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Generalization of S. Bernstein's Polynomials to the
Infinite Interval

By Otto Szasz:

Let P(u,z)=¢- wZ“‘”"f( ) oS0

The paper studies the convergence of P(u,z) to f(x) as u — .

The results obtained

are generalized analogs, for the interval 0<z < =, of known properties of S. Bernstein’s

approximation polynomials in a finite interval.

1. With a function f(#) in the closed interval
[0,1], S. Bernstein in 1912 associated the poly-
—t)"*f(w/n), n=1,2,3,- « -

nomials
3(o)ra
(1)

He proved that if f(f) is continuous in the closed
interval [0,1], then B, (t)—f() uniformly, asn— .
This yields a simple constructive proof of Weier-
strass’s approximation theorem.

B.() =3

v—0

More generally the following theorems hold:

Theorem A. 1f f() is bounded in [0,1] and
continuous at every point of [a,b], where 0=a<]
b<1, then B,(t)—f() uniformly in [a,b]. (See
[6], p. 66)".

Theorem B. 1f f(t) is bounded in [0,1] and
continuous at a point 7, then B,(r)—F(r). (See
[3], p. 112).

Theorem C. 1f f(t) satisfies a Lipschitz-Hélder
condition

then [f(t)— B, ()| <c.n™™?2 ¢, ¢, constants (see [7],
p. 53;4). B,(t) is a linear transform of the func-

tion f(t); for the infinite interval (0,«) we define
an analogous transform:

P =e 3 o )fol), ©>0%  (2)

! Figures in brackets indicate the literature references at the end of this
paper.
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We shall prove corresponding theorems of approx-
imation for this transform; u— « corresponds to
n—wo in eq 1. We also sharpen theorem B to
uniform convergence at the point 7.

Definition: A set of continuous functions P (u,z)
is said to converge uniformly to the value S at a
point z=¢, as u—>= if P(u,, z,)—S, whenever
x,—¢ and u,—>®, as n—>o. An equivalent for-
mulation is: to any e >0 there exists a §(e) and an
7(6, ¢ so that |[P(u,z)—S|<e for |z—¢|<é and
w >,

2. In this section we introduce some lemmas
for later application.

Lemma 1. For N >0, u >0,

,u/l)
) ol =2, 0%
ool 1)!<)\ e,

The following identity is easily verified:

u.

> 0—w* Y @)

it follows that
v 0 v
N B> (0—w)? =
lo=u[zx V7 »=0 0!

This proves lemma 1.

Lemma 2. For u=0

; lo—u| EZ' < ue*. (5)

2 M. Kac also considered the transtorm (2) independently, from a similiar
point of view.



By Schwarz’s inequality and by eq 4

this proves lemma 2.
Observe that

> (0—u) =0, (6)

thus, if » is a positive integer

3% ol =3 @) Ji+ 3 0—w) j=
2; —v)~ QuZ—-—"uv;l
o u" 2V o

= Var
by Stirling’s formula. Thus the estimate (5) is
the sharpest possible, except for a constant factor.
3. Theorem 1. Suppose that f(x) is bounded in
every finite interval; if f(x) =0(z") for some k>0
as z— o and if f(x) is continuous at a point {, then
P(u:f) converges uniformly to f(x) at x=¢.
Consider

(P w3 ) 1)) =2, (f o) —1 @)} (wo)’ 3y

=8,+28;, say

loju—z|ZL6  |v/u—z|>0

and assume that [z—{|<é.
Let

max |f(z)— f(§|=m(s,§=m(9),
for

then m(5)—0 as 6—0. Now
J/uw) —f@)=f(/u) —f )+ (&) —f@),
and

o —f=t—gta—f. (7)

=6

e ’%—x <5,

hence, from eq 7

[v/u—i| = 26
and

1(ofu) —f @) | < m(28) +m(®) S2m(25).
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Hence
Sil<2m(25) 33 U’ om(25)6.
Next write
S,= o =8;+8,, say.
ARTIE)) v>u(z+-68)
Then
> (W) =
Si<, 3 O form—@).
Let
sup |f(z)|=U(®), for <.
Then :
Sil<2UG+s > &)
ur—v>us b

Applying lemma 1 with \=us, we get

wre®

IS|<20G+8) Lo =20 +4) 27

Finally, assuming u(z-6) >k,

(ux ) (ux)” 2
S;=0 z*
! <v>u(1:+6) ol ) <v>u(z+5) (U— ))
(3, )
> (z+8) —k /J'!

