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The Remainder in Linear Methods of Approximation
By W. E. Milne '

The following discussion grows out of an effort to formulate a systematic treatment

of the error for such diverse processes as interpolation, numerical differentiation, numerical

integration, harmonic analysis, approximation by Least Squares, approximation by equating

moments, and other allied operations.

First of all, a systematic and uniform procedure is exhibited by which a desired method

of approximation may be explicitly constructed.

Second, by suitable transformation the

remainder is put in a form in which it is possible in many cases to estimate its approximate

magnitude.

are obtained for the magnitude of the error.

I. Fundamental Problem of Approximation

In the various types of problems to which this
investigation applies, we are dealing with a real
function f(z) in an interval a<2=b, and we are
supplied with a more or less adequate deseription,
or definition, of this function. For example, we
may have a table of values of f(x) furnished by
experimental observations, or a table of values
of f(z) computed from a series or an asymptotic
expansion, or we may have the values, not of f(x)
itself, but of certain of its derivatives, f'(x), or
f(x) ete.  Insuch instances f(x) is not completely
defined by the information provided. On the
other hand, f(x) may be a particular solution of a
given differential equation, for which no solution
in elementary form is known. Or f(x) may be
the solution of an integral equation or of some
other type of functional equation. In such cases
the function f(x) may be completely, though
implicitly, defined by the given equation.

The essential point is that we may not have a
simple mathematical expression for f(x), and yet
we wish to obtain particular values of f(x), or
to find its integral, or to find its derivatives—in
short to be able to use f(z) just as freely as if it
were expressed in terms of known elementary
functions.

In order to do these things, a common practice
is to replace f(x) by an approximate expression in
terms of suitably chosen known functions. How
to secure this approximate representation of f(z)
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And third, the theory is applied to a variety of concrete examples, and bounds

is the problem that we shall call the fundamental
problem of approximation.

In order that the subsequent analyses can be
performed, it will be assumed henceforth that f(z)
has a continuous derivative of order n411in a fixed
interval a=x=b. The values of n to be selected
will appear as we proceed.

II. Basic Functions

In all the types of approximation here considered
the first essential idea is to employ a basic set of
linearly independent known functions wy(x),
w (), ., u,(r), and to use an appropriately
chosen linear combination of these functions as
an approximation to the given function. So far
as theory is concerned any other set »y(x), »(z),

., Uy(@), equivalent to the set {u,(x)} by linear
combination, might equally well be used. In
practical numerical analysis however, 1t is impor-
tant to select the set best suited to the numerical
process to be employed.

In numerical methods the set of basie functions
more often employed than all others put together
is the set of polynomials, 1, x, % . .. z"
Actually these appear more frequently in various
linear combination such as the binomial coefficient

functions (8); (f)» . (i)y the Legendre poly-

nomials Py(x), P (z), ., P,(x), the Lagrangian
coefficients Ly’ (x), L (x), . . . L{”(x), ete.
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Next in importance probably are the ftrigo-
nometric functions, 1, cos x, sin z, . COS mz,
sin mz which may also occur in power form, 1,
cos x, sin x, ., cos™z, sin™z, or in products of
terms such as sin (z—zx;)/2.

Other sets sometimes used are e*72 H;(x),
where H,;(z) is an Hermitian polynomial, e=*L,(x),
where L,(z) is a Laguerre polynomial, ete.

Tt is assumed henceforth that the basic functions
uo(z), u(x), . . ., u,(x) all possess continuous
derivatives of order n-+1 in the closed interval
a<r<b, and that the Wronskian determinant

| () uy (x) U ()
W:‘ ,
i U™ (@) wm™ (@) w, ™ (2) ‘\

does not vanish anywhere in the interval a<z=b.

III. Equivalence Operators

The basic set of approximating functions having
been selected, the next step in solving the funda-
mental problem of approximation is to set up the
rule by means of which the coefficients in the
approximating linear combination of basic func-
tions are to be determined. We shall consider
here only objective, analytic methods, as opposed
to subjective and graphical methods. With this
restriction, it will be found that in a great many
cases of practical importance, the rule is based on
what might be called the principle of equivalence.
We shall not attempt to formulate a completely
gencral statement of this principle, but shall
instead bring out its meaning by citing some
familiar examples in which a principle of equiva-
lence is employed. Such examples are:

(a). Equivalence of wvalue at discrete points.
That is, the value of the approximating function
is made equal to the value of the given function
f(x) at g, 21, . . ., Tp.

