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A detailed interpretation of the kinetics of homogeneous nucleation and growth of 
crysLals or a linear homopolymer from dilute solution is given. The probability of forming 
both nuclei with fold ed chains, and conventional bundlelike nuclei, from dilute solution is 
analyzed. It is predicted that at sufficiently high dilution, critical nuclei of length 1: will 
be formed from single polym er molecules by sharp folding of the chain backbone. The 
step height of the nucleus is given approximately by 1:=4O' ,/A f. Here fI , is the free energy 
required to form a unit area of the loop-containing end surfaces, and Af is the free energy 
d ifference per unit volume of crystal between the crystalline and solution states. The 
quantity Af is approximately proportional to the degree of supercooling AT. The growth 
of thesc nuclci is then analyzcd. After growth, the resulting crystal is flat and platelike, 
the loops formed by the chain folds being on the upper and lower surfaces Kinetic factors 
determine that the distance between the flat slll'faces in the grown crystal will vary over 
only a narrow range about a value that is in the vicinityofl *=4O' ./Af. (NeglectingefTects 
du e to edge free encrgies, the theoretical upper and lower limits are l *= 40' ,/ Af and I *= 2O' ,/Af, 
respccLively.) In some cases the predicted temperature dependence of the step height of 
the grown crystal, I*= const. / AT, may be modified by the existence of a constant tcrm result­
ing from thc presence of an edge frce cnergy E". A grown loop-type cry tal is predicted to be 
stable in comparison with a bundlclike crystal of the same shape and volume in a sufficiently 
diluLe olution. The logarithm of the nucleation rate is approximately proportional to 
1/ (A T )2 near the melting point. The cxponent n in the free growth rate law is predicted under 
various assumption s. To the extent that compariso n is possibl e, the predictions givcn agree 
with the experimental r esults obtained by K eIJ er and O'Connor an d others on single crystals 
of unbranched polyethylene grown from dilute solution. 

A su rvey is given of homogeneous ll!..! cleaiion in bulk polymers, where the conventional 
bundlelike nucleus containing segmenLs from many different molecules is valid, and the 
essential results comparcd with thosc calculated for the dilu te solution case. 

The theory given for loop nuclei is both general and precise enough at the critical points 
to s uggest that, on crystallization from sufficiently dilute solution, crystals of a definite step 
height arc commonly to be expect()d for other crystallizable linear polymers than polyethyl­
ene, provided loop formation is sterically possible. 

1. Introduction 

RecenLly, a number of inve tigaLol's [1, 2, 3, 41/ 
have preparecl single crystals of high molecular 
weight linear polycthylene by precipitation from 
dilute soluLion through supercooling. As observed 
with an electron microscope, these cry tals are shaped 
lil\:e flat parallelepipeds, and the X-ray sLudies of 
Keller [1 ,2] show that th e polymer chains are oriented 
perpendicular to the flaL surfaces. The separation 
of the flat surfaces is nomi.nally about 120A, and is 
sufficiently well defined Lo produce fourth-order re­
flections with low angle X-rays. The separation of 
the flat surfaces, which for convenience will be called 
the "step height," actually depends on the crystal­
lizaLion temperaL1ll'c, the step height being distinctly 
smaller at low Cl'Ystallization temperatures Lhan it 
is at high ones. Since the mean length of Lhe poly­
ethylene molecules is far in excess of 120A, Keller has 
proposed Lhat the polymer molecules must be sharply 
folded in the crystals; the loops resulting from these 
folds form the two fla t surfaces of the pIa telike 
crysLals. 

I Figures in brackets indicate the literaiw-6 references at tbe end of this paper. 
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There appears Lo be no simple alLernative to the 
initially somewhat sLarLlin g proposal Lhat the single 
crystals observed involve chain folding, and we be­
lieve LhaL Keller's hypothesis may be accepted. 
Keller has indicated that Lhe idea of chain folding 
in polymers is not enLirely new, and refers to an 
earlier suggestion due Lo Storks [5]. 

The objective of this paper is to present a theoreti­
cal account of how polymer crystals with chain 
folds are formed in dilute soluLion, and why they 
have the properLies they do. It will emerge that 
crystals with chain folds arise in dilute solution 
because a primary (homogeneous) nucleus of this 
type is on kinetic grounds the most likely to appear. 
Once such a nucleus is formed, it can be shown that 
the subsequent two-dimensional growth will closely 
follow the pattern established by the primary nucleus. 
Thus, the basic reasons such crystals form is to be 
found in the kinetics of nucleaLion and growth. 

The siLuation is quite different for homogeneous 
nucleation in a highly crysLallizable bulk polymer. 
First, the primary (homogeneous) nucleus in bulk 
polymer is thought to be formed by an ali.nement 
of segmen ts of different polymer chains to form a 



bundlelike nucleus without folds [6, 7], and second, 
the mean crystallite size in a semicrystalline bulk 
polymer that has not reached its equilibrium crystal­
lite size distribution (a very difficultly achievable 
state by any account) is determined largely by the 
nature of impingements and chain en tanglements, 
and possibly certain strain effects, together with the 
kinetics of nucleation and growth [6]. (The particu­
lar type of strain meant here is that which becomes 
increasingly great with radial growth.) Eventually, 
of course, the metastable distribution of crystallite 
sizes resulting from impingements will change as the 
impingements relax, and other mechanisms take 
place, and the equilibrium distribution with large 
crystallites will be slowly approached , but this does 
not al ter the fact that impingements, entanglements, 
and possibly strain play an important, if not domi­
nant , role in determining the crystallite size in bulk 
polymers as they are ordinarily found in the semi­
crystalline state. Impingements and entanglements, 
play no important role in impeding the crystallization 
in dilute solution. 

In order to provide a clear development of the 
theory of crystallization of chain molecules from 
dilute solution, it is necessary first to bring out some 
general points connected with homogeneous nuclea­
tion theory. At the same time, it is advantageous 
to mention certain general features of homogeneously 
induced crystallization in bulk polymers. 

2. Homogeneous Nucleation and Crystal 
Growth in Bulk Polymers 

2.1. Homogeneous Nucleation in Bulk Polymers 

According to Turnbull and Fisher [8], the equilib­
rium rate of homogeneous or primary nucleation in 
a supercooled bulk phase may be written as 

I NkT -AF*/k7·.-Aq,*/kT 
=~e p (1) 

where N is Avogadro's number, k Boltzmann's con­
stant, k Planck's constant, T the absolute tempera­
ture, llF; the free energy of activation of the super­
cooled-liquid- nucleus interface, and llCPt the free 
energy of formation of a primary (homogeneous) 
nucleus of critical size. In eq (1), I is in nuclei· 
mole-l·sec- l. The quantity J = (k T/h) exp [- t.F;/lc T], 
which is the jump rate in events per second at the 
interface, may be written as (kT/h)exp[llS;/k­
llH;/kT] , where llS; is the entropy of ac tivation, 
and llH; the enthalpy of activation. For a poly­
mer, it may be assumed that the smallest unit that 
may attach to the embryo or nucleus in an element­
ary process is a small segment of molecular weight 
M and length lo. Hence we may write eq (1) in 
the form 

(2) 

where 10 is (NkT/hMVz)exp (llS;/k), which has the 
units nuclei·cm -s ·sec- l. The quantity ~ is the spe­
cific volume of the supercooled liquid at the temper-
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ature of crystallization. The main item of interest 
here is the form of llrp~ for bulk polymers. The 
Turnbull-Fisher equation is derived on the assump­
tion that many elementary steps are required to 
reach llcp*. 

In a bclk polymer, it is commonly assumed that 
the nucleus is bundlelike, and is formed through 
the alinement of segments of different polymer 
chains [6, 7]. This hypothesis certainly seems plaus­
ible for a bulk polymer, and can be used to give a 
detailed interpretation of the rate of injection of 
primary nuclei in a bulk polymer. 

Two general types of bundlelike primary nuclei 
must be considered. The first of these is one where 
there is no minimum restriction on the length, or 
the number of segments contained in its cross-sec­
tional area. Calculations for this nucleus yield re­
sults that are valid in a temperature range near 
the melting point, region A. The second is a nucleus 
where the length is restricted to lo (which is the 
length of a segment), but where the number of seg­
ments in the cross section is still unrestricted. Re­
sults obtained for this nucleus are valid in a temper­
ature range, region B, that extends from somewhat 
below the melting point to a temperature that is 
considerably lower. A discussion of the properties 
of these two types of bundlelike nuclei has been 
given in an earlier publication [6] , and what is given 
below is intended mainly as a summary. At still 
lower temperatures, region C type nucleation will 
prevail, and this will be brought into the discussion 
at the proper place. 

Region A: Consider first the nucleus with un­
restricted length and cross-sectional area. The 
model used is illustrated in figure la. For this 
nucleus, the free energy of formation may be written 
in a general way as 

H ere p is the number of segments in the cross section 
of the nucleus, a the cross-sectional area of a segment, 
l the length of the nucleus , C a numerical constant 
that depends only on the shape of the cross section, 
and llf the free energy difference per unit volume of 
crystal between the supercooled liquid and the crys-

~. 
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FIGURE 1. IIomogeneolls bundlelike nucleus (b1tlk polymer) . 
(a) K u clcus of length I and "rad ius" ";va/ .. valid in region A, where there is 

no miniInum restr iction on l or 1.1. 

