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Random Walks and the Eigenvalues of Elliptic
Difference Equations

Woltgang Wasow !

This paper is concerned with the application of Monte Carlo methods to differential

equations of the form, V2u-g(x,y)u=0.

It is shown that under suitable conditions the

Monte Carlo solution converges and gives the solution of the difference analoz of theabove

equation.
I. Introduction

The aim of this paper is to describe and investi-
cate a random walk procedure that can be used to
approximate the solutions of elliptic partial differen-
tial equations containing the unknown function
itsell and not only its derivatives. The method also
leads to a scheme for the numerical determination
of the lowest eigenvalue of such differential equations.

As a computational technique, our method is
somewhat similar to the one used by Donsker and
Kac [3] 2 for the calculation of the lowest eigenvalue
of Schroedinger’s equation, but the underlying
theory is more elementary than the theorem on
Wiener integrals of [4] used in [3].

Like all computational methods based on random
sampling, those described in the present paper re-
quire the use of a high-speed calculating machine.
Numerical tests are in progress.

The random walks considered lead to difference
equations. By virtue of known results [1], [6], the
solutions thus obtained are, for small step length,
approximations to the corresponding solutions of the
limiting differential equations.

Let the symbol A denote the finite difference ana-
logue of the Laplace operator, i. e.,

Ay (x,y) :%2 [w(z—+hy)+u@—hy)
o,y )+ Gy —h) — 4 ().

Then we shall be concerned with the difference
equation
Au+g(x,y)u=0, (1)

where ¢(z,y) is to be sufficiently regular to guarantee
convergence of the solutions considered to those of
the corresponding differential equation.

Everything that follows can be easily extended to
more than two dimensions. Extensions to other
elliptic differential equations are also possible.

In the sequel, the word “point”, without further
specification, is meant to refer to the points of a
square lattice with mesh length 4.

I The preparation of this paper was sponsored (in part) by the Office of Naval
Research. . } ;
2 Figures in brackets indicate the literature reference at the end of this paper.
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II. Random Walk Procedure

Let B be the interior of a finite domain whose
boundary points form the set €. Consider the
problem of finding the solution of eq 1 in B which
assumes prescribed values f(S) at the points S of C.
This problem will be shown to be related to the fol-
lowing random walk procedure.

Let £(P) be a positive function defined in B. A
particle of mass 1 starts from an inner point P.
Before moving to one of the four neighboring points
P;, (7=1, . . ., 4), its mass is multiplied by the
ralue of k(P) at P. Then it moves to a neighbor-
ing point, all 4 points having the same probability
14 of being chosen. After a certain number of steps
the particle arrives for the first time at the boundary,
say at the point S. Consider now the random
rariable which is equal to the product of the mass
upon arrival at the boundary by the value of f(P)
at that point. We claim that, for appropriate
choice of k(P), the expected value of this random
variable—if it is finite—is the solution of eq 1 as-
suming the values f(S) on C.

In the description above, the infinite random walks
which never reach € have been ignored. This is per-
missible, since the total probability associated with
such walks is zero, (see [1], p. 44).

Without loss of generality we may restrict the dis-
cussion to the special boundary values

Lifor S=1F
J(S)=dR,S)= (2)

0 for S=R
where R is some fixed arbitrary point of €. For, if
we denote the expected value upon arrival corre-
sponding to these special boundary values by £(P, R),
then the expected value for any boundary function
f(R) is RZ( E(P,R) f(R). If E(P,R)isindeed the solu-

tion of eq 1 assuming the values 6(R,S) on the

boundary, then it follows immediately that
Ry‘_(,vl'](l’,ff) f(R) is the solution with boundary values
S(S).
Theorem 1: Set
Re b ’ h* ) _1 ‘
kP =(1-F o) (3)
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and let h be so small that k(P)>0 in B, then the func-
tion E(P,R) described above satisfies—if it is finite—
with respect to P the difference eq 1 and the boundary
condition 2.