We apply again lemma 1, with N=ué—k >0,
then

ueur
ud—k)?

uxe*r

50 (+ o) (@

Summarizing, we find

Letting u— « for a fixed 3,

aly e

P(u; f(x)) —f (@)

limsup [P(;f(2))— f@)] < 0(m(28)),u—> o, [2—(| <5,

from which our theorem follows.
It can be shown easily that uniform convergence

at each point of a closed set D implies uniform
convergence over the set ). A similar argument
applies to the transform (1), thus sharpening the
theorems A and B.

4. Theorem 2. 1f f(x) satisfies the Lipschitz-
type condition



|2y —a: |

(@ t25)P”’ 0t <z o,

@) —F () | vy (8)

v, p constants, 0<p=1,

then
| P(u; f(x)) —f(x) | < yu~"?,

uniformly for 0<z< e, as u—>.

We have, for p=1

|Pus /) —f@) | Se 35 () 5, fofu) —7@)]

—uz S @v !v/u_ﬂ @ L () |77—u,rf
(U/u+x> ‘\ (l)—}-ux)z

<’Y€ Z(ux lo—uz| = X,

wu
by lemma 2. This proves theorem 2 for p=1.

Now from Hélder’s inequality, for 0< p<1

(@A (uz)*

e | P (u; ﬂ—f(x[~;—(m @)

)i

|f (/) —f(z) |

(uz)"

| Fofn) @)+

Assume thaﬁ

|f @) —f (@)

then

e P(u; f)—f @)| < exp ( <1—p>um(z

1
<vexp (=),

u

This completes the proof of theorem 2.

Let p=1, and f(@@)=c—=z, for 0=z=¢, ¢ a positiv
1s satisfied.  Furthermore

’To .T][P

<Y Gfaym

(ux)® |v/u—z|

“(vjutx)"

_— 4
= {uxe’”) =yu P4
.

e constant; f(x) =0 for z=¢. Now the condition (8)

W5 N1 (@ =Plw; H=e* 3 U c—ofu) = e 3 (ue—r) 2.
Let [uc]=Fk, then . .
wiP(u,e) >u"e ! ;}) (k—wv) o
and, from section 2
k v IL}L+1
20y =gr~(5)
Thus Now
lim inf u? P(u,e) >0, P(u;f) = Z wf) 4]
U—© 0 V!
This proves that for p=1 the order of the estimate df 2
in theorem 2 is the sharpest possible. We do RO Rule T
t know of imil le f 1. For = ()T
not know of a similar example for p< or Pusp,) —e-s Z gwc) 2 P

Bernstein’s polynomials an exact result has been
given by M. Kac [4].

5. Suppose that f(z) is continuous in the infinite
interval (0,).

Let

z=log —}; B=ir=1l,
f@)=f(log 1/t)=¢(t) is continuous in 0=t=1.
Given e >0, we can find a polynomial Zn’_‘, it = A

so that |¢(t)—p, ()| <e. It follows that
|f@) —pale™®) | <e, 0<a< .

e B, S e e Ry

1
=e " ; ay exp (ux exp (—k/u))
n
:2 ake—ur(l—expf-k/u),
0

Clearly for u— o, P(u;p,)—p,(e) uniformly in
(0, ) ; furthermore

J@) =pa(€™®) +eu(@), ea (@) [<e,
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and
P(u;f) =P, f—pa) +Pu,pn).
Here
[P (u; f—pa) [<e,
hence

IP(u; f) —f(@)|<e+|P(u; pn) —f(@) [ S et
|P(w; pn) —Pale™®) |+ |pa(e™™) — 1 (@)l
Thus, the theorem:
Theorem 3. 1f f(z) is continuous in (0, ) then
P (u:f)—f(x) uniformly in (0, «).
6. Theorem 4. 1f f(x) is r-times differentiable,
fO(@)=0(z*) as z—>o, for some K >0, and if

@ (z) is continuous at a point §, then P (u;f)
converges uniformly to f(x) at z=¢.