(b) N u cleus of fixed length 10 and "radius" ..,r;;ar; valid in region B. 



tal. The quantity va i the area of the end of the 
nucleus or embryo. The quantity (J' s is the work 
required to form a uni t area of the la teral surface 
from the crystal, and (J'. i the corresponding worl 
for the end of th e cry LalliLe. If at any given degree 
of supercooling v and l are increased, D.c/> P(A) goes 
through a maximum where i t ha the value D.c/>~(A)' 
and then falls rapidly through zero to strongly 
negative values, the latter implying increasing sta­
bility with inerea ing size. The critical value of l 
and va can l'eftdily be determined by setting 
(OD.c/>p(A)/Ol) va and (OD.c/>P(A)/o.vva) I equal to zero . 
Thus, 

l*= 40'. , 
M 

(4) 

and 
0 20'; 

(va)*= (D.f)~ . (5) 

Substitution of eqs (4) and (5) in to (3) yields the 
resul t 

(6) 

Thus, in region A, where both l and va arc not sub-
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ject to a minimum restriction, the rate of homo gene- J 
ous nucleation is 2 

In this expression 

for a cylindrical nucleus, and 

0=_ 2_x+y 
.vsi n 1/; .vxy 

(7) 

(8) 

(9) 

for a nucleLls where the cross section is a parallelo­
gram with sides x ftnd y, and apex angle 1/;. The 
quantity (va)* is related to the square of the "ra­
dius" of the cri tical-sized nucleus. 

For a strictly cylindrical nucleus, r*= [ (va)*/ 7T'] ~ 
= 20's/D.j, and f1¢~(A) =87T'U;uc/( f1j) 2, results that 
have been given previously [6, 9]. The reaction 
path on the free ellergy surface described by eq (3) 
for the formati.on of the eritieal-si.zed nucleus is 
shown in figure 2. The critical-sized nucleus of 
length l* and "radius" [(va)/7T']*t is indicated by an 
asterisk, and the reaction path is designated by the 
heavy line O- *- B. The point * is at a saddle 
point in the free energy surface. The embryo grows 
in to a nucleus and thence ill to the stable region 

, Even if it is assumed lha t the nucleus is an ellipsoid of revolution, an expres· 
sion for i A sim ilar to oq (7) is obtained. (See S. Matsuoka and B. l\Iaxwell. 
Plastics Laboratory Tecbnical Rcport 53E, Princeton University, 1959.) When 
the nucleus is large, i.e., at low supercooling, the ratio of the major and minor 
axes is determined by u.lu~. However. such a nurlcus will tend to take on the 
shape of a disk or parallelepiped as the dc~ree of supercooling is incrcased so tbat 
region R is ap proachcd. Thus, thc overall behavior of lA, including its tempera· 
ture dependence and transit ion to region R, is unaiIected by ass ll mptions con­
cerning the shape of the nucleus in region A. 
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FIGURE 2. F"ee energy surface f01' formation of a critical-sized 
homogeneous bundlelike nucleus for bulk polymers in region 
A. 

'rhe reaction path is the heavy line o-*-B. The nucleus is of critical size at 
the saddle point marked *. The free energy surface for region B is s imilar, except 
tbat 1*=1,. 

(which is below thc l- [va] } plane) by both length­
wise and "radial" growth. 

R egion B: For a bUl1Cllelike nucleus, it is necessary 
to recognize that 0'. might possibly be considerably 
smaller than O's. As one traces the environment 
of the various segments from th e interior of the 
crystal out throu gh the lateral surface in to the 
liquid phasc, a sharp and qui te large drop in the 
degree of order will be noticed just at the crystal 
surface. Thus, the value of Us will correspond 
reasonably closely to the surface free energy fo,r a 
nonpolymeric molecular crystal of the same chCl11lcal 
type, and will commonly lie in the range 5 to 25 
erg·cm- 2• On the othel' hand, the drop in degree 
of order as one traverses a paLh from the center 
of the crystal out through the end will not be as 
sharp as in the case above. Because of this fact it 
seems plausible to suppose that 0'. will in some poly­
mers be rather smaller than us. However, u. cannot 
be zero, since this would imply no difl'erenee in free 
energy between the end of the crystallite or nucleus 
and the supercooled liquid. 

The significance of the fact that Us may be con­
siderably larger than (]' e for the bundlelike nucleus 
characteristic of primary nucleation in region A is 
that l*, as given by eq (4), may, at some ,temper­
ature Tc that is not too far below the melting point, 



fall close to the irreducible segment length , lo. In 
Lhis case, l must not be treated as a variable neal' 
and below Te. Using the relation [10] 3 

(10) 

wherc t:;,hf is the heat of fusion at t hc cquilibrium 
mel ting temperature, Tm, and t:;,T= Tm- T, where 
T is the isothermal crystallization temperaturc, it 
is found to a sufficiell t approximation that 

(ll) 

H ere /:::"Te is the degree of supercooling that cor­
responds to the onsct of region B. At lower tempera­
turcs, we must consider a primary nucleus with 
fixcd length lo, and variable va, as shmm in figUl'e 1 b. 
In Lhis case we have 

which leads to 

(13) 

and 

(14) 

hI region B (01' I HUre precisely, from s0111.e\\'] at 
below 1'e on clown to considerably lower temper­
atUl'es) the condition Lo/:::"j > > 20'e may be expccLed 
Lo hold . With this, eq (14) reduces to the s imple 
for In 

(15) 

and Lhe rate of primary nuclea tion becomes 

(16) 

The valu es of C are the same as Lhose given for 
region A; for the particular case of a strictly c~-lin­
dricalnucleus, t::"q)~(B) is 7rloO'~/ /:::"j [6). 

Equations of Lhe general form of (15) and (16) 
have sometimes been sharply criticized, apparently 
because of th e incolTect belief Lhat they could be 
derived only on the basis that O'e= O, the latter 
being gen erally conceded to be impossible. How­
ever, th e derivation sketched above makes it per­
fectly clear that eqs (15) and (16) hold if lo/:::"j> > 20'0' 
and there is no implication that O'e= O (6 ). 

Region B type primary nucleation will prevail 
down to a tempera ture Tee corresponding to a degree 

'T he relation tJ.f= tJ.h, tJ.T/T ", is usually employed to give the free energy dif­
ference between the supercooled liquid and crystalline states. This expre1's ion 
is not as precise for a glass forming system as eq (10). 
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of supercooling of approximately 

1''''''' CO'sTm . 
/:::" . ee = 2/:::"hr ,/ (va) 0 

(17) 

In the case that O's> > O'e, /:::"Tee will be larger lhan 
/:::,,1'e, with the result that region B will covel' a sub­
stantial range of temperature. 

The free energy surface described by eq (12) bas 
a saddle point at l*= lo and va= (va)*. Tlllls, bo th 
Lhe embryo and nucleus always have a length lo, but 
once of stable size, there is no inh erent restricLion on 
the addition of segments to increase the length. 
Lengthwise growth is in fact cer tain to occur (6). 
Sueh a nucleus will increase in size b~' appropriate 
growth mechanisms until stopped by impingements 
or oLhe)' factors (see sec. 2.2) . 

R egion C: At crystallization temperatures belO\\­
T ee , Lhe "radius" of the prilTaJ'~- nucleus, [(va )o]'/2. 
will be close Lo Lh e size of tlte unit cell , i.e., iL will 
contain roughly 5 to 7 segments. Whil e this radius 
is noL irreducible in a sLrict sense, Lbe small size of 
the stable nucleus below T ee \dl lead to an excess 
number of nuclei owing to the fact th at embl'~Tos of 
this size in Lhe superh eated state will be canied down 
in t he supercooling process to the supercooled s ta te . 
T his will cause an enhanced ra le of clTstallization 
compared wi Lh region B O l ' A. In the pa'r ticular case 
where O'e is larger th an envisio ned previousl~-, and 
exceeds loCO's/4[ (va)o] ' /2 , which is loO's/21'0 for a cylin­
drical nucleus of J'adius 1'0, reg ion B will be absent , 
and th e s)Tslem will go directly from region A type 
homogeneous nuclealion to that characteristic of 
region C. 

Several important points concerning the natme of 
homogeneous nuclea tion in bulk polymers ma)' now 
be emph asized. The first is tha t two types of tem­
perature dependence are to be expected for the ra te 
of nucleation. Sufficiently neal' the melt ing point, 
i.e., in region A, 

In I A = 
10 

f.H~ 
kT 

(]8) 

whCl'e the constant a is 2C2(Jke 1',~,/t:,.h}lc. This is 
the same general form as is exhibited b~- ll onpoly­
meric systems . At mod erate to high degrees of 
?upercooling, region B, th e temperature depend ence 
I S 

(J 9) 

where the constant {3 is C2100';T'i, /4/:::"htlc. Equation 
(19) is a special result in that it reflects the segmen lal 
nature of the polym,er chain , having been derived as­
suming lo was a constant. In the special case where 
O'e"?;.100's/21'o, 1'egion B witt be absent, and the system 
will exhibit a temperature dependence oj the jorm oj 
eq (18) down to the A ---?C transition. However, in 
som e cases it is to be anticipated that 0' e will be 
sufficiently less than O's to cause region B to make its 
appearance. R egion A will be large if O'e"'O',. 