Proof: Let {L,(P,R)} be the set of all possible
paths starting at P and reaching ' at R on the nth
step. The probability of the particle moving along
any such pathis4=". Let m,(P,R) be the mass upon
arrival corresponding to a given such path and write

WP R)=p >

{L,(P,R)}

m,(P,R) 4)

the summation extended over all paths of {L,(P,R)}.
This quantity e,(P,R) is the expected mass upon ar-
rival on O if only arrivals at R and on the nth step
exactly are counted with their actual mass, and all
other random walks ending on (' are considered to

contribute the mass zero. If we set
E.(P,R)—=>" e(P, R) 5)
=0
then
EP,R)=1lim E,(P,R) (6)

n—o
provided the limit 1s finite.
Let P;, (j=1, - - - 4), be the particular neighboring
point of P reached by the particle at the first step,
when following the particular path L,(P,R); then

maP; R =kP)mn_,(P;,R), for n>0,  (7)
if m, ,(P,,R) is the mass upon arrival at R corre-

sponding to that path of the set {Z, ;(P;R)} which
is part of L,(P,R). From eq 4 and eq 7 we have

4

(WP R= X 3 kP, (P, B), n>0, ®)
j=1{Lx1(Pj,R)}

and, therefore,

en(P,R :-’»“(P Seua (PR, 10, (9)
Jj=1

By means of definition 5 this yields

E@RR-"DRE.@B 0
or, upon passage to the limit,
EP, 1{):%3? ]5;1 E(P,R). (11)
This is readily seen to be equivalent with
AE+4(§2ZL) E=0in B. (12)

For a boundary point S it follows from the definition
of ¢, (P,R) that

eo(S, R)=6(S, R) (13)
if 6(S,R) denotes the function which is 0 for S#R
and 1 for S=R. For n >0 we have e,(S,R)=0.
These facts and eq 12 lead immediately to the state-
ment of the theorem.

Remark 1. The function £(P, R) can be considered
the finite analog of the normal derivative of Green’s
function, since the solution that assumes the bound-

ary values f(R) can be written in the form
> VE(P,R) f(R) which recalls the formula
ReC

AP gl s
QL*JC T‘f(l{)({é

from the theory of partial differential equations.

Remark 2. 1t is well known that the probability of
a particle leaving the domain B at a preassigned point
R of C satisfies the difference eq 12, if the particle is
subject at each step to a probability of “dying” equal
to 1—k(P). The corresponding function g(P) is then
everywhere nonpositive. In the next section it will
be shown that the procedure of the present paper is
applicable under considerably milder restrictions on
g(P). A further advantage of our method is that at
each step only one random decision has to be made
and not two as in a random walk involving the possi-
bility of dying.

ITII. Validity of the Procedure

The statement of theorem 1 includes the assump-
tion that (P ,R) is finite. In this section we shall
prove that this is the case, if and only if the eigenval-
ues of Au—+g(P)u in B are all positive. Here and in
the sequel we mean by the eigenvalues of a linear dif-
ference operator L[u] in the domain B those values of
\ for which the problem

Liul 4+ Mu=01in B, u=0 on C

has a nontrivial solution. The eigenvalues in this
sense are the negative of the eigenvalues of the matrix
formed by the left members of the system of linear
equations represented by L{u]=0 m B, u=0 on C.
It will simplify our terminology if we call the negative
of this matrix the matrix “belonging to L[u].”

The proof of the theorem mentioned requires some
preparations.

Lemma 1: The eigenvalues of —Au —|—<g —%) U are

the same as those of Au-gu.
Proof: The matrix A belonging to

Au-+gu=0 in B,
is of the form A=G+H. Here, ¢ is a diagonal
matrix formed with the values of —g(P) —+—%y (P in B).



The matrix // has in tlw row belonging to any given

hz in ever vy column corre-

sponding to an interior neighboring point of P, and
zeros everywhere else.  The matrix A* of the sys-

tem—Au+<(/

point P, the element —

) u=0 is, similarly, given by A*=

G—1I1. We may interpret these symmetric matrices
as belonging to quadratic forms in the variables u(F),
(P in B). In the space of these variables consider
the orthogonal transformation which consists in re-
placing the value of u () by —u(F) in every second
point 7 and leaving % (P) unchanged in all the other
points, in such a way that a point and its neighbors

are always treated differently. This can, e. g., be
done by setting
(@+y)
' (P)= (—1) u(P) (14)

where (z,7) are the coordinates of . This orthogo-
nal transformation changes the quadratic form: with
matrix G- I1 into the one with matrix G—/71. These
two matrices have, therefore, the same eigenvalues.