(b). Equivalence of lineal elements at discrete
points. That is, the values of the approximating
function and its first derivative are made to agree
with f(x) and f’(z) at assigned points. This may
also be regarded as a limiting case of (a) when
pairs of points move into coincidence.
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(¢) Equivalence of weighted definite integrals.
That is, the value of

b
wi(z) f(x) d,
a
are made to agree with corresponding expressions
formed for the approximating function.
(d) Equivalence of weighted sums.
the values of

That 1s,

M
25 wi@;) f (=),

=0

are made to agree with similar expressions for the
approximating function.

Evidently this list can be greatly extended.

We shall henceforth in this paper consider only
cases in which the coefficients are completely
determined by some appropriate application of
the principle of equivalence.

In order to treat all such cases by means of a
comprehensive mnotation, it is convenient to
introduce a set of operators 0y, O, . . ., Oy, equal
in number to the set of basic functions, and called
equivalence operators. What these operators actu-
ally do in any particular method of approximation
is determined by the rule selected for setting up
the approximation. For the examples (a), (b),
(¢), and (d) above the corresponding operators
are:

(@) 0.f(x)=f(x); De=ilats o o Tk

(b) Osif(x)=f(x)), = n
031,11 () :f/ (%) ;
b
(c) Oif(.)“):f w;(x) fx)de; p==ily o o o Tl
M )
(d) Ozf(r>:]4§; wijf(x]'); I=lly & o g U

1t is desirable to employ some form of analytical
expression for the operators 0, sufficiently general
to include all types of linear operators likely to
arise, but sufficiently restricted to guarantee that
subsequent mathematical manipulations can be
carried out. Accordingly, it is assumed hence-
forth that O.f(z) can be expressed by means of
Riemann-Stieltjes integrals in the form

J(l)—z f(” )dgi; (), k<n,
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in which the ¢, (x) are suitably chosen functions
of bounded variation in the interval «<2z=b.
By specialized choices of the ¢;; we may obtain
each of the particular operators (a), (b), (¢), and
(d) listed above. For example, if ¢,,(z) is a-step
function with unit step at z=z, while the other
¢;(x) vanish we have

b
0. /@)= f 10 @) dgue) =10 @)

Again if dq,(x)=w;(@)dz and ¢;=0 for j=I,
2, . . .k, then

b
0.f@)= f wi(@)f (£)d.

Also if ¢,(2z) is a step function having M1 steps
of magnitude wy at zg, w; at z;, . . ., Wy at xy,
and it ¢;;=0, for 7 >0, then

M

0.f(x)=2_ w;;f(x,).

i=0

From the definition of O, as a sum of integrals,
it is clear that

(1) The operation 0, is disiributive with respect
to addition, 1. e.,

OLfi(@) +£:@]=0:/@) +0.£),
(0, +0)f@) =0rf () + 0uf @).
(2) If A is constant
OlAf@)) = A0 f(@).

(3) The result of the operation O, on any funec-
tion f(z) no longer contains x as an independent
variable and insofar as the variable z is concerned
may be treated as a constant.

IV. The Approximation Formula

Suppose that the function f(z) has been given in
any of the ways suggested in section I, that an
appropriate basic set {u;} has been chosen, that
a rule for determining the coefficients based on the
principle of equivalence has been selected (i. e.,
the equivalence operators Oy, 0., . . ., 0, are de-
cided upon), and that what we desire is a formula
expressing the result of some given operation O

when performed on f(z), where O satisfies the
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conditions imposed on the O; in section I1I. Let
the desired approximating linear combination of
the u; be

],:ZO Ajuy(2),

in which the A’s are coefficients to be determined.
Then the principle of equivalence gives the 71
equations
n
0:f@)=0, 2 Aju;(@).

ji=0
which by the properties stated at the end of
section IIT are the same as

0.f(@)= 2 A,00,(). (1)
It is assumed henceforth that the determinant
\Oguo () Oyug(x) 0, uo(x)
I)_;()Ou,(x) Oy, () 0, u,(x)
Oqi () Oy, () O0,u,(x)

does not vanish.  Clearly the n-1 eq 1 determine
the coefficients A; uniquely.