We write 1/u=Hh, and introduce the notation
Af (vh) =f(0+1h) —f(vh).
A%f (vh) = AAS (vh) =f(0+2h) —2f 0+ 1h) +f (oh).
ATf (vh) =AA™"'f(vh)
=3 (1 (},) f@T kL), rz0.

P )= Qi) = 35 1ot (1) Sah.
Lemma 3. We have
e Qs 1) =33 sy 10t ()
da’ Z 0 ‘\ & ’
Differentiation gives

Lawn=en3 25 (5) Hen-

-Ili Gl é P (%) f(vh)

:}% el i 51, (%)v Af(vh).

The lemma now follows by induction.
It is known that

%@2 :f(r) (77) ’

where

vh<q< (v4r)h.

Now
D,Qh; /) —f (@)
e~ SPTTA (0h) —f T (&
= ;{ !

G
=e"2/h{{'§f‘—zlga+l‘§zl>5},

where we assume that [x—¢|<6. Using the same
device as in the proof of theorem 1, we get theorem
4. For Bernstein’s polynomials see G. Lorentz
[5], and his reference to Wigert’s work.

For p=1 theorem 2 and formula (6) suggest the
following proposition:

Theorem 5. 1f f(z) is bounded in every finite inter-
val, if it is differentiable at a point >0, and if
f(x)=0(z") for some k>0, z— =, then

wi{ P (u; f(§)) —f(§) } =0, u— .

JE+h) —f(©) —f
h

Let
&) | =n®, H)=n),

max

then p(6)—0 as 6—0. We may write

SE+R) —f©) =hf' ) +he(s, b),
where
le(¢, h) | = u(d) for |h| <.

Now

—u ( Iv 4
Pw; )~ = 3N o) o)+

(%_f) eu(u)}’

where

|&(u) | < p(8) for

v
il § |<s.
Utilizing formula (6) we get

P f) 1) = 33 L o—up)e

:lg_uf

{ + }.
u o—ut|<du  [o—ut|>du

Using the same device as in the proof of theorem
1, and employing lemma 2, we can complete the
proof of theorem 3.

The result can be generalized to higher deriva-
tives. We restrict ourselves here to the case that
f7(¢) exists. Thus,

FGHR) —F©) =1’ (©)+5 B (©) +e(t, B},
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where
et 1)

Now

Pluif©))— = 3 B (1Yo +

|=9() for |h| =4, and 5(5)—0, 6—0.

1 (2=0)r® e S8 p—prat,
where
600 [S96) for [2—¢| <. )
It follows from formulas 4 and 6 that
Pus;f ()~ () =5 1" (0)+
u( ]
o 2 o—upre ),
or
w{Pu;)—f ) }= ,é’f”(s‘H—
-uf o
S 3 oy
We write
> uf) e, () =
0 [o—ug|=us [U—u§|>ui
= T1+ TQ, say.
From (9) and (4),
[T <n(d)uge. (10)
Hence,
e 1
627 | 71| < 5 (0.
Next write
T2= :T3+T4, say,
v<u(¢—d) v>u(to)

and note that

s(2—1) a@=1(%) /€ — @lu—p)r ©—
s(&-0) 7.

sup [f(@)[=M(),z=¢

Let
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then

ITI<{2M@) +lf O+ 27761

ol
qu Z—“ (’LL{)',

uE—v>ud

We now employ the formula (see e.g.[2], p. 200)

e

=0 (ew(=3 %))
oo (=4 5 )}

=0(z*), we have for » >u¢

o
le— ul>6u ‘

It follows that

us‘)"_

e
u{—v>u5

so that

€

Finally, in view of f(z)
and £>2

k
(v—uf)?e, (u)=0 <u2 1?:_")’

) (1 u(>u6

2 (1)

!

hence

T4:O ( 2
v—uf>ud

=0 < =
v—ut>ud—k

Thus,

(7 k

(ug)"’

!

o )!>
ofon(e )

e o [ —L 52 ).
»rurT‘i—O {u(xp( 3§6u>}

Summarizing, from (10) and (11),

lim sup [u{P(u; f(6)—f(©)} —g tf" ()] <5.

(1)

But 6 is arbitrarily small, hence the theorem:

Theorem 6. 1If f(x) is bounded in every finite
interval, if it i1s twice differentiable at a point
¢ >0, and if for some k>0 f () =0(z*), x— o, then

w{P (u;f ({) )—f(i')}—9 (), u—>®.