Now we define an analytic function ¢(P,R ;) of r
by

(P, B; )= 1", (P, R).

n=0

(15)

5 4 ;
We assume throughout that '(/(1))<P’ and therefore

k(P)>0. 'To show that the power series in definition
15 has positive radius of convergence consider the
random walk problem in which g(2) has been replaced
everywhere by max ¢(P), and denote by e,(P,R) and
PeB

kE*(P) the quantities corresponding to e, (P,R) and
k(P) in this new problem. Then, by the definition
of e, (P,R),

0<en(P, Ry <k*"(P) pu(P, R) < I*"

where p,(P,R) is the probability of moving along a
path that leads in exactly n steps from Ve to R.
Hence, the radius of convergence of the series in
formula 15 is at least equal to 1/k*.

The formula 15 may, of course, be interpreted as
the finite analogue of a Lapla(’c tr danonn applied to
the solution e, (P R) of the “parabolic” difference
equation 9. Pumumg this analogy, we find, by com-
bining formulas 9 and 15, for ¢ the elliptic difference
(‘(]lldll()ll

4 il
Kao+96) 4 (1-1) o=0. (16)
Our function ¢ is that solution of the difference eq 16
in B, which assumes the values §(P,R) on the bound-
ary C.

1f we denote by I' the diagonal matrix whose ele-
ments are the values of £(P) in B and by A the
matrix belonging to A¢+g¢, and if we set, for abbre-
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1 . ’
viation, V(l—»;):)\, then I'A—N\/ is the matrix
/

belonging to the difference eq 16. The solutions of
eq 16 are rational functions of N and therefore of 7.
It follows from definition 15 that »=0 is not a pole of
this rational function.

For later use we mention that the poles of ¢ are
simple. For if [ is a matrix such that 1’=T, we
have TA—N=D(DAD—X)D~'. The elements of
the resolvent (DAD—\I)~" of the symmetric matrix
DAD have only simple poles (see, e. g., [7], p. 26), and
this property i1s not destroyed b_\‘ the matrix trans-
formation with the nonsingular matrix ). Hence,
the elements of (I'A—X7)! have only simple poles as
functions of N, 1. e., ¢ has only simple poles as
functions of r.

Lemma 2. 'The number ~~—< ) is an eigen-

value of k(Ad+ge), if and only if r=r, is a pole of
o (P,R;r) for at least one pair of points P R.

Proof. 1 r=r,is a pole of ¢(P,R;r) for some P
4 .
and R then 7 < is a pole of some element of the

resolvent of the matrix belonging to k(A¢+ge).

Hence, this number is an cigenvalue of that matrix.
4 7 1 )

Conversely, let Zfz(lhr be an eigenvalue of

1
k(Ap-+go) and assume that ¢ (£, R ;) exists for all
P and R. In order to show that this implies a con-
tradiction we make use of Green’s formulas for the
difference operator Au. These formulas are (ef. [1])

h >3 [uvetuv,)=—h> vAu—> oT(@) (17)
B C

BEC

and

h > [vAu—ulAw) +Z v (u)—ul'(»)] =0

B+C

(18)

where u,, u,, ete., denote the first forward differences
and where the expression I'(u) is defined as follows:
if u assumes the value %, at a given boundary point
R and the values %, . . . | u,(»=3) at the vy neigh-
boring points of R in B+, then

= L (ul+ . Fu—vu). (19)

Green’s formulas 17 and 18 are valid for any functions
that vanish outside of B4 C. If we substitute in the
identity 18 for v the function ¢(P,R;r) and for u an
(\w(\nvm tor U/ corresponding to the eigenvalue

(l >; it follows that I'({/)=0, identically for

all boum[cmn points R. Substituting U/ for u in the
identity 17 we see that the bilinear form

- oy 4 g it i
1;({ (‘IL‘!‘%[ //1’;/_[.(/+h31{ (1 —,;>] IU% =} (20)

vanishes identically for any choice of the function ».
Taking for » the function that is 1 at an arbitrary




interior point and 0 everywhere else, the identity 20
is seen to imply for U the first order difference
equation

o l’ﬁ-h[g—kﬁé—lé(l——%):l(f:o S et
(21)
Together with

kAU +gU)+25 (1 —’l]) U=0

this yields

hAU —U,—U,=01in B, U=0 on C,

1. e.

U(x—h,y)+U@,y—h)—2U(z,y)=0in B,U =0 on C.

This last difference equation has the unique solution
[7=0 as can be seen, e. g., by calculating its values
from point to point from the boundary inwards.

Since [/ is, by assumption, not identically zero we
have arrived at a contradiction, and the proof of the
lemma is completed. We are now ready to formulate
and prove our theorem.