Both eq (1 ) and (19) lead to a maximum in 1/10 
,,,hen plotLed as a function of temperature. The 
terms exp[-a/T 3(LiT)2] and exp[ - {3/ T2LiTJ lead to 
stro ngly negaLive temperaLure cocllicients for the 
rate of inje Lion of 11 uclel, bu L Lh is effect is eventually 
ovenvhclmed b. Lhe term exp[- Lin; /kTJ that arises 
from the jump !"ate, and which ha a positive tem­
perature coefficienL. H ence a maximum exists in 
I A and l B. 

The second point is tha t Lh ere is nOLhing in the 
foregoing which suggest a highly uniform step 
height of the general charaeLer found in crystals 
formed from dilute solu tion . The only feature in 
t,be theory for bulk polymers that is even slightly 
duggestive of a pronounced step height, where the 
long axes of the polymer molecules arc in the correct 
configuration wi th respect to the cr~Tstal surfaces, is 
the behavior of l * = 4cr.T,~./Lih!TLiT in r egion A . 
However , an unacceptably large value of cr. has to 
be introduced to cause l* to be anywhere near a 
large as is observed for polymer crystals obtained 
from dilute solu tion. Furthermore, such a nucleus 
will cer tainly grow lengthwise, and it is very difficult 
to imagine why it would grow to a practically com­
pletely uniform length which would correspond to a 
step height. (More will be said of this later.) 

Th e third point is that in a bulk polymer, the 
bundlelike nucleus, made up from segments of dif­
ferent polymer chains, is energetically the most favor­
able that can be conceived. Unless prevented by 
some factor not .vet considered, this is tlte type of 
nucleus Lhat should commonly appear in a bulk 
homopolymer. Then if no special strain effects inter­
fere (say in the radial growth), such nuclei should 
grow both radially and lengthwi e. 

We turn now to some ge neral conside ra t ions that 
have to do wi th the natu re of the growth of the 
bundlelike primary nuclei, and the effecLs that ca use 
such growth to cease in hulk polymers, or at least 
slow down to a marked exte nt . Once certain general 
fea Lures of th e growth process in bulk polymers 
have been brought out, the discussion of primary 
nucleation and growth in dilute solution with chain 
folding can be given. 

2 .2. Crystal Growth, Bulk Rate Constants, and 
Impingements in Bulk Polymers 

Two fe aL ures of the growth process in bulk poly­
mers arc of in terest here. The first is that the primary 
bundlelike nucleus without chain folding can, at least 
initially, grow radially and lengthwise. Each of these 
growth m echanisms is nucleation controlled suf­
ficiently near the melting point. The second point 
is that the growing crystals will impinge on one an­
other in such 8, manner as to essentially stop or 
markedly retard lengthwise and radial growth in 
a manner that can hardly lead to a highly uniform 
step height of the type found in dilute solution. In 
the special ca e wh ere strain limits radial growth (see 
below), only the distribution of lengths "vill be im­
pingement controlled, but this will still not cor­
re pond to an essentially fixed step height. 
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Consid er first Lhe types of growth that may occur, 
aL lea· L initially, for a bundlelike nucleus. D enote 
mdial growth a Gr = cl1'/dt (where in general 
Gr ccd[llal t /dt) and lengthwise growth as GI= cll /clt. 
Furth er , define Lhe free bulk growth rate as 

(20) 

where X' is the mass fmction crystallized, t the time, 
and n an exponent that depends on type of nucle­
ation and the mode of growth. The free bulk growth 
rate is the rate at which the polymer would crystal­
lize if the growing crystal were independen t of one 
another. Values of n for various mode of growth 
with homogeneous initiation (i.e., prima,ry nuclei 
bom sporadically in time) are shown in table l. 
The relationship between Zn, I , GI , and Gr are al 0 

shown. 

TABLE 1. Values of nand Z" f01· vari01lS modes of grouth of 
bundle like nuclei (homogeneous nucleation) 

NT ode of growth n Form of bulk ratc 
constant a 

Onc-d imcnsional . ___ _ 2 Z,a;JG, 
Two-ci imcns ionaL __ _ o Zacx IG,2 
Three-dimensional h __ _ 4 Z, cr. JG ,G,' 

• In these express ions I may refer to eithcr J A or l B. 
b If branebes develop, and Z,o::I G' .ph., where G.ph. is the mean growth rate in 

the rad ial d imension. 

The growth mechanism denoted by Gz is Lo be de­
scribed by an expression of the general form 

(20) 
so thaL 

(21) 

H ere 'Y is a constant similar in character to {3, and 
ill; is the enthalpy of activation at the super­
cooled-liquid- growth-nueleus interface. The form 
of eq (20) arises from the fact that in the experi­
mentally accessible region the growth nucleus is 
characterized by one fixed and temperature inde­
pendent dimension of molecular size, usually a 
thickness of one molecule or segmen t len gth (circa 
2.5 to 20A). However , the t emperature dependence 
of the growth mechanism denoted by Gr may differ 
from that of GI , since the secondary nucleus may be 
of a different nature. In general, both Gj and Gr will 
go through a maximum below the melting point, and 
will possess a strongly negative temperature depend­
ence near the melting point. In the event that 
fTs> > cr., the radial growth nucleus in the experi­
mentally aeces ible region may have two fixed and 
temperature independent dimensions of molecular 
size. The radial growth nucleus will generally be 
easier to form than the lengthwise growth nucleus, 
so the condition Gr> Gz is commonly to be antici­
pated. (See, however , remarks below concerning 
pos ib1e retardation of radial growth by strain.) 



We must now ask what processes retard the free 
growth rate of the crystals in a bulk phase. Im­
pingements and entanglements are certainly im­
pOl'tant factors [6]. The growing crystallites will 
run into each other, entanglements will occur in the 
vicinity of such "collisions", and this will tend to 
s top growth. The retardations due to impingements 
are relatively weak early in the crystallization, but 
gradually get stronger. The isotherms in this range, 
which is called "stage 1," will commonly be super­
posable simply by shifting the time scale [6] . Esti­
mates of the free bulk growth rate constant, Z, 
may be obtained by analysis of stage 1 data. How­
ever, the system will approach a degree of crystal­
linity, well short of complete crystallization, where 
there is a massive d egree of impingement (fig . 3) . 
We refer to this as the pseudoequilibrium degree of 
crystallinity, Xm. Detailed theoretical calculations 
due to Lauritzen [11], and certain experimental 
studies [6], fully justify the view that impingements 
will lead to the effect indicated. Near and above 
Xm, the crystallization process is exceedingly slmv-. 
Other workers have called this "secondary crystalli­
zation" but for convenience we have termed it 
"stage 2. " R elaxation of in1pingements and en­
tanglements to form crystallites wi th greater length 
and radii is one of the principal crystallization 
processes in stage 2 . The equilibrium degree of 
crystallinity is thus approached very slowly due to 
the intercession of a massive degree of impingement 
at Xm . 

x 

1.0 .------------- ----------, 

I 
I 
I 

o~ ____ ~~ __________________________ ~ 
log t 

Ji'I GURJ; 3. Schematic dia,/ram showing course of crystallization 
in a bulk polymer. 

x is the mass fraction crystallized and t the time. Stage 1 strongly reflects 
the flee growtb rate x' ~ Zntn. The pseudoequiJibrium degree of crystallinity is 
denoted Xm, and is the result of impingements and entanglements. Stage 2 
slowly carries tbe crystallization beyond x". 

After the stage 2 mechanism has pursued its 
course for a sufficient time, the length and radius of 
a few of the crystallites will be large enough to melt 
quite close to the equilibrium melting temperature, 
Tm. In the vicinity of Xm, the crystallites will often 
be rather small, and impingements will have set up 
a distribution of crystallite sizes. These effects will 
cause rather broad and low melting. The particular 
distribution that prevails at Xm changes only very 
lowl:v toward the equilibrium one. N either the 
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distribution of radii and lengths resulting from im­
pingements, nor even the true equilibrium one, is 
consistent with a uniform step height. 

Another effect that may subdue growth of bundle­
like nuclei is strain. Thus, while bundlelilm nuclei 
may form easily, radial growth to large size may be 
hindered by the strain that results from the mis­
match of the segments in the crystal with those in 
the " liquid" just outside the ends. Such a situation 
could be treated theoretically in terms of a lYe value 
that increased with)/. The effect mentioned could 
conceivably severely restrict radial growth of bundle­
like nuclei in some cases, causing a nearly constant 
crystallite radius to be observed. However , the 
stoppage of lengthwise growth will in such a case 
still be controlled by impingements, and not cor­
respond to a step height of the type found in folded 
crystals . 