Our objective is to express the result of the
operation O applied to f(z) by means of the same
operation, (), applied to the approximating
function ZAu,(x), together with a remainder
term, R, denoting the error of this approximate
representation. That is

Of(x)—0 2 Aa(x)=R.

When the values of the A; as determined by
eq 1 are substituted in the expression for R, the
left-hand member may be written in determinant
form, and we have the general expression for the
error term

? Ofx)  Oof(x) O, f(x) 0,.f(x)
| Oug(x)  Ogug(x)  Oyug(z) . Oyug(x)

»]1) Ou(@) O O . . . Oan(@) =R
Ouy(z)  Ogin@) O . . . Ogin(2)

Formula 2 provides the explicit means for setting
up any linear approximation formula when the
desired operation O, the basic set u,(z), and the
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rule for the coefficients based on the principle of
equivalence have been selected.

It is obvious from formula 2 that R vanishes
whenever f(x) is any linear combination of the
basic set {u;(x)}. Also, R vanishes if the operator,
0, is any linear combination of the operators O,

O, ..., O,
V. The Operator R

Since we have assumed that the operator, O, is
expressible by means of Riemann-Stieltjes inte-
grals just as are the 0, it is clear from formula 2
that R may be looked upon as the result of an
operation of this same general type performed on
the function f(x) and might be called O’f(z). How-
ever, we wish to retain the letter R associated with
the idea of a remainder term, and hence shall use
the notation

R=R[f(x)],

indicating both that R is a remainder and also
that 7 is the result of a linear operator operating
on the function f(x).

This operator also obeys the distributive prop-
erty with respeect to addition so that

Example 2. Lineal element interpolation.

f@) RAED) S (@o)
1 1 0
1 12 Ty 1
D i T 21,
s g 2n 1)z

Example 3. Quadrature formula.

[Zr@dr g g

=G 1 1
2_az
1 liuéi;’— IO -ll
D| &_.s
ﬁ.g = 5 e

B”+1 _a71+1

T

n

i qBk
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R[f(z) +-12(x)]= R fi(2)]+ B[ f2(2)].
Moreover, as we observed at the end of section
1V,
Rlu,(z)]=0, i=0, 1, ... =«

These two properties of £ are essential in the sub-
sequent developments.

A few examples showing the formation of B[ f(2)]
in specific cases will be illuminating. In each case
D is the cofactor of the element in the upper left-
hand corner of the numerator determinant. If
the values 2y, z;, . . ., z, are all distinct it may
be shown that in none of these cases does D)
vanish.

Example 1. Polynomial interpolation.

Here the formula is

f@)  fla)  fG@) .. f(x)]

b 1 1 S
l:r Xy Xy SR x, :!{”-(‘7,,!'
D)2 7 4 s z o

i

| 2 a .- z

f (,I‘,,) f/ (’ n)
1 0 5
Ly, 1
X =R[f@)].
£, 2"‘/!
2 (2n+1)e
fan) |
|
L |
i
|
=R[f(x)].
72 |
N
i ’
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Example 4. Taylor’s series with remainder

f(.l‘) f(q‘o) f/ (x0)
1 1 0
1] ® Ty 1
D i ai Dy
TAC ik R

Example 5. Least square approzimation.

Since any linearly independent set of functions
can be made orthonormal by linear combination,
the basic set itself may be assumed to be ortho-
normal with respect to a given interval a<z=<b.
Then with the abridged notation

J.fu f:fbf(f)'u(x)dr, ete.,

the formula is

f@) S S S ftin
() 1 0 S 0
}jul(r) 0 I .. 0 |=Rl@)
|
w, () 0 0 e 1

A Fourier series with remainder is a particular
case of this example. So also is Least Square ap-
proximation using Legendre Polynomials.

The procedure outlined above evidently has
great flexibility, since theoretically at least there
are infinitely many ways of choosing a basic set
of functions, infinitely many ways of selecting the
rule for forming the coefficients based on the
equivalence principle, and similarly for f(z) and
the operator O.

It should be emphasized that although eq 2 has
been called “an approximation formula’, it is not
necessarily in any sense a “‘good’ approximation.
Only when the remainder term FR[f(x)] is small
enough to be ignored without affecting the desired
accuracy do we call it a good approximation.