Theorem. D it g(l’)<% in B, then E(P,R)—
lim E, (P, R) is finite for all P in B and all R on C,if

n—w

and only if all eigenvalues of Au~+gu are positive.
Proof: The difference expression k(Au--gu) is, in
general, not self-adjoint, i. e. the matrix belonging to
it is, in general, not symmetric. But its eigenvalues,
i. e. the numbers X\ for which the problem
Au+tgu+Ne {(Pyu=01in B, u=0 on C (22)
has a nontrivial solution are positive if and only if
those of Au+gu are. In fact, let A be the metrix
belonging to Au—+gu and denote by D the diagonal
matrix whose elements are the positive determina-
tions of £*(P). Then eq 22 can be written in the
form
Au=\D"u,.

If we make the substitution

u=Dv (2

this is equivalent with
DADvy=»0.

Hence N is an eigenvalue of the symmetric matrix
DAD and therefore real. If we write DAD’ instead
of DAD we see that DAD’ is the matrix of the
quadratic form obtained from the one whose matrix
is A by the transformation 23. Since this trans-
formation does not destroy the positive definite
character of a quadratic form, and the same is true
of its inverse, A is positive definite, if and only if
all the eigenvalues of eq 22 are positive.
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By lemma 2, the eigenvalues of k(Au+gu) are all
e . 4 TN o
positive if and only if 7 (1—;) 1s positive for all

poles of ¢(P,R;r), i. e. if these poles are all greater
than r=1, or negative. On the other hand, by the
definition of ¢(P,R;7) the expected mass E(P,R;r)
is finite, if and only if all poles of ¢ are numerically
greater than 1. Our proof will be completed, if we
show that the occurrence of negative poles greater
than or equal to —1 implies the existence of non-
positive eigenvalues of Au-+gu. To show this we

: S ;
substitute )\:)\*—lr? into eq 22 and obtain, after a

short calculation using the expression 3 for k(P),
k[Au-+ (%—g) wl+N*u=0in B, u=0 on C.

In view of lemma 1 and the first part of this proof,
the existence of nonnegative eigenvalues \* is
equivalent with the existence of nonpositive eigen-
values of Au+4gu. On the other hand, A*=0 means

8
A> 72
k(Au+gu), if and only if ¢(P,R;r) has a pole in
—1=<r<0. This completes the proof.

Corollary: If

and by lemma 2 such a X is an eigenvalue of

g(P)=p—V(P)
where p is a parameter, lim £, (P, R) exists, if and

N—c
only if p is less than the lowest eigenvalue of Au—
V(P)u.

Proof: The eigenvalues of Au— V(P)u are obtained
from those of Au-(p—V(P)u by subtracting p.
Therefore the eigenvalues of the latter expression are
positive, if and only if those of Au—Vu exceed p.

IV. Practical Bound for Validity of Random
Walk Procedure

If the method described in the preceding section is to
be used, we have to be sure that the condition of
theorem 2 is satisfied. Since the eigenvalues are, in
general, not known, the following sufficient criterion
may be useful.

Theorem 3: The expected value E(P, R) exists, if in B

) )

where a and b are the sides of the smallest rectangle
with sides parallel to the azes that contains B.

Proof: We substitute for the problem defined by
formulas 1 and 2 the similar problem obtained by
replacing g(P) everywhere by its maximum vy in B,
by replacing the domain /5 by the circumscribed
rectangle B, with sides @ and b, and finally by im-
posing the boundary condition: u==1 on the boundary
C, of B,. Consider the mass upon arrival anywhere
on () for this new problem. Its expected value,

4

1l il 1
~5 " (R

1
gP)<n? (?ﬂ‘z (24)



[, (P)—if it 1s finite—is at least equal to the expected
value (P, R) of the original problem, and it solves
the modified difference equation problem.

From theorem 2 we know that E,(P) is finite, if
Au-+yu—0 has only positive eigenvalues correspond-
ing to the domain By, i. e. if the smallest eigenvalue
p of Au=0 exceeds 7.

The eigenvalues p; of Au=0 in a rectangle can be
calculated in literal analogy to the familiar procedure

for the Laplace equation. (See [2], p. 258). They
turn out to be the values of
a
l=1,2,... +—1
4 (. Jlxh . ,m wh) 2 h
7 15 55 —+sin? 2b S; )
- " m:1,2,...,h—1

Setting /=m=1 and increasing the expression by
substituting the first two terms of the power series
for the sines the proof of our theorem is at hand.