Much of what has been said concerning the nature 
of impingements may be found in more detail in a 
previous article [6]. 

3. Homogeneously Induced Crystallization 
of Polymer From Dilute Solution 

3 .1. Preliminary Analysis of Homogeneous 
Nucleation From Dilute Solution 

In order to set the stage for the detailed analysis 
to follow in subsequent sections, an elementary 
analysis of the problem of nuclei with chain folding 
is given first. This has the advantage of permitting 
an early emphasis on the simple physical picture 
involved, and has the virtue of clearly indicating just 
what points must be subjected to more searching 
analysis. 

When a polymer is dissolved at high dilution in a 
relatively good solvent, the polymer molecules tend 
to be essentially isolated from each other. If the 
solution is supercooled, t he polymer will tend to 
crystallize from the solution. The kinetics of this 
crystallization will be governed by the nucleation 
and growth process. Since the polymer molecules 
are essentially isolated from one another, the primary 
nucleus will tend to be formed, if at all possible, 
from a single polymer molecule. The formation of 
these nuclei is ~reated below and it will be shown 
that in sufficiently dilute solution these nuclei, char­
acterized by chain folding, are kinetically favored 
over bundlelilm nuclei containing segments from 
many molecules of the type discussed in the previous 
section for bulk phases. This treatment explains 
the main features of the single crystals obtained by 
Keller and others, and predicts other properties 
which should be capable of verific2-tion. 

We shall outline in some detail the characteristics 
of the single crystals of polyethylene prepared from 
a dilute solution of A"Ylene [1, 2]. These crystals, as 
revealed by electron micrographs, are flat parallele­
pipeds which are shown schematically in figure 4a. 
The step height, 1*, was measured by low angle 
X-ray scattering, and reflections up to the fourth 
order were observed. The step height increased 
from 90 to 140 A with increasing crystallization tem-
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erature. The polymer chain lie approximately 

perpendicular to the two large flat faces of the 
cry tal, i.e., parallel to the c-axi in figure 4a. The 
loops formed by the folding of the polymer molecules 
form the two flat surfaces of the crystal. In figure 
4b the crystal is shown as viewed along the c-axis. 
The polymer chain intersect the plane normal to 
the c-axis at the corner and at the center of the 
rectangle. The planes determined by the two rows 

~. of carbon atoms in the zig-zag polymer chain back­
} bone are shown as triple dashed lines. It has not 

been definitely determined which chains in figure 4b 
are connected by the loops, but Keller has indicated 
that it is sterically possible for the chains at P and 
Q in the figure to be connected by a loop contaimng 
three to five carbon atoms. The arrangement of the 

~ chains shown in figure 4b is essentially that given 
by Bunn [12]. 

(0) LATERAL SURFACE 

FIGURE 4. Details of loop-type polyethylene crystals fonned 
from dilute solution. 

(a) P olyethylene crystal witb step hoight I' sbowing orientation of cbains. 
(b) View of nnit cell along c·axis showing orientation of ribbonlike bydro­

carbon chain - - - . 

In the discussion of the nucleus with folds the 
following definitions are employed. First, p is taken 
to be the number of segments in the cross-sectional 
area of the nucleus or embryo, and a is the cross­
sectional area of each segment. The area of the 
end of the nucleus is va. The length of the nucleus or 
embryo is designated Ip. All of these definitions arc 
analogous to those used earlier for the btwdlelike 
nucleus. Refer to the set of segments comprising 
the length of a nucleus or embryo, Ip , as a step element; 
the step clement length includes the (small) length 
involved in the folds at either end_ The number of 

! step clements in a nucleus is equiLl to v, and the total 
~ number of folds is equal to v-I. I 

We now introduce a particu ar model of the 
polyethylene crystal in order that we may have a 
specific picture in mind while calculating the prop­
erties of crystals formed by the folding of polymer 
chains. This model, which is essentially that sug-

\ gested by Keller and O'Connor, is shown in figure 5. 
A single molecule forms the crystal through folding 

>~ of its backbone as it progresses outw'ard in a double 
I spiral from a central position O. (At a later stage 

in the development of the crystal, other molecules 
may, of course, participate.) 

The above model of the nucleus with a double 
spiral is only one of several possibilities, but it still 
embodies the im.portant general characteristics of 

-::> nuclei with chain folding_ These characteristics 
apply not only to polyethylene but also ~ to any 
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FIGURE 5_ Loops in homogeneous nucleus formed fTom dilute 
solution. 

(a) View of proposed loop nncleus along c-axis. Loop facing reader -, loop 
away from reader. 'rbe cross marks ncar 0 sbow one unit cell (Cf fig. 4b)_ 

(b) Cut through plane RS showing odd-numbered loops (down) and even­
numbered loops (np) . 

polymer that can form such nuclei. First, it is 
possible to form nuclei from a single polymer mole­
cule. Second, the crystals formed through chain 
folding possess sharp and definite boundaries be­
tween crystalline and noncrystalline regions. This 
is in contrast with the end surface of crystalli tes dis­
cussed in the section on bulk polymers. Third, a 
change m any reasonably shor t period of t ime 4 of 
the step height requires the melting (or dissolving) 
of the crystal and recrystallization with a new "step 
height". Fourth, if a molecule has formed an array 
of v step elements, the p+ 1st step element may be 
added simply by the folding of a free end (or ends) 
of the . polymer molecule. Fifth, when a polymer 
molecule forms an array of P parallel step elements 
there will be v - I folds in the nucleus. I t is em­
phasized that all five of these items hold for either 
a double spiral model, a single spiral model (not 
shown), or any of a number of other configurations. 

The rate of formation of nuclei constructed from 
a single polymer molecule through chain folding will 
be calcul ated by a procedure very similar to that 
used in section 2_ Bold faced symbols are used for 
many of the quantitie involved in order to clearly 
differentiate them from. those pertaining to the con­
ventional bundlelike nucleu described earlier. The 
free energy relative to the solution state of a primary 
nucleus composed of v step element of length 1 may 
be ,vritten as 

.aq,p=2pau.+ O-vva Ius + 20 -vva Ep-pal.af, (22) 

where a is the cross-sectional area of a segmen t in 
the crystal, 0 is a numerical factor depending upon 
the shape of the nucleus, and .af is the free energy 
difference per unit volume of crystal between the 
polymer in the supercooled solution and the crystal. 
The quantity U s is the work required to form a unit 
area of thfl lateral surface from the crystal and u . the 
corresponding work for the end of the crystal. The 
quantity Ep is the work required to form a unit length 
of "edge" from the crystalline phase. 

79 

The relative size of u . and u. may be estimated 
from the following considerations. Both the lateral 

, Over long periods of time, tbe step beight will probably gradually increase 
in an isotbermal process by lengtbwise diffusion of segments. 'I' his point is 
treated more fully later. 



and end surfaces of the nucleus with folds present an 
abrupt change from crystalline order with respect to 
the solution. In addition, on the end surface, an 
amount of work q k cal/mole of loops will be required 
to form a fold. "When there are p segments in thc 
cross section of the nucleus, there will be v- I folds, 
and area of the two ends is 2 va. Then we have 

(23) 

where CT eo represents the (probably small) contribu­
tion to CT e above that of fold formation. We should 
expect to find q with a value on the order of magni­
tude of 1 kcal/mole of 100ps.5 In making this rough 
estimate, it was assumed that the principal contribu­
tion to q was the energy required to bring the part of 
the polymer chain in the folds (ca . five carbon atoms 
in the case of polyethylene) into the appropriate 
higher internal rotational states. If a = 18 X 10- 16 

cm2, and q= 1 kcal/mole, q/2a = 20 erg·cm- 2 • We 
expect no really large difference between CTs and U S) 

the lateral surface free energies of the nuclei with 
loops, and the bundlelike nuclei, respectively. The 
important differences in surface free energy between 
bundlelike nuclei, and nuclci with loops, can be 
summarized in the following way. For the bundle­
like nucleus we have 

(24) 

where Us is a "normal" value, usually in the range 5 
to 25 erg·cm- 2• For nuclei with loops, we have 
instead 

(25) 

which is in sharp contrast to (24 ). Noting that CT s 

will ordinarily have a "normal" value, we may effect 
the comparison between the loop and bundlelike 
types of primary nuclei by writing 

and 
(26) 

(27) 

The quantity i1f in eq (22 ) may be approximated 
by [13] 

(28) 

where i1h f is the h eat of fusion per unit volume of 
crystal, and Tm is the equilibrium melting tempera­
ture of the crystal, both in the presence of large 
amounts of the solvent. 