VI. The Basic Differential Equation

Since the functions wu;(r) have continuous
derivatives of order n+1 and the Wronskian, W,

Remainder in Linear Approximation

S (x0)

0

=R[f(x)].
0

n!

does not vanish in the interval a<2<5b, we may
construct a homogeneous linear differential equa-
tion

L(uw)=D""'u+ P,(x)D™u+

Pyx)D*w+ . .. +P, . (x)u=0
of order n+1 with coefficients P;(z) continuous in
a<z=b, which has the n-1 functions u;(x) as a

set of linearly independent solutions.
In determinant form this differential equation is

"(NQ 1) ?1'(”) ,u’(n—l) L " (
e U Up T C. |
1 ;
ke T T A= C ullz()
4! |
|
”’(’n +1) u':,“) ?1,(,“71) L. ]1’”

Example 1. For the basic set of polynomials
I, o, .. . 2" the differential equation is simply

i)=& =}

Example 2. For the basic trigonometric func-
tions, 1, cos xz, sin z,
equation is

., cos mr, sin mzx, the

D(D?+4-1)(D*+22) . . . (D*+m?)u=0.

Example 3. For the basic hyperbolic set 1,
cosh z, sinh =z, . . |
equation is

cosh mx, sinh mx, the

DD»*—1)D*—2% . . . (ID*—m?)u=0.

Example 4.

z 2z
e, ¥,

For the basic exponential set
., ¢" the equation is

D=-1)D—-2) ... (D—m)u=0.
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It is of interest to note that in each of these four
examples the differential equation has constant
coefficients. In general, of course, the coefficients
are functions of z. It may also be noted that in
the first three examples above the differential
equation is self-adjoint.

The general solution of the nonhomogeneous
differential equation

L (u’) =¢ (Z) )

is
=3 Con) + [ 6@ ds, G
in which the (s are arbitrary constants and
iu(,(x) Uy () o u(2) i
u(()n—l)(s) ugn—l) (8) ,u'(ln—l) (S)
ICHEAC ()

Uy () wy () cee o w(s)
g, ) —— : @)
ug™ () ui™ (s) cee wP(s)
wr ) o) up = (s)
CIOIRE ON
w® ()

The essential property of g(z,s) is that

oF S {0 at a=s for k=0,1, . . ., n—1
dprd\ ¥ 1 at z=s for k=n. )

VII. The Function ¢(z, s)
For the basic set 1, x, 2%, . . ., " we find that
9@, s)=(x—s)"/n!.

For the basic set 1, cos x, sin z,

sin ma,
gz, s) :[2 sin (?)] /(Zn)!.

For the set 1,
sinh mux,

y— 2n
g(x, s):[Q sinh (”X—?‘Q>] /(Zn !

cosh z, sinh z, ., cosh mu,

506

For the functions ¢ =2H,(x),
g(z, §) =e®* =2 (z—g5)"/n).
For the functions ¢=*L,(z),
g(z, s)=e~*(x—s)"/nl.

For the set ¢, e o GV

g(z, s)=(e**—1)"/nl.
VIII. Expression for the Remainder

Let f(x) be a function with a continuous deriva-
tive of order n -1 in the region under consideration
and set up the nonhomogeneous differential
equation

L) =L(f(2)).

A particular solution of this equation is obviously
u=f(z), and hence by eq 3

S0 =Saada) + f el )

Suppose now that we have some particular oper-
ator, 2, where R is formed for the same basic set
asiseq 6. Applying the operator, R, to eq 6 we get,
in view of distributive property of R,

R[f(x)]=>Sa.R[u;(x)]+R I:I;I L(f(s))g(x,s)ds]-

Since R[u;(x)]=0, 1=0, 1, 7, the first term
on the right drops out. Now R applied to any
function ¢(x) has the form

1")1—_2 eV ()dq.(x),

k<n,
where the g¢i(z) are of bounded variation in

aszr<h.
Consequently

i U L <8>>g(x,s)ds]:

n dx‘l:f L(f(s))g(z, s)ds] dq.(z).

By successive differentiations of the integral and
use of eq (5) at each step we obtain

du U L{fsDgta, >]ﬁf L) gy 903, s

i=

Journal of Research



hence

& [ T09t, 9ds]
" [ D1 S 9t 9ds daa).