Analogous theorems for Bernstein’s polynomi-
als were given in [1] and [8].

8. In the terminology of probability distri-
bution the Bernstein polynomial corresponds to
the binomial distribution. The distribution fune-
tion is

= () ra—n-=F0);



the linear functional B, (¢;f) is

|, remiF. =21 0m (§) #a—om.

Similarly, P(u;f) corresponds to the Poisson
distribution; the distribution function is

é%? " :G(7'7$);
and
Pu;f)= f flrjw)dG(r,ux) :Oe Uz @-@ fw);

here the term with the largest weight has the
index »~uxz. In the Bernoulli polynomial the
term with the largest weight has the index v~in.

If instead of a function f we consider a sequence
So, S, Ss, . . ., then to the transform (1) cor-
responds

> (Z) (1= 1)""S, n—> ©

r=0 \

which defines the generalized Euler summability,
and to the transform (2) corresponds

o] T')
e g o1 St @,
which gives Borel’'s summability method.

9. To approximate a function f(z) over the
whole real axis, we write

f@y LR D JOHZD g 0y s, sy
obviously
F1(—0) =@, i(—5) = ().
Now
P(u; N =Pw; f)+P@w;f;
here

P fy=e 35 U fitofu),
and if we change z into—z, v into—u, we get
P(—u;fi(—x)) =P (u;f,()),

so that our previous results are directly applicable.
Similarly,

P(—uw;fy(—a))=—Pu;f,(x));
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thus for negative values of z we need only change
w into —u, and revert to our previous results.

10. It follows from a well-known property of
the Beta function that

(5) J e

hence

) "tdt= ——=0=0,1, n;

1
n+1

|, Bawai= 15 3 10,

so that for any Riemann integrable function

ﬁ ' B.(t)dt— ﬁ @t

Similarly, at first formally
fm P(u;f)dxzi E;)f(v/u) fwe"’"x”dx=
0 0 V! 0

XZJf(v/u) 5

S =

the interchange of integration and summation is
legitimate if the series > f(v/u) is convergent.
Thus, the formula

[, Panae=L 337 0w
A

is valid if both sides exist. However, it is a deli-
cate question under what conditions

m 3 327 @/ @

An extensive literature deals with this question.
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Numerical Determination of Characteristic Numbers '
By W. E. Milne

This paper represents a contribution to the problem of characteristic values and charac-

teristic solutions of ordinary linear differential equations.
The partial differential equation is then approximated by a
The problem is now to find those frequencies in which

This is done by finding the roots of a trigonometric
The method is applied to a number of interesting cases that

vibration problem in z and ¢.
difference equation in both entries.

a separation in z and ¢ takes place.
expansion of certain order.

The problem is conceived as a

illustrate various types of situations encountered in problems of physics and engineering.

An improved method for obtaining the latent
roots of a matrix has been devised by Cornelius
Lanczos of this Bureau. He has shown further
how this process may be used to secure the char-
acteristic numbers (eigenwerte) belonging to a
boundary value problem associated with an ordi-
nary linear differential equation. The purpose of
this note is to present a procedure for calculating
characteristic numbers, based essentially on this
method of Lanczos, but modified in such a way
as to provide a simple numerical routine for the
computation. A number of numerical examples,
worked in full, illustrate the procedure and give
an indication of the accuracy attained. The
exposition is limited to the case of differential
equations of the second order, but the method is
capable of extension to cases of higher order.

L. The problem. Lt

L@)=Py(@) T4+ Py(@) 11 Py,

The problem before us is to find those characteris-
tic values of X\ for which the differential system

L(u)4+Nu==0

u+g ZZ:O at z=a

(1)
u-t+G (_lu:() =10
dx
possesses nonzero solutions in  the interval
W=TE=0)

Problems of this type arise in many different
ways in mathematical physics. For example,
they may occur in connection with the heat
equation

DY

if we assume particular solutions of the form
4 -2\
V=) eadis

or in connection with the wave equation

o’V
W:L(V)’

!'The preparation of this paper was sponsored (in part) by the Office of Naval Research.

245



	jresv45n3p_239
	jresv45n3p_240
	jresv45n3p_241
	jresv45n3p_242
	jresv45n3p_243
	jresv45n3p_244
	jresv45n3p_245