The presence of the edge energy term in eq (22 ) 
is not essential for the theory developed in this 
paper, and the general conclusions drawn about 
crystals with folds are independent of Ep. Since the 
value of Ep will depend on the detailed morphology 
of the crystals with folds, which is not treated in 

5 Tbe autbors are indebted to Dr. O. W . Beckett for a helpful discussion con­
cerning the prohable value of q. 
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this paper , and for the reason that its inclusion at 
this juncture would not elucidate any essen tial 
points, it is set equal to zero in the remainder of this ~ 
section. Nevertheless this term is included in eq 
(22) for completeness, and the consequences of Ep 

possessing a nonnegligible value will be assessed later. 
The energy surface described by eq (22) is shown 

in figure 6. It is formally similar to the energy 
surface for buncUelike nuclei. In both cases the 
most probable nucleation path passes through the 
saddle point. The difference between the two 
types of nuclei is that certain restrictions apply to 
the paths of nucleation on the surface for nuclei 
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FIGURE 6. Free enel'gy surface for formation of critical-sized 
homogeneous nuclei with loops (dilute solution)_ 

Tbe heavy line o-.-B shows most probable reaction path; • is the saddle point 
across ridgeD-E. The dotted line 0 ... t· .. Cs!Jowsanotherpossiblereac-
tion path across ridge D- E, wbere A~;>6~;. 
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with loops that do not apply to bundlelike nuclei. 
For nuclei or embryos with folds, the elementary 
process is the addition or subtraction of a step ele­
ment. Then the paths by which nuclei with folds 
are formed are characterized by a length that is 
invariant as the embryo or nucleus grows. Two J 
paths of nucleation ar e shown in figure 6. One '\ 
path passes through the saddle point, while the other 
path passes over a higher energy barrier. It will 
be shown subsequently that most of the nuclei 
formed will pass through or near the saddle point, 
and will therefore possess a length close to the value 
at the saddle point, I;. The coordinates of the 
saddle point may be found by calculating (oi1q,p/ol)v l 
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and (oAc/>v/ol1a), from eq (22), and equating them to 
zero. IL i fOlInd thaL 

1*-40'e 
1'- 4f ' (29) 

and 
* 0 20'; 

11 = a (4f') 2' (30) 

which lead in a sLraightforward manlier Lo Lhe resulL 

* 2020';O'e 
4c/>p (4i') 2 

(3 1) 

Aheady from eq (29 ) we ca n pJ'eceive th e origin 
of a large nucleus lengLh [OJ' nuclei wiLh fold as 
compared with that for bundlelike nuclei. From 
this expression and Af'= Ah,AT/Tm, it is found for 
nuclei with fold s that 

1*- 40'eTm 
p- .dh,4T' (32) 

whereas from eq (4) and (10) we fmel , omiLting 
the relatively unimportant factor 1'm/T , that for 
bUlld lelike nuclei 

l*= 4fJ.Tm • 

t;"h/:".1' 
(33) 

Since from eq (27 ), O' e> fJ e, it is seen that I1t should 
generally be considerably larger than l * under 
corresponding conditions of supercooling. As will 
be seen later, our estimate that O'e",20 erg·cm- 2 

leads to values of 1* in the vicinity of 100A at a 
modera te degree of supercooling. The fundamental 
reason for the large value of I; as compared to l* is, 
of course, the work q required to form the fold. 

On account of the relatively large value of O' e com­
pared to fJ e, it is to be anticipated that the nuclei 
formed in the experimentally acce~sible temperature 
range for dilute olu tion will not ordinarily be sub­
ject to a minimal re triction of the type that causes 
the appearance of region B or 0 type nucleation in 
bulk polymers. Thus, our treatmen t of nuclei with 
chain folds is in some respects analogous to region 
A type nucleaLion in bulk polymers. 

Equation (32) shows that I; should increase as 
the crystallization temperature increases. Nuclei 
with lengths greater or less than I; are improbable 
for kinetic reasons, as will be brought out subse­
quently. 
It is seen that there is little difficulty in explaining 

why a nucleus with folds should have fairly large 
dimensions, cOl'l'esponcling in magnitude to the step 
height determined by Kell er. The really critical 
issue is why this nucleus of length I; does not con­
tinue to grow in the 1 dimension, bu t chooses instead 
to grow in the x and y dimensions. This question 
will be pursued in oonsiderable detail later , but i t is 
considered fitting at this juncture to mention the 
general nature ofLhe argumenLs showing tha,t the 
crystal will maintain a length 1* that is close to It 
as it grows. The presence of the fold on the end 
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surface prevenLs rapid growth of the nucleus 01' 

embryo in the I direcLion of the simple type that 
can readily occur for a bundlcli lm nucleus in its l 
direction. The problem then becomes that of 
as es ing the relative growth rates in the I direction, 
and on the lateral surface, for the loop type nucleus. 
Consider fu'st what happens after a critical-sized 
nucleus with folds is formed. Since there will likely 
be very few other polymer molecules close by, the 
molecule already involved in the nucleus will con­
tinue to "crystallize," forming a primary crystallite 
containing one molecule. It can be demonstrated 
that the primary crystallite which on a kinetic 
basis ha the highe t probability of formation will 
in fact posse a length that is close to I ~. IL is, for 
example, highly improbable on energetic grounds 
that a new loop will protrude far above the plane of 
loops already esLablished. The same is true of the 
et of new loops in a larger body. A quite similar 

argument applie to Lhe growth of the cry~talli te 
when another polymer molecule enters the pIcture. 
Again the energetically least expensive growth nu­
cleus contains a loop , and has a length 1* thaL is 
close to It . Growth on the two primary crysLalli te 
faces containing the loops is not impossible, but 
will be subdued by the circumstance that a sec­
ondary 01' growth nucleus on this surface is nearly 
as cl)jfficult to form as the original primary nucleus. 
Considerable aLtention will be paid to the possible 
variation of the step height as the crystal grows, 
and this will be shown to be small. The relatively 
narrow distribution of step heights around the 
mean value of the step height is r ela ted to the nature 
of the saddle poin t in the free energy surface describ­
ing the rate of nucleation and growth. 

In appendix 5. 1 i t is shown that to good approxi­
mation the number of stable nuclei formed isother­
mally pel' unit volume of solu tion per unit time is 

(34) 

where no is the number of polymer molecules 
pel' unit volume of solu tion and AF t is the free 
energy of activation for a polymer molecule forming 
an additional step clement. The approximate tem­
perature dependence of Ac/> t can be obtained from 
eqs (28) and (31): 

Ac/>~ 
2C20';O'eT ;' 

(35) (Ah,)2(AT)2 
Hence, 

1 AHt a 
(36) In -= 

k1' 1'(AT)2' 10 

where 10= (k1'/h)no exp (AS t/k), and a = 2020'; 
O'eT ;'/ (.dhf)2k. (H ere we have seL AF t = AHt-
1'ASt.) EquaLion (36) is seen to be of the same 
form as eq (18) except for the relatively unimportant 
factor 1';'/1'2. Thus the temperature dependence 
of the nucleation rate at moderate supercooling is 
predicted to be similar to that of bundlelike nuclei in 
a bulk polymer in region A. 
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At this point it is cOIlvenient to indicate qualita­
tively why the nucleus with chain folds described 
by eq (29- 31 ) and eq (34- 36) is the most probable 
in dilute solu tion. The basic reason for this be­
havior is as follows: The free energy required to form 
a critical bundlelike nucleus in a very dilute solution 
is greater than the free energy required to form a 
critical nucleus with loops. This happens because 
the selection of segments to form the bundlelike 
crystals requires many polymer molecules to be 
gathered together. This leads to an important 
change in the difference between the configurational 
entropy of the crystalline state and the solution state. 
The change in entropy increases the free energy re­
quired to form a critical bundlelike nucleus. This 
effect is absent or greatly reduced for nuclei with 
loops, since such nuclei can be formed with a single 
polymer molecule, or a very few polymer molecules. 
Then stable nuclei with loops are formed much more 
rapidly than stable bundlelilm nuclei from a suffi­
ciently dilute solution. To be more quantitative, 
it will be shown in section 3.2 that when polyethylene 
is dissolved in xylene, crystallization will proceed 
primarily by formation of stable nuclei with loops 
when V2< 0.001 , where V2 is the volume fraction of 
polymer. It should be pointed out that while diffu­
sional effects in dilute solutions will tend to reduce 
the rate of fOl'mation of bundlelilce nuclei even 
further, these effects are important only at very low 
concentrations, where the reduction in configura­
tional entropy has already effectively eliminated the 
formation of bundlelilce nuclei. 

The above arguments, concerning the entropy 
contribution to the free energy required to form a 
critical nucleus from a dilute solution, also apply to 
the entropy contribution to the free energy of a 
grown crystal. It will be shown that a loop-type 
crystal is more stable than a bundlelike crystal of 
the same shape and volume in a sufficiently dilute 
solution. 

Brief consideration will now be given to certain 
aspects of the overall kinetics of crystallization. 
When a stable nucleus is formed, the nucleus will 
continue to grow until the molecule is consumed, 
forming a primary crystallite. At exceedingly low 
concentra tions, where the polymer molecules are 
very widely separated, and long-range diffusion im­
portant, i t is possible that the crystallization might 
proceed mainly through formation of such primary 
crystallites. 