It is convenient to define g(x, s) by the conditions

~ g(x, s) for x>
P Lo B
0 for z<s.
Then the functions 0% (z, s) /ozt, =0, 1, . . ., n—1,

are continuous in the square a<z=b, a=<s=b,
and vanish identically in that half of the square
for which z<7s. Hence in the double integral
above we may replace g by @, replace the variable
upper limit z by the constant limit b, interchange
the order of the integrations, and put the summa-
tion under the first integral. The result is

Rl [ 2G6ngt s | [ L) aeds

where we have set
‘ k(b i _ ;
6=2 || oy 7o, i)

=R[g(z, s)].

We have therefore

b
Rlf@)]= f L(f()) Gls)ds, (8)
in which
@s)=R[G(z, 9)]. 9)

Note that R operates on g(z, s) as a function of x,
not s. KEquation 8 provides the desired expression
for the remainder term. It should be noted that
eq 8 is merely a mathematical identity and there-
fore inone sense tells us nothing new. Actually,
however, eq 8 accomplishes the important step
of separating the problem into two parts, one of
which, L(f(s)), is independent of the operator R,
and theother, G(s),independent of the functionf(z).

IX. The Function G(s)

For brevity the function G(s) has been written
as a function of the single variable s, since s is
the variable of immediate concern in the integral
of eq 8. In reality G(s) depends, directly or in-
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directly, also on all the values of z, fixed or vari-
able, that are implied in the performance of the
operation B. When s is larger than the largest z
involved in the operation R[f(z)], the function
(/(s) vanishes identically because for all such values
of s the function g (z,s) is zero by definition. Again
if s is less than the least z involved in R[f(z)]
the function G(s) vanishes identically, this time
because g(z,s)=g(z,s) and is therefore simply a
linear combination of the u;(z), so that

R[g(z,s)]=0.

It follows that the limits «, b, of the integral in
eq 8, may as well be replaced by —o, + o,
respectively.

The behavior of G(s) in the interval where it
does not vanish can best be illustrated by a
number of simple examples.

Example 1. Let the basic set be 1, z, 27, o
let @, 21, @, 23, 24 be five equally spaced values of =
with interval A, let y,=f(z;) and let

R[f(@)]|=ys—4ys+6y.— 4y +y=2"%,.
For this case

g(x,8) = (x—s)*/3!,x>s,
whence

— 1 3 3
G(s) =R[g(@,8)] =37 [(@—s) —4(@a—s) +

6(z—s) —4@—9) + @—5) |,

where the notation (z—s) means that

3 (x—s)? if =8,
(@—s) ‘{ 0 if z<s.
We now see at once that for
T8 <@ Gs)=0
1
I38$ <CL4 G(S>:§!’ (14—8)3
£, =<s< 3 G(é’)=% (24— 8)*—4(x;—s)°]
n=< <1 G(&)=—5; [~4(z—s)*+ (=)
1
Tos < <y G(S):_Sj [(2—5)?]
— oo <L s, G(s)=0.

507



The graph of this function is shown in figure 1.

ah®

31!

Y Xy X2 X3 ;

Ficure 1.

Thus it is seen that G(s) consists of four ares of
four different third-degree polynomial curves
joined together continuously and with continuous
first and second derivatives.

Since we started with R[f(z)]=A%,, we have
shown that

xy= [ 1096,

when G(s) is the function just described.

Example 2. Let the basic set be 1, z, 2% 2%, o,
let @y, a1, 2, be three equally spaced points with
interval &, and let

I ’ ’ ’
RU@)=y:—yo—3 Wst+4yi+v0)-
(This is equivalent to Simpson’s Rule).
For this case

g(@,8)=(a—s)"/4!
whence

(%_8)1

G(s)= (12—3)4;

h 3 3 3
~3%3! [(ze—s)"+4 (21 —8)"+ (x0o—8)].
We have then:

r<s G(S):O
—8)! h(z—s)?
n=<s<z, G(8)=(x2418> a0 (?)zzng)
—8)* | hzo—s)?
ro=s< G(S):(IO4!S> + (5;(38')
— <8<Z0 G(S) :0

The graph of this function is shown in figure 2.
Here G(s) consists of arcs of two fourth-degree
polynomials joined together with third-degree
contact.

Recalling the original definition of R[f(z)] in
this example we see that
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h !’ r ’ *
=y Wittt = [ y9 6 66)ds.