V. Green's Function

Using the procedure and the notation of the pre-
vious sections let ¢, (P, (/) be the expected amount of
mass that passes through an inner point ¢) on the
n-th step of a walk that starts at P and ends on the
boundary C. Clearly,

Ggo(P, Q)=38(P, Q), g.(R, Q)=0. (n>0), Ron C. (25)

The difference equation

. k(P) & ; o
.(]u(l ) (J); 4 Z} Gn- |(I 7 Q), ll>() (2())
j=

for g,(P, @) is derived precisely like its analog, eq 9.
If we set
n

q.P, Q)= }j) 7.(P, @

v=(

(27)

and

GP, Q)= lim G,(P, Q),

n—ow

(28)
then G(P, Q), if it is finite, solves the problem

Au—+g(P)yu= (P, Q) in B, u=0 on (' (29)

o A
W2k(P)

which corresponds to eq 12.  When there is no indi-
cation to the contrary the symbol A is always meant
to operate on the point P.

The solution of

Au+gu—+f(P)=0 in B, u=0 on (30)
can be written in the form
h? !
uP)=7 6P, QkQSQ. (31)

In analogy with the terminology for differential
equations we shall call the funection

K(P. Q):%fk(@a(lx 0 (32)

Green’s function for our difference equation and the
domain 5.

The following experiment leads to a random varia-
ble whose expected value is w(P) provided G(P,Q) is
finite. '

On every step of the random walk multiply the
amount of mass at the instant by the value of
k(Q) (@) at that particular point and add the prod-
ucts thus obtained. If the cumulative sum after N

. . e -
random walks starting at P is multiplied by 4'Nywo

have an estimate of u(P).
As to the existence of G(P,Q) we have a theorem
analogous to theorem 2.

Theorem 4: If g(l'))<hi2 n B, then ,}13.} aq,.(P,Q) is
finite for all P and Q in B, if and only if all eigen-
values of Au--gu in B are positive.

Proof: Define ¢(P,Q; r) by

WP, Q;1)— % (P, Q). (33)

The convergence for sufficiently small [r| is shown
exactly as in the case of the function ¢(P,R;r).
From formulas 25 and 26, ¢ is seen to solve the
problem

4 1 4 :
k(A\gI/—l—gl//)%—/p(l—r>¢:—h 2, o(P,Q)in By=0on(.
(34)

1t is therefore a rational function of ».  The poles of

r and the eigenvalues ;;172 (1— ]1> of k(Ay+gy) are

shown to correspond to each other, just as in the
proof of lemma 2. The reasoning is somewhat sim-
pler here, since instead of I'((/)=0 we obtain here

immediately DU (P)6(P,Q)=0. If this is true for
pen

all @ in B, it follows that U/(P)=0 and the contra-
diction is at hand. The subsequent reasoning is
precisely the same as for theorem 2.

VI. Random Walks in Unbounded Domains

If B is an unbounded domain other than the full
plane, then the quantity /£(P,R) may still exist. The
function G(P,Q), on the other hand, and its proba-
bilistic interpretation may exist even in the full plane.
We limit ourselves, therefore, to a discussion of this
latter quantity.

Some facts from the theory of infinite matrices will
have to be used. For convenience we summarize all
the definitions and properties used, and add refer-
ences to the corresponding pages of [7].
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(a) If A={aa}, (i,k=1,2,--), is an infinite
matrix, the finite matrices A obtmned from A by
lettlng i and & run from 1 to j only are called the
segment matrices of A, (p. 121). The set consisting
of all eigenvalues of all segment matrices and their

accumulation points is called the segment spectrum
of A, (p. 124).

(b) An infinite vector zi, (=1l --) is called

quadratically convergent, if Z, |2;|2 18 ﬁmte, (p. 125).
=

(¢) An infinite matrix is called bounded, if
there is a constant M in(lependont of n such that

(z P yk> SM- 3 el 331yl (p-124). The

product of two boundo(l matn(‘es exists and is
bounded, (p. 131). For the multiplication of
bounded matrices the associative law is true, (p. 131).
If the segment matrices are normal, 1. e., if APVAE—
A’ A;, then A is bounded, if and only if its sogmont
spectrum is bounded, (p. 124).

(d) An infinite Hermitian matrix is called positive
definite, if there is a positive constant u, independ-
ent of n, such that for all z,

n

>} aur<u Z 2% (p. 124).
k=

It is called nonnegative definite, if
> aprd;>0, for all n and all x;, (p. 124).

i, k=1

(e) If there exists a constant ' such that > |ay/
=1

<0, 33 |lau|<C, (=1,
k=1
matrix A=(a;) is bounded (p. 153).
(f) Tf A is bounded and normal, then it possesses
a bounded inverse if and only if A A’ is positive
definite (p. 138).