Since the birth time of such a crys talli te is essenti­
ally the time required to form the critical nucleus, 
the time required for complete growth being negligi­
ble in comparison, the process will in effect be 
equivalent to sporadic formation of objects (primary 
crystallites) that do not grow. In this case, n 
would be unity in thejree growth rate expression 

(37) 

(Note that n= l in this case is not to be interpreted 
in the customary manner as one-dimensional growth 
of objects born at t= O.) At more moderate con­
centrations, where the degree of crystallinity could 
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be more readily measured, subsequent growth of 
each nucleus would proceed through secondary 
nucleation of other adjacent polymer molecules. 
This nucleation will occur principally on the lateral 
surfaces of the growing crystal, leading to growth of 
the x and y dimensions, because the energy of 
formation is much smaller for nucleation on the 
lateral surfaces than on the end surfaces, which 
contain the folds. The relationship between x', 
and th e actual mass fraction of polymer crystallized 
will be given in section 3.3 . Then we expect the 
nuclei, which are born sporadically in time, to grow 
principally in a two-dimensional manner leading to 
an overall crystallization isotherm described by 
n = 3. As the crys tallization proceeds, n will drop 
in value due to diffusional effects and the consump­
tion of polymeric material. The secondary nuclea­
tion mechanism will be discussed further in sec tion 
3.3. 

3 .2 . Detailed Analysis of Homogeneous Nucleation 
Rate and Constancy of Step Height in the Primary 
Crystallite 

In section 3.1. we have ou tlined in simplified form 
the principal features of homongeneous nucleation 
from dilute solution. In the present section we 
shall treat the nucleation process in greater detail 
with particular emphasis on the variation in step 
height of the nuclei. We shall at first discuss an 
ensemble of nuclei, each of which is characterized by 
a fixed step height 1, where 1 may differ from l ~. 
The objective is to calculate the distribution in 
s tep height in the stable nuclei formed in such a 
system. Later the assumption that each nucleus 
in the set has a fixed step height will be relaxed, 
and found not to al ter the general findings (see also 
appendix 5.1.). In this calculation the edge energy 
E p will be equated to zero. Its inclusion would not 
alter the results in an im.portant manner, but would 
needlessly complicate the analysis at this stage. 

Consider a primary nucleus that is composed of 
v step elements, all of length l. The energy of such 
a nucleus was given in eq (22) and i rmVTitten here 
with Ep= O : 

..:iq,p=2pa<T.+CI~va <Ts-val..:if. (38) 

The energy surface repl'esented by this equation 
is plotted in figure 6. Under the present assump­
tion, a nucleus of v step elements of length I can 
change by an elementary process only to nuclei of 
either v-lor v+ 1 step elemen ts of length 1. A 
stable nucleus of length 1 must be formed through 
the progressive addition of step elements until the 
free energy, ..:iq,p, is negative. Then the path of 
nucleation will be along the points 

(39) 

where V m is the minimum size of a nucleus. Two 
such paths are shown in figure 6, and will be dis­
cussed in more detail shortly 

It should be noted that if an embryo is to become 
stable, it must possess a length, I, greater than a 

J 
I 
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certain minimum. This can be seen clearly if eq (38) 
is differentiated with re pect to v : 

'Odcp p= Cus '/al+a (2u,_ldf) . (40) 
'Ov 2 v 

It can be seen by in pection that the right hand 
side of eq (40) decreases monotonically with increas­
ing v for all positive v . If the length of the embryo 
is so small that 1< 2 ue/.df, then Odcp p/Ov is always 
positive. The free energy of such embryos will in­
crease indefinitely with the addition of step clements, 
and the embryos can never become stable. Then 
stable nuclei can be formed only when 

(41) 

When eq (41 ) is satisfied, Odc/> p/ov decreases mono­
tonically with v from a positive value to a finite 
negative value. Under these circumstances the free 
energy of the embryos, .dCP p, increases with the addi­
tion of step elements until a maximum value, dcp;, 

I is reached when there arc v I step elements. The free 
energy decreases monotonically as further step ele­
ment are added. Two such path of nucleation are 
shown in figure 6. 

The number of step clements in the embryo at the 
energy barrier can be calculated by equating O.dCP p/ov 
to zero in eq (40 ): 

(42) 

The energy banier is 

(43) 

We have alrcady seen that this energy balTicr is a 
minimum when 

1* 4u e 
p= .df ' 

and that this minimum energy barrier is 

* 2C2u/ ue 
dCP1'= (.dC) 2 • 

(44) 

(45) 

With some algebraic manipulation of eqs (43 ), (44) 
and (45), we may write the energy barrier, dcp;, as 

I * [1 + (Im- l )2 J 
d<P p= dcp p 1 + 2 (l/1~- 1 ) . (46) 

This expression gives the value of the barrier hinder­
ing the formation of a stable nucleus composed of 
step clements of length ); these values of d cp;, lie on 
the ridge D- E on the free energy surface shown in 
figure 6. Since the energy barrier to be surmounted 

7 is a mi.r:imum at I= I~, where there is a saddle point 
in)he ridge, it can be seen intuitively that the rate 
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of formation of nuclei will be largest when the nuclei 
have lengths neal' this value. 

The effect of deviation of length from I~ on the 
rate will now be e tablished. In appendix 5.1., the 
rate of formation of th se nuclei was calculated using 
the procedure of Turnbull and Fisher [8]. It was 
determined that the number of stable nuclei with 
lengths between I and I+ dl formed per unit time per 
unit volume of olution is 

where 
~=a2..j2 ue (l.df- 2ue) 'i . 

I 7r (leT ) l 

The value of ~ may be considered valid at best to 
within an order of magnitude. However, it varies 
slowly with I compared to the factor exp [- Acp;/kT]. 
Substitution of eq (46) into eq (47 ) leads to 

. (I) nokT , [ dF~ ACP~J 
~ = ~ -,;:- exp - leT - leT 

. { Acp~ [ (J/lt- l )2 J} 
X exp - kT' 1 +2(l/1~- 1 ) . (48) 

This equation shows clearly that the nuclea tion rate 
is most rapid when 1= lt, and that the distribution 
in the lengths of the nuclei formed will become 
sharper as the height of the barrier at the saddle 
point, Acp~, increases. 

The derivation given above can be generalized 
further to include various step heights II, 12 . . . , 
for each individual nucleus, rather than just one. 
The general conclusion is that eq (48) is a reasonable 
measure of the variation in length of the stable nuclei 
formed . The fraction of stable nuclei with lengths 
between II and 12 can be calculated directly from eq 
(48 ): 

f~ i(l) dl 
Ip/2 

f l
2 {..::lcp'J; [ (lIlt- I ) 2 J} 

I I exp -7Zf 1+ 2(1/1');- 1) dl 

f eD {..::lCP'J; [ (1/1');- 1)2 J} 
1;/2 exp - kT 1 + 2 0/1;;-1) dl 

(49) 

The lower limit of the integral in the denominator 
represents the smallest possible size of a stable 
nucleus. This expression will prove u eful in es ti­
mating the percentage variation of I about its 
probable value, It . 

The total nucleation rate is obtained by integration 
of eq (48) . When (Acp;;/kT) > > 1, the number of 
stable nuclei formed per unit time per unit volume of 
solu tion is 



wh~re K = (2 ue ).t (~f)a2l7rtOus (k'F) t . For m~st case~ 
of mterest K IS w1thm an order of magm tude 0, 

unity, and' following Turnbull and Fisher, we . sha ll 
set K equal to umty. Then we have for Lhe nuclea­
tlOn rate 

I nokT - ' F*/k7' - il"*/kT =-h- e U 1> e )Up • (51) 

Substitution of eqs (45 ) and (28) into eq (51) y ields 

fi okT - ilF* /k T , [ 202u;ueT;' ] . (52 ) 
I = --r- e • e p kT(..::1hf ) 2 (..::1T)2 

(loop n uclei i n dilute solution) 

At temperatures neal' T "" i t is clear that the last 
facto)' fUl'llishes th e prin cipal temperature depend­
ence of I . 