The right-hand member of this equation is there-
fore a measure of the error of Simpson’s rule in the
special form chosen here.

Xo Xy X2
| | |

Figure 2.

Example 3. In the two preceding examples we
have started with a known operator, R, and have
derived from R the function G(s). Now that we
see something of the character of G(s) in the case
of a polynomial basic set, it is clear that we could
reverse the process—i. e., start with a G(s)
satisfying suitable conditions as to degree and
continuity and derive from it the operator R.
To illustrate this procedure we start with

A(s)=0 if o =<s,
G(8) = (11 —8)3(s—0)® if xp=s<uy,
G(s)=0 if s<w,.

Here G(s) is a polynomial of degree six, so that
the basic set is 1, z, %, 2, a*, 2°, 2% the differential
equation is D" u=0, and

RU@I= [ 0@ Ta— Teods

= 06 =92 —ads.
Now G(s)=G"(s)=G""(s)=0 at s=u, and at s=u,.
Q" (2,) =6h° G (z,) = —6h?
G (z)) =—T720  G®(2))=—T2R°
G® (z,) =—360h
G®(z,)=—720.

G (25) =360k
GO (2)=—"720
Integration by parts gives accordingly
R[f (@)]=6R[f""" (21) +f""" (x0)]
—T2Wf"" (@) —f"" (20) | 4-360A[ f' (1) +f" (20)]
—720[f(z:) —f (o).
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Transposing and dividing by 720 we obtain the
formula with remainder term

) —Fzo) = [ (@) ' (a)]— e [ () —F"" (@) ]+

ool =g [ 1 (6) 0= (5= ds.

This formula might be looked upon as the first
few terms with remainder of a sort of two-point
Taylor expansion. It can be used in successive
approximations to secure a starting value in the
step-by-step integration of a differential equation.
Its virtue lies in the fact that while it requires only
the first three derivatives it is as accurate as a
Taylor’s series using the first six derivatives.

This example illustrates that fact that G(s) is a
kind of generating function from which the parti-
cular operator R associated with G(s) can be
obtained by carrying out the integration

f 7 e () G(s) ds.

It is this property which suggested the notation
G(s).

Example 4. In certain instances it may be
easier to determine the contact properties by
which the ares composing the function G(s) are
joined and to construct G(s) from these data
rather than to compute R[(z—s)"] directly. An
instance of this is the following: Let the basic
set be 1, z , ", and let R[f(x)] represent the
difference between f(x) and the best n-th degree
polynomial approximation by Least Squares for
the interval (—1, 1). We shall suppose that z
is in this interval. A brief examination will show
that G(s) is of degree n in z, of degree 2n-1 in s,
vanishes at s=1 to the same order as (1—s)"*!,
vanishes at s=—1 to the same order as (1-+s)*",
and if Gk and Gy, are the polynomials to the right
and left respectively of s=uz, then

These data determine G and G, completely and
after considerable algebraic reduction it is found
that

_8n+1

G(s)= 22”“%'[22"1107(11 %(lf’{“ 1)*(x—1)* %(l—{—s)k]y
for <s<1.
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The foregoing examples furnish an idea of the
character of (Gs) when the basic set consists of
polynomials.  Similarly when the basic set is
trigonometric we would expect to find that G(s) is
composed of trigonometric arcs welded together;
for the exponential case, ((s) would be made up of
exponential arcs, ete.

X. Computation of the Error

As has been shown, the remainder is of the form

RU@I= [ L0 s,

If a<s=<b is the interval in which G(s) is not
identically zero, we have

| R[f(@)]| <MK(b—a), (10)

in which
M=max|L(f(s))|in a<s=<b,

K=max|((s)|in a<s=<b.

The inequality 10 provides a bound for the mag-
nitude of the error in all cases.

In many particular problems this result can be
considerably improved. For example, if G(s) does
not change sign in the interval (a,b) we may apply
the law of the mean for integrals and write

RU@I=LU®) [ Gods, (1)

where a<’¢<’h. Note that this is the case for
examples 1, 2, and 3 of section IX. Since in
those examples we have the explicit expressions
for the several arcs of which G(s) is composed,
there is no difficulty in performing the integration
over each arc and thus we can obtain the actual
value of the integral

fm G (s)ds.