(g) If A=(a,)1s positive definite, then it possesses
a bounded inverse A '=(a;) and, if A;7'=(a9) is
the inverse of the segment matrix A;, then

--), then the infinite

ag=lim «f for all 7 and k&, (p. 229).

j—oo

(h) If A% is positive definite and A is nonnegative
definite, then A is positive definite.

The definitions at the beginning of section 4 can
be applied without significant change to an un-
bounded domain.

Let the points of the domain be numbered in such
a way that the first j points form, for every j, a
simply connected domain B5; of lattice points. If
the expected value G(P,?) is finite for a given pair
of points P and ¢/, then the expected value G?(P,%))
exists for the corresponding random walk problem
in all those domains B; which contain P and , i. e.,
for all sufficiently large 7. One has, furthermore,

lim GO (P, Q=G(P,Q).

jo

(35)
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We shall call the expression Au--gu positive
definite, if the real and symmetric infinite matrix A
belonging to it is positive definite. In this matrix
the rows and columns will always be assumed to be
arranged in the order of the numbering of the points
of B which was described above. (But the positive
definite character of an infinite matrix is, of course,
not destroyed if the rows and columns are subjected
to the same rearrangement.)

Theorem 5: If Au-tgu is positive definite in the

unbounded domain B, and if ¢( P)<;:2 in B, then the
expected value G(P, Q) exists.

Proof: Since Au--gu is positive definite in 7, it is
a fortiori positive definite in all domains 7;. The
matrix belonging to Au+-guw in B; is the segment
matrix A; of A. By theorem 4, the expected value
G9 (P, @) is finite,—provided P, ) are points of
B, and solves problem eq 29. Denote by A; (P, @)
the elements of the matrix A, in the row and column
corresponding to P and (), respectively, and by
AV (P, () the corresponding element of the inverse
matrix. Then

GOP, Q=15 = AP, 8 kS)3S, Q

=5 AP, Q@

From this equality we conclude, by virtue of relation

35, and of the property (¢) stated above, that
(7 (P,()) exists and is given by
ap, Q) ~A< Y(P,Qk~ Q) (36)

where ATV (P, @) are the eclements of the matrix
AL

Corollary: 1f, in addition to the assumption of
theorem 5, it is known that g(P)>const. >— =« in B,
then & (P, (}), as an infinite matrix, is bounded.

Proof: For then, 0< k= ()< const. < « in B,
and the right member of eq 36 defines a bounded
matrix, since A~!is bounded by virtue of (¢).

Theorem 6: If G(P, @) exists for all P and ), then
Au -+ gu is nonnegative definite.

Proof: It G(P, @) is finite, so are all G9 (P, ),
and therefore all segment matrices A; are positive
definite by theorem 2, hence A is nonnegative
definite, by definition (d).

Theorem 6 cannot be strengthened to a full con-
verse of theorem 5. This can easily be seen from
the following example. Let ¢g(£) be zero, so that
k(P)=1 and eq 1 reduces to Au=0. Then G(P, Q)
is simply the expected number of visits at ) for a
moving point starting from F and being absorbed
as soon as it meets the boundary € for the first
time. This quantity is known to be finite for an
infinite quadrant but infinite for the whole plane
(see [5] ), although Aw is semidefinite in both these
domains, in consequence of the results of section 4.
But the following weaker statement can be proved.



Theorem 7: Assume that G(P, () exists and is a
bounded nfinite matriz.  If then g(P) satisfies in
the unbounded domain B the inequality

0P =75~ (<>0) 37)

then Auw -+ gu is positive definite in B.

Proof: If (P, ()) exists then it satisfies the dif-
ference equation 29 in B, i. e., if A(P, ()) are the
elements of A,

Y AP, S)G(S, Q= 8P, Qk~(P).

SeB

In other words, if T' denotes the infinite diagonal
matrix formed with the elements k£(P) and ¢ de-
notes the infinite matrix with elements ¢/ (P, (), then
h* : ; . . A ;
Z/.v'l' is a right inverse of A. The matrix A is
bounded, thanks to assumption 37 and property (e).