'We turn now to some numerical values to illustrate 
Lhe o'eneral characteristics of the nucleation of 
cryst~ls with loops. U!JforLunaLely, no complete set 
of experimental data IS available, so. we must be 
satisfi.ed wi th estimates. ALLen tlOn wIll be cen tered 
on Lbe case of Lhe crvs tallization of polyethylene from 
xylene at 90° C, for I~eller and O'Connor [1] have 
measured the step hmght as fOImed under these 
conditions and found it to be about 140 A. It 
should be noted that xylene is a reasonably good 
solven t so that there is no separation in to two liquid 
phases ~t low concentratio,ns. This conditioIl; must 
be satisfied for the theory gIven here to be applIcable. 
An estimate on U e may be obtained by combining 
eq (28) and eq (29) so that 

(53) 

where we have approximated the step height of the 
crystal by I; in this equation . Q,ui~n and Mandelkel'l1 
[14] have measured the heat of fuslOn of polyethylene 
and have found it to be 67 cal ·g- 1 • From Bunn's 
X -ray data [12] on bulk crystalline polyethylene 
at room temperature, it may be e.stimated th~t 
the cross-sectional area of the cham segment lS 
18·5 X 10- 16 cm2, and tha t the volume of each 
- CH2CH2- unit is 47 X 10- 24 cm3 • (Thes~ values 
are adjusted to be correct at 90° C.) It IS de~er­
mined from these results that .6.h l> the heat of fuslOn 
per unit volume of cFyst~l , is 2.8 X 109 erg.cm.- 3•• We 
will (somewhat arbItrarily) assume that thIS IS. t?e 
heat of fusion Ah f in the presence of large quant1t16S 
of solven t. It is then found that 

[ Tm - 363] - 2 (54) ue= 980 Tm erg·cm· 

The melting point of polyethylene cryst~ls in v~ry 
dilute solutions of xylene is difficul t to estImate WIth 
confidence. A lowor limit on Tm of 95° C may be 
calculated from the theory of the depression of the 
melting point of a polymer by diluent [15] with the 
interaction parameter Xl = O. The true value of Tm 
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is very probably somewhat hi~her, ~ince Xl almost 
certainly differs from zero. It IS consIdered probable 
that T lies between 95° C and 120° C for thIS 
particular solvent. Then U e lies between 13 and 75 
erg·cm- 2 • A value of U e in this range seems reason­
able, since it corresponds to an energy of loop forma­
tion of 0.7 to 4 keal/mole of loops. We should 
expect polymers with stiffer chain s Lo pos~ess. higher 
va1ues of U e than polyethylene. In contll1umg the 
numerical analysis U e will be set eq ual to 30 erg·cm-2 • 

In eq (54) this' implies T m= 374.5° I~ , and. therefore 
Af= 1.17 X 108 erg·cm- 3 at 90°C. 'Io estImate the 
value of A~;/kT at this tempe!'a~ure, the shape 
constant C must be known. If It IS assumed tha t 
Lhe shape of the cross sec Lion of the nucleus is a 
parallelogram with an acu te angle, f = 70°, beLween 
the sides, 0 = 4. 13. Then from eq (45 ) or (31 ) 

A~t 1 ~ 2 kT = .DU , (55) 

at T = 90° C. A reasonable value of U s might Jie 
between 5 and 20 el'g'cm- 2 (Thomas and Stavely 
[16] have found 0'= 20.4 erg·cm- 2 for benzene) . Then 
A~;/kT must lie between 38 and 600. 

Crys tallization could not be observ~d if Aq,t /kT 
possessed a value of 600. For the part1~ular case of 
crystallization from a 0.01 percent solu tlOn of poly­
ethylene in xylene, A~:/kT must be we~ b~low 100. 
If U s lies between 5 and 6 erg·cm- 2, A.~p/kT hes be~ 
tween abou t 40 and 50. In any case It IS clear that ;: 
the value of ~~;/kT for slow but measur~b!e crystal­
lization processes is a large number. ThIS IS because 
u;u e possesses large values for nuclei ~with folded 
chains. One might expect that u;u e lIes between 
500 and 10000 erg3·cm- 6 for most polymers where 
the nuclei i~volve chain folding. The quantity 0';0' e 

relevan t to the case of bundlelike nuclei in bulk is 
much smaller, values of 25 to 250 erg3·cm- 6 being 
reasonable. 

The distribution in step heights of critical nuclei 
about 1* can be estimated from eq (49). If when 
p.olyeth; lene is crystallized frOl~ a 0.01 percent solu­
tlOn of xylene, 1; = 140 A and Aq,p/kT= 50, the ey~lu­
ation of eq (49) shows that 73 percent of the cntlCal 
sized nuclei have step heights between 126 and 
157 A. This distribution is sufficiently narrow so 
that several orders of low angle X-ray scattering 
might be expected , 6 ~f .th? gro~vn crystals possess 
this distribution. ThIS IS 111 satIsfactory agreement 
with experiment. 

These numerical values will be discussed further 
after the oTowth of the crystals through secondary 
nucleationb of other polymer molecules has been in- <: 
vesLigated in the next section. 

We now wish to show in some detail that the 
formation of bundlelilm nuclei in sufficiently dilute 
solu tion is negligible compare~l to nucleation thro~gh 
chain folding . The nucleatlOn rate of bundlehke 

• It is quite possible that local rearrangements of t be segments would cause tbe '\ 
step elements in the n ucleus to become even more lllllform III a relatIvely short 
period of t ime. 



nuclei of circular cross ecLion in the presence of 
diluent, fa, has been calculated by Mandelkern [13]. r With appropriate change in notation his resul t is 

1 - I -t>.F~/kT • [ 87l'(J~d(J fd ] • [ 47l'(J~d 1 ] 
d- ode ex]) kT(6. f,J 2 exp a(6.fa)2 ogev2 

(56) 
(bundlelike nuclei in dilute soluLion) 

where 6.F~ is Lhe activation energy required for 
transport across the nucleus-liquid interface, 6.fa is the 
bulle free energy difIel'ence pel' unit volume of crystal 
between the cl'ystalline and olution states, (Jsa is the 
free energy required to build a uni t area of the laLeral 
surface from Lhe bundlelike crystal in solution, and 
Vz is the volume fraction of the polymer in the solu­
tion. (J ea is a surface free energy cOl'l'esponding Lo 
(J ., the Iree energy required to build a unit area of 
end sUJ'l'ace in the bulk polymer. (J ed nlllst be less 
than cr e, the energy required to form a unit area of a 
surface containing loops. The pre-exponential facLor , 
I od , is not particularly sensitive Lo V2, varying appl'oxi-

( maLely as Lhe first power of no. It is to be expected 
that (JSd, 6. fd, and a should have values very nearly 
equal to crs, .Af, and a , the corresponding terms for 
nuclei with folds. Then the important dependence 
of I d upon V2 oecms in the last facLor in eq (56). The 
last factor decreases very rapidly wiLh decreasing Vz, 
and Lhe nucleaLion raLe for bundlelike nuclei is re­
duced cOJ'l'espondingly. Thus at sufficient diluLion 
the nuclei with folds are the preferred type, as may 
be seen by comparing eq (52) wiLh eq (56). 

A more quantitative comparison can be made if 
eq (52) is divided by eq (56): 

(57) 

where Co= (nolcTlhloa) exp [- (.AF;-6.FJ) IlcT] . In eq 
(57) iL has been assumed that .Af= 6.jd, crs= (JSd, and 
a= a. Here .A</>; is the energy required to form a 
critical nucleus with loops. When I l Ia» 1, tbe stable 
nuclei fOlmed arc primarily those with loops. It is 
instructive to evaluate eq (57) for polyethylene 
crystallized from xylene. Co is not very sensitive to 
either concentration or temperature and probably 
has a value between 10-10 and 1. vVe find 
27l'lcTIC2acr e~ 1 /3, if cr , is assigned the value of 30 
erg·cm- 2 • Then eq (57) becomes 

(IIId) = Coexp {- (A</>;/kT) [1 + ~ 10gev2- (47l'(Jed/C2 cre)]} 

(58) 

It has been shown that .A</> ~/lcT is a large number. 
If v2= O.OOl and Co= 10- 10, l il a lies between 1012 and 
1035 as A</>;llcT varies between 40 and 80. Thus in 
a 0.1 pel'cent solution of polyethylene in xylene, 
crystallization should definitely occur through the 
formation of nuclei with loops. At concentrations 
near 10 percent I/Id« l , and bundlelike nuclei will 
dominate the cry tallization process. The transition 

85 

between the two types of crystals occurs ncar 
V2 = 0.01. Equation (57) and (58) must be applied 
with caution neal' this transition region for two 
reasons: (a) Lhe nucleation rate for crystallites with 
loop ,va derived for very dilute olution and is 
probably inaccmate at higher concentrations; (b) I 
and I d are rates for extreme types of nucleation, and 
in the transi.tion region the stable nuclei formed are 
probably partially buncllelilre and partially formed 
through chain folding. Nevertheless eq (57) indi­
cates that there is a fairly sharp value of the volume 
fracLion of polymer, V2 (C) , such that when V2> V2(C) 
bu ndlelike Iluclei arc formed, a nd when V2<V2(C) 
nuclei with loops arc formed . If there is some 
restraint on the radial growth of bundlelike nuclei, 
such as the type of strain mentioned earlier, stable 
bundlelike nuclei may be even more difficult to form 
than has been indicated, and V2(c) would have a 
higher value than that deduced from eq (58) . Even 
wiLhout this, the important point remains that loop­
type nuclei will predominate aL low concentration. 

In extremely diluLe solution the preponderance of 
nuclei with loops over those that are bundlelike is 
enhanced even further by diffusional effects . Since 
aL higher concentrations loop nuclei are already the 
most important in the system, we sec no compelling 
Heed to give a detailed analysis of the efl'eet of long 
range diHusion. 

