corros. Sci. 43 (2001) 707-726.
  4. C. O. A. Olsson, D. Landolt, Passive films on stainless steels-chemistry, structure and growth, Electrochim. Acta 48 (2003) 1093-1104. https://doi.org/10.1016/S0013-4686(02)00841-1
  5. L. F. Garfias-Mesias, J. M. Skyes, Effect of copper on active dissolution and pitting corrosion of 25% Cr duplex stainless steels, Corrosion 54 (1998) 40-47. https://doi.org/10.5006/1.3284827
  6. H. B. Pereira, C. R. F. Azevedo, Can the drop evaporation test evaluate the stress corrosion cracking susceptibility of the welded joints of duplex and super duplex stainless steels?, Eng. Fail. Anal. 99 (2019) 235-247. https://doi.org/10.1016/j.engfailanal.2019.02.026
  7. S. J. Kim, S. G. Hong, A study on pitting initiation mechanism of super-austenitic stainless steel weld in chloride environment, J. Mater. Res. 31 (2016) 3345-3351. https://doi.org/10.1557/jmr.2016.347
  8. S. J. Kim, S. G. Hong, M. S. Oh, Effect of metallurgical factors on the pitting corrosion behavior of super austenitic stainless steel weld in an acidic chloride environment, J. Mater. Res. 32 (2017) 1343-1350. https://doi.org/10.1557/jmr.2017.65
  9. P. D. Bilmes, C. L. Liorente, L. Saire Huaman, L. M. Gassa, C. A. Gervasi, Microstructure and pitting corrosion of 13CrNiMo weld metals, Corros. Sci. 48 (2006) 3261-3270. https://doi.org/10.1016/j.corsci.2005.10.009
  10. T. M. Devine, The mechanism of sensitization of austenitic stainless steel, Corros. Sci. 30 (1990) 135-151. https://doi.org/10.1016/0010-938X(90)90068-G
  11. R. G. Barrows, J. B. Newkirk, A modified system for predicting σ formation, Metall. Mater. Trans. 3B (1972) 2889-2893.
  12. M. E. Williams, V. J. Gadgil, J. M. Krougman, F. P. Ijsseling, The effect of σ-phase precipitation at 800℃ on the corrosion resistance in sea-water of a high alloyed duplex stainless steel, Corros. Sci. 36 (1994) 871-881. https://doi.org/10.1016/0010-938X(94)90176-7
  13. G. T. Burnstein, P. C. Pistorius, S. P. Martin, The nucleation and growth of corrosion pits on stainless steel, Corros. Sci. 35 (1993) 57-62. https://doi.org/10.1016/0010-938X(93)90133-2
  14. H. Bohni, T. Suter, A. Schreyer, Micro-and nano techniques to study localized corrosion, Electrochim. Acta 40 (1995) 1361-1368. https://doi.org/10.1016/0013-4686(95)00072-M
  15. C. J. Park, V. S. Rao, H. S. Kwon, Effects of sigma phase on the initiation and propagation of pitting corrosion of duplex stainless steel, Corrosion 61 (2005) 76-83. https://doi.org/10.5006/1.3278163
  16. S. Saravanan, N. Sivagurumanikandan, K. Raghukandan, Effect of heat input on microstructure and mechanical properties of Nd: YAG laser welded super duplex stainless steel-Numerical and experimental approach, Optik 185 (2019) 447-455. https://doi.org/10.1016/j.ijleo.2019.03.145
  17. Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, X. Lv, Zhang, Effect of post-weld heat treatment on microstructure evolution and pitting corrosion resistance of electron beam-welded duplex stainless steel, Corros. Sci. 141 (2018) 30-45. https://doi.org/10.1016/j.corsci.2018.06.030
  18. Z. Zhang, H. Zhao, H. Zhang, J. Hu, J. Jin, Zhang, Microstructure evolution and pitting corrosion behavior of UNS S32750 super duplex stainless steel welds after short-time heat treatment, Corros. Sci. 121 (2017) 22-31. https://doi.org/10.1016/j.corsci.2017.02.006
  19. I. Lee, C. S. Cheon, T. H. Yim, Y. H. Han, M. H. Lee, The influence of heat treatment temperature on microstructure and corrosion behavior SDSS tube, J. Kor. Inst. Surf. Eng. 48 (2015) 329-334. https://doi.org/10.5695/JKISE.2015.48.6.329
  20. Annual Book of ASTM Standards, ASTM G 48, Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution.
  21. Annual Book of ASTM Standards, ASTM G 150, Standard test method for electrochemical critical pitting temperature testing of stainless steels.