Since I' is bounded, because of assumption 37, the
S e A
matrix vy 0T is bounded in consequence of proper-

ty (¢). Thus, A is bounded and normal
symmetric) and possesses a bounded inverse.  There-
fore, A* is positive definite by property (f), and
property (h) assures the positive definiteness of A
itself

Remarks: In view of the facts mentioned after the
proof of theorem 6, it follows from theorem 7 that
the expected number of visits at a point ¢ (]ll]lll(" a
random walk starting from a point / of an infinite
quadrant forms an infinite matrix that is unbounded.

(even

VII. Sampling Method for Calculation of
Lowest Eigenvalue

The fact that the radius of convergence of the
functions ¢ of formula 15 and ¢ of formula 33 de-
termine the lowest eigenvalue of k(Au-+gu) can be
used for an approximate experimental determination
of this eigenvalue. This gives us an approximation
to the lowest eigenvalue of the differential expression
ou  0*u

-+ 4+ gu in the domain B or in any domain 5’
o ! o

l)oun(lu(l. by a piecewise smooth curve O and con-
taining in 1ts interior the same lattice points as B.
For Ik approaches 1 as fast as A% as h — 0, and the
eigenvalues of Au-gu approach those of the cor-
responding differential equation, (cf. [1]).

The following lemma is needed for the subsequent
discussion:

Lemma 3: The poles of the function ¢(P,R;r) (and
also those of ¥(P,Q;r)) lie symmetrically with respect
to r=0. This is equivalent to the statement that
the eigenvalues of k(Au-+gu) lie symmetrically with

4
respect to A B
The argument applied in the proof of lemma

Proof:
belonging te Au+gu can be literally

1 to the matrix A

71

(*Vlvmlv(l to the matrix DAD of the proof of theorem
2, with the result that the eigenvalues of k(Au+gu)

are the same as those of —#k [All+((/——>7t] But
in the proof of theorem 2 it was also sho\\n that,

then —-—)\ 1s an

/Z
eigenvalue of —Fk [A1L+<!/—»~»—>u] Combining

these two facts the proof of the second statement of
our lemma is at hand. The first statement is
equivalent to the second by virtue of lemma 2.

We first discuss the use of the function ¢ for our

if X\ is an eigenvalue of £(Au-+gu),

purpose. The numerical computations will be
simpler if, instead of operating with ¢ directly, the
function
*Pory=> P, R;r)
ReC
is used. If we define ¢ (P) by
eX(P)=>%e,(P, R),
ReC
then formula 15 implies
¢ (Py= 2 r"el(P). (38)

n=0

The function ¢*(P)

16 in B and assumes the boundary
o*(B)=

Let N; be the lowest eigenvalue of k(Au-+gu). By
lemma 2 and lemma 3 the radius of convergence of

4P R.r) se'then

/'F:<1 _/_'; )\1>7

The radius of convergence of ¢*(P,r) is, in general,
also 7. Exceptionally, it may be_larger, owing to

cancellation of poles in the sum E d)(l’ ey bt

satisfies the difference equation
ralue

1, for R on C.

this case the method to be (lvs(nl)vd would lead
to some higher, rather than to the lowest eigenvalue.
If this is suspected, the result may be checked by
repeating the computations with a different P or
with formula 15 directly. We shall exclude this
case from our considerations.

The quantity e;(P) is the expected mass upon
arrival anywhere on the boundary for random walks
starting at P and consisting of exactly n steps. By
performing a sufﬁ(ivnl number of random walks
starting at P those ¢} (P) for which 7 is not too large
can be estimated (‘,\[)(‘lllll(‘lll(l‘lly.

In order to find » from these data we recall that

*(P) is a rational function whose poles are real
and symmetric with respect to the origin.  Hence, it
is of the form

GE)

I‘—Iy

o Pin= Ll

v< N/Z

)):|+)(1 (P)Ldy(P). (39)



Here, N is the number of points in B. For even N
the quantity d,(P) is zero. ¢,(P) is, by assumption,
not zero for the point P chosen. From formulas 38
and 39 we find

fT(P)=VZ r" e(P)+H(—=1"e_,(P)],  (n>2).

<N/2

If » is not too small, we can write, with sufficient
approximation,

enP)~r [e(P)+(—1)"c_4(P)],
(&l

ri~ex(P)fer o(P).

By using several values of n, the estimate of » can
be improved, and at the same time the admissibility
of the approximation used is tested. The lowest
eigenvalue is then given by

400 1
)\':p<]_ﬂ)'

The function ¢ of section 5 can also be used to
compute \;.  One defines ¥*(P,r) and ¢*(P, r) by

VIR P =S (P Q: 1),
QeB
and

e EZ;.(/H(P- Q;r).