The above comparison naturally raises the question 
of why the configurational entropy contribution to 
the free energy of formation of a bundJelilm nucleus 
is so much more sensitive to the concentration of 
the solution than is the corresponding term for a 
nucleus with folds. Qualitatively this can be 
answered as follows. In formin g a critical bundlelike 
nucleus the segments of many molecules must be 
brought together. The entropy reduction in bringing 
together diJrerent polymer molecules in dilute solu­
Lion is sensitively dependen t upon the concentration. 
In forming a critical nucleus with folds from a single 
polymer molecule, the segmen ts of this molecule 
must be brought together in an appropriate manner. 
There is a cOITesponcling entropy contribution but 
this conLribu tion does not depend upon the concen­
tration of the solution. This qualitative explanation 
can be placed on a quantitative basis if a lattice 
model is used. The lattice model is no t accurate for 
dilute solutions, but calculations based upon it should 
be roughly COl'l'ect. It is found that the reduction 
in entropy due to the gathering of molecules in a 
bundlelike crystal is - lc In V2 per segment in the cross 
section of the crystal. This result yields an end 
smface energy of the form (J" ,d- (kT/2a) loge V2 and 
leads to eq (56). By analogy, for a crystal with 
folds, the reduction in entropy is - lc In V2 per polymer 
molecule contained in the nucleus. If a single poly­
mermoleeuleisinvolvcdin the formation of a critical 
nucleus with folds this contribution need not be 
considered and cq (52) results. If many molecules 
are involved in the crystal the free energy contribu­
tion per unit area of surface of the cl>ystal is 
- (IlL) (lcT/2a)logev2, where I is the step height of the 
crystal, and L is the mean length of the polymer 
molecules. This term is unimportant fo1' high molee-



mar weigh t polymers. In any case since this' 'surface 
energy" term is proportional to the step height of the 
crystal, it will be included in the bulk free energy 
difference per unit volume of crystal , Af. 

It has alreadv been shown that for kinetic reasons 
almost all of the critical nuclei possess lengths very 
close to 1~=4u e/Af. The critical nucleus can often 
be formed from a single polymer molecule. After 
these nuclei are formed, the remainder of the polymer 
molecule forming the nucleus will "crystallize" onto 
the nucleus until a primary crystallite is formed by 
a single molecule, which has a crystalline volume aL 
where L is the length of the molecule. The distri­
bution in step heights of this primary crystallite will 
now be briefly considered. 

It will be assumed that the primary crystallite will 
be formed from the critical nucleus by the addition 
of step elements in the manner shown by figure 5a, 
so that the step elements are added in a mono­
molecular layer to the ex1.sting already "crystallized" 
nucleus. This monomolecular layer will be added 
to one side of the nucleus until a "corner" of the 
nucleus is reached. At this stage the step height 
may be maintained near 4ue/Af although lower values 
may be attained. When the monomolecular layer 
of step elements reaches the "corner" of the nucleus, 
the next step element must be added so that it 
extends beyond the corner of the nucleus. This 
situation is shown schematically in figure 7a and 
7b, where the additional step element is designated 
by A. 

O il --;~I hLJ' 
( 0 ) (b) h (c) 

FIGURE 7. The addition of step elements around a "comer" 
of a nucleus. 

(a) and (b): Perspective a nd a top view of the ad dition of a step element. A, 
to a nucleus. '1'he step clement A must be added in order that a monomolec­
ular layer can be established along the face of the. crystal. (c) Top view of the 
step elements B, C, D , ... ,that can be added to the crystal face after t he first 
step element, A, has attached to the" corner" of the nucleus. 

A monomolecular layer may then be added along 
the surface of the nucleus by the addition of step 
elements B , 0, D, etc., as is shown in figure 7c. The 
calculation of the rate at which this monomolecular 
layer is deposited on the surface of the nucleus is 
complicated by two factors: (a) an accurate expres­
sion for the free energy of such a monomolecular layer 
is lacking, and; (b ) the fund amen tal expression for 
the rate of crystallization of a monomolecular layer 
is somewhat different from the expression used for 
the primary crystallization. 7 The first complication 
will be avoided by using a purely geometric model for 
the free energy of the monomolecular layer. Thus 
each step element will be assumed to be a parallele­
piped which has the surface energies appropriate to 

7 The Turnbull-Fisher thcory is not applicable when the activated state is 
reached in one step , as in the present case of a monomolecular layer. The treat­
ment of the nucleation rate in appendix 5.2 deals with the situation where the 
growth nucleus is formed in one step . 
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the bulk crystal. This model should yield answers 
that are qualitatively correct. Then if the step 
height of the added step elements A, B, 0, D, ... , 
is less than the step height of the nucleus, the free 
energy required to add v step elements around the 
corner of the nucleus is 

A</>' = 2husl+ 2vaue- vaIAf (59) 

where h = (a/sinif;)! is the length of the side of the end i 

surface of the step element. The usual method of 
finding the activation energy by setting oAcp/ol= O, 
o!1cp/ova= O, and substituting into Acp, is inapplicable 
in the case of monomolecular growth with v= 1, 
since the free energy surface does not have a saddb 
point that corresponds to a minimum activation 
energy. Hence we must examine the free energy , 
ridge for v= lover which the system must pass in 
more detail. 

The increment of energy required to add the step 
element at the corner of the nucleus is obtained by 
setting v= l in eq (59): 

Acp '!= 2husl- a (IAf- 2ue) . (60) c 

At the degree of supercooling in the range of experi­
mental interest, 2hus> aAf, and therefore Acp'l in­
creases with increasing l. Of course, if the length of 
the step element becomes larger than the nucleus, 
additional terms increase Acp I even more rapidly 
with l. The addition of further step elements B, 
0, D, ... , change the free energy by a constant 
amount 

It is clear that the step element must have a length 
greater than 2u ./Af 01' the resulting crystal is un­
stable. 

The addition of the corner step clement A requires 
an activation barrier Aq, 'I. Addition of further step 
elements of this length reduces the free energy by an 
amount E per step element. In appendix 5.2 it is 
shown that the equilibrium rate of deposition of 
monomolecular layers of step heights between I and 
l+ dl is 

rdl - dl OINkT e-t:.F*jkTe-t:.y;'l jkT < 
- h 

{ 2 sinh (E /2kT) } 
. 1+2e-t:.p'I/2kT sinh (E /2kT) (62) 

where AF* is the activation energy of the elemen­
tary process of adding the step element, N is the / 
number of primary nuclei which are growing, and 
0 1 is a normalization constant. 

The rate of deposition of the monomolecular layer 
depends upon the step height, I, of the layer. At 
1= 2ue/Af this rate is zero and as I increases the rate 
increases until a maxinmm is attained and then the 
rate decreases with a further increase of l. It will 
be shown that the rate is appreciable in only a narrow ~ 
range of values of l. 



A numerical analysis show tha t for the case in 
which we are intores ted, the ra te in eq (62 ) can be 
approxima ted b 

- 2 leT NO -!J.F*/kT -Mt,'I/kT . h [ E J 
r- hIe sm 2leT 

= 2 ~'£'N Ole-!J.F*/kTe - l (2h<T. - at>.f) /kT e-·2" <T ,/kT 
h 

. h [a (lAf- 2ue)] 
sm 2lcT (63) 

The mean length of the step heigh t of this layer can 
be taken as 

2u e [ 2leT 2lcT ] 
Af + 4hus- 3aAf+ 4hus- aAf ' (64) 

Similarly, the mean square devia tion is 

i CC (l- i)2r ell 
« I- i)2> _2<T.....:'/,-:;:!J.-;;:-f __ _ 

r oo r ell 
J 2<T eM 

_ { (2kT) 2 (2kT) 2 } 

- (4h(Ts-3aAf)2+ (4hus - aAf) 2 • 
(65) 

The~ quar~ r?ot of eq (65) can be used~ias a measure 
of the deVIatIOn of the step heigh ts from the mean 
value, r 

When hu.> > aAf, eqs (64) and (65) become 

(66a) 

and 

(66b) 

Now if h= 4.2 A, u.=6 erg·cm-2 and T=363° K 
then leT/hug is about 20 A. Th~ mean deviatio~ 
about this average value is about 14A. Then when 
the monomolecular layer passes around the "corner" 
the len&th of tho step height falls from 4u e/Af to a 
value slIghtly greater than 2u ./Af. The distribution 
of step heights about this mean value is quite sharp. 
Every time the monomolecular layer reaches a 
"corner" this identical situation will be repeated. 
It might be. expect~d that there is a tendency for 
the step hmght to mcrease, as the monomolecular 
layer is being crystallized along the side of a primary 
nucleus. An analysis of this process shows that the 
step height will remain near that given by eq (66a). 

~n sum;l11.ary, it can ~e said that if .the e.dge energy 
Ep IS neglIglble, the prImary crystallIte WIll have an 
interior section wh~ch ha~ a step height 1;=4(T .jAf, 
~nd the outer seetIOn will have a step height near 
1= 2u./Af+lcT/hus . More will be said of this process 
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in the next section . If the edge energy Ep i not 
negligible i t will affect the growth of the critical 
nucelus into a primary crystallite. This effect will 
also be di cu sed in the next section. 

3.3. Constancy of Step Height in Overall Growth 
Process and Volume Increase of a Folded 
Crystal Dilute Solution 

When a primary crystal bas