However we now show that the value of the above
integral may be obtained from the operator R
without making any use of the explicit form of
G(s). Let w(z) be any solution of the differential
equation

L(w)=1,

and replace f(z) in eq 8 by w(z). The result is

v

Rw(zx)]= G(s)ds.

— @
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By using this result in eq 11 we have
R[f(@)]=L(f(&) R [w(x)], (12)
provided G(s) does not change sign.
XI. Polynomial Approximation
For the polynomial case where

L =",

a particular solution of L(w)=1 is
w(x) ="t/ (n+1)!.
Hence we have the theorem:

if, (a) the basic set is 1, , ., " and
(b) the function G(s) does not change sign,
then the error is

RIS BRI, (13)
where a<£<b.

This result contains many well-known expressions
for the error as special cases. For example, in
the case of polynomial interpolation eq 13 re-
duces to

RO -2 @—a) -

. (x—a,).

In the type of interpolation where both f(z) and
f’(x) are given by the approximating polynomial
at the given points, eq 13 becomes

RO~ s =) a—a)? . .

. (@—a,)
In the case of Newton-Cotes quadrature formulas,
eq 13 also gives the same results as those obtained
by the use of Bernoulli polynomials.

Example 1. In the case of Newton’s
eighth’s rule” in the form

“three

3h ., ; S
Ys—Yo—g (W33 1) =B (),
the basic set is 1, z, 2% 2% z*, and the points are
To, Lo+ h, To+2h, 2o+ 3h.

There is no loss in generality if we take z;,=0,
since the formula is independent of any particular
location on the z-axis. Then

510

Rl — {35—%’(34+3><24+3 1440 }lﬁ: — /2,

and the error turns out to be

(5 ghs 3h5 (6)

Here, and elsewhere below, the argument of the
derivative in the remainder has been suppressed.

The theorem also applies to a wide variety of
approximate formulas that are not commonly
treated in texts on interpolation and numerical
integration, and to which the customary methods
for obtaining the error do not directly apply.

A few such formulas, together with error terms,
are listed below.

b/ , , h'_’ . h5 (5)
(1) yn_"yn——1:§ (yn_}_yn—l)_ﬁ (?/n —Yn- 1)+ 720 .

k ’ !’ h2 ’ 124
@) Yn—Yr1=3 W tya1) =1 (=)

e /// ’e }07']/(7)
i =
ke,  hy®
3) Y= 4(4y"+m 16y, +y._1) +— y ___¥]?§,0.

2h 7 ’ r
(4) y"+2:y‘ﬂ+§ (5yn+1~yn_?/u—l)_2h2yu

Thiy®
L

b/ ol ’ ’ '
(5) '.'/n+1:?/nal+]5 (7Y +16y,+7y,-1)

2 ’ h7y(7)
15 (Z/,.+1 Yn-1) +4'72g'

3h ,
(6) Yn41—2Ynt+Yn1= 8 Wnt1—Yn-1)

8,/ (8)
Y

—}!/E( r 8 r I/l + h
24 Wnt1 8%, T9.20) T0450°

h ’ ’ ’
() Ynr=Yn-1+705 @lynn+128y,+41y,)

2h2 ’ n nr T (44
_g (yn+1 Yn- l)+315 (yn+l+16’l/n +yu—1)

hlly(ll)
130,977,000

These formulas have applications in the numeri-
cal solution of differential equations.
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XII. Future Investigations

So far, the possibilities of securing usable re-
mainder terms by the methods of this paper have
not been fully explored. It is, for example, un-
known whether these methods will give practically
useful forms of the remainder for the case of
polynomial approximation by Least Squares, for
the case of Fourier series, and more general
Fourier type expansions. These cases have, of
course, been extensively studied by Dunham
Jackson and others by using a very different line
of attack.

Another matter deserving attention is the dis-

Remainder in Linear Approximation

covery of general theorems by which it can be
determined for whole classes of operators whether
or not the associated function G(s) changes sign.
For we have seen that when we know that G(s)
does not change sign the evaluation of the magni-
tude of the error is considerably simplified. On
the other hand, if it is necessary to compute G(s)
in order to determine whether or not G(s) changes
sign, the benefit of this simplification is consider-
ably reduced. Except in a few special cases such
as polynomial interpolation, no such general
theorems are known.

Los AncerEs, February 25, 1949.
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