Q

Then ¢*(P, 1')22)/"’_«/?(1’). gx(P) is the expected
n=(

mass anywhere in B at the nth step of a random walk
starting at P.  This quantity can be found experimen-
tally by performing a sufficient number of random
walks starting from P, and recording the massat every
step. The sum of all recorded masses for the nth
step divided by the total number of walks performed
is an approximate value for ¢*(P). From thereon
the procedure is exactly like the one described for
o*(P;r).

If the domain B is unbounded, the concept of the
lowest eigenvalue has to be replaced by that of the
left endpoint of the spectrum, which may, of course,
be at — «. We limit the discussion to cases in which
the spectrum is bounded from below.

Since no experimental method can take into ac-
count random walks beyond a certain length, all
experiments take place in some finite subdomain
B;of B, so that we must answer the question whether
the results thus obtained approximate the correct
values for the given unbounded domain. This
question is answered affirmatively by the theorem
that the left endpoint of the segment spectrum
coincides with the left endpoint of the spectrum,
provided the matrix is halfbounded and symmetric
([7] p. 231).

12

| with a one dimensional problem.

VIII. Comparison with Method of Donsker
and Kac

In this section we shall assume that we are dealing
This will enable
us to add a few heuristic remarks on the relationship
between our method and that of Donsker and Kac,
(3], without introducing notational complications.
Let x; be the position of a point at the jth step of
a random walk in a linear net of mesh length A. The
particle 1s supposed to start from z=0 and to be
equally likely to choose either of its two neighbors at
each step. Then z; is the sum of 7 identically and
independently distributed random variables with
mean 0 and standard deviation” A. Donsker and Kaec
are primarily concerned with the limiting distribution,
as h—0, of a random variable which, in our notation,
can be written (our g(x) is—2V (z) in their notation)

h/2
alh, )=—% >3 9(a)).

Here ¢ is an arbitrary positive parameter.
The quantity ¢ (P) of section 7 is, in one dimen-

sion and for P=0, the expected value of the random

variable
—1
(),

’

hZ
‘2‘.(/

y(h,n)= 1 k(z;)= 10 (1 -
j<n j<n
For small A, and with
i=hn
we have, approximately,
y(h,n)~e - *®0 (40)

Our function ¢*(P,r) of section 7 is the expected
value of the random variable

io ry(h, n). (41)
With the substitution
F=gath (42)

and using relation 40 it is seen that, approximately
for small A,

©

e st—a(h, ”(l’t.

- 1
S Pl ~ g |
n=0 1"Jo

If o(h,at) is the distribution function of a(h,t), we
have, therefore,

¢*(P,r)~#fomﬁme-a<h- 0=std.o(h,1).

On the other handy*(P,r) satisfies a difference
equation problem which differs from eq 34 only in

(43)



that the factor 6(2,4)) in the right member is to be
replaced by 1 and the factors 4 by 2. This last change
is necessary because we are dealing now with the one-
dimensional problem. Because of eq 42 we may
write for small A,

Furthermore, £~1, and the difference equation may
be replaced by the corresponding differential equa-
tion. With these changes, we obtain from the differ-
ence equation 34 the differential problem

i ,
:.15%'*"(-‘/“2*‘)11 s

hz*O in B, u=0 on C,

(34%)

whose solution will be approximately ¢* In the
paper by Kac B is the whole line. In this case, the
solution of eq 34* at x=0 can be written in the form

*o

1

A

h (54)

x (x) dx

—

U=

where x(z) is Green’s function on the whole line for
the differential equation

1L (g— x)'u,:O.

For small 4, the left members of eq 43 and 44 are
approximately equal. If we denote by o(a,t) the
limit of the distribution function ¢ (h, a, t), as h—0,
it seems therefore plausible that the identity

1 d*u
Deda e

(45)

13
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Sl A — I x () dx (46)

e
0 0 .
will hold exactly. This identity, proved by Kac in
[4], 1s the theoretical basis of the method of Donsker
and Kac in [3].

In [4] the passage to the limit, as A0, is essential,
since that paper is concerned with the distribution
of certain Wiener integrals. The sampling method
of [3] operates, of course, with finite sums only. The
methods of [3] and those of the present paper are
therefore closely related. In order to be sure that
the results obtained approximate those for the corre-
sponding differential equation we refer to [1]. The
analogous part of Kac’s theory in [4] also makes use
of the methods of [1].

Dated: March 21, 1950.
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