  22. M. B. Cortie, J. H. Potgieter, The effect of temperature and nitrogen content on the partitioning of alloy elements in duplex stainless steels, Metall. Mater. Trans. 22A (1991) 2173-2179.
  23. Y. C. Lu, R. Bandy, C. R. Clayton, R. C. Newman, Surface enrichment of nitrogen during passivation of a highly resistant stainless steel, J. Electrochem. Soc. 130 (1983) 1774-1776. https://doi.org/10.1149/1.2120091
  24. A. J. Ramirez, J. C. Lippold, S. D. Brandi, The relationship between chromium nitride and secondary precipitation in duplex stainless steels, Metall. Mater. Trans. 34A (2003) 1575-1597.
  25. P. Niklas, F. A. Rachel, S. Wessman, Precipitation of chromium nitrides in the super duplex stainless steel 2507, Metall. Mater. Trans. 46A (2015) 1062-1072.
  26. Stffan Herzman, The influence of nitrogen on microstructure and properties of highly alloyed stainless steel welds, ISIJ Int. 41 (2001) 580-589. https://doi.org/10.2355/isijinternational.41.580
  27. Y. Li, W. Li, J. C. Hu, H. M. Song X. J. Kin, Compatible strain evolution in two phases due to epsilon martensite transformation in duplex TRIP-assisted stainless steels with high hydrogen embrittlement resistance, Int. J. Plast. 88 (2016) 53-69. https://doi.org/10.1016/j.ijplas.2016.09.012
  28. J. Y. Choi, J. H. Ji, S. W. Hwang, K. T. Park, Effects of nitrogen content on TRIP of Fe-20Cr-5Mn-xN duplex stainless steel, Mater. Sci. Eng. 534A (2012) 673-680.
  29. A. Das, S. Tarafder, Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel, Int. J. Plast. 25 (2009) 2222-2247. https://doi.org/10.1016/j.ijplas.2009.03.003
  30. L. Claeys, T. Depover, I. D. Graeve, K. Verbeken, First observation by EBSD of martensitic transformations due to hydrogen presence during straining of duplex stainless steel, Mater. Char. 156 (2019) 109843. https://doi.org/10.1016/j.matchar.2019.109843
  31. Y. K. Lee, C. S. Choi, driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system, Metall. Mater. Trans. 31A (2000) 355-360.
  32. F. Lu, P. Yang, L. Meng, F. Cui, H. Ding, Influences of thermal martensites and grain orientations on strain-induced martensites in high manganese TRIP/TWIP steels, J. Mater. Sci. Tech. 27 (2011) 257-265. https://doi.org/10.1016/S1005-0302(11)60059-5
  33. A. Dumay, J. P. Chateau, S. Allain, S. Mogot, O. Bouaziz, Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel, Mater. Sci. Eng. 483A (2008) 184-187.
  34. A. Lechartier, N. Meyer, R. Estevez, M. Mantel, G. Martin, G. Parry, M. Veron, A. Deschamps, Deformation behavior of lean duplex stainless steels with strain induced martensitic transformation: Role of deformation mechanisms, alloy chemistry and predeformation, Mater. 5 (2019) 100190.
  35. Y. Q. Wang, J. Han, H. C. Wu, B. Yang, X. T. Wang, Effect of sigma phase precipitation on the mechanical and wear properties of Z3CN20.09M cast duplex stainless steel, Nucl. Eng. Des. 259 (2013) 1-7. https://doi.org/10.1016/j.nucengdes.2013.02.037
  36. V. A. Hosseini, L. Karlsson, S. Wessman, N. Fuertes, Effect of sigma phase morphology on the degradation of properties in a super duplex stainless steel, Materials 11 (2018) 933-953. https://doi.org/10.3390/ma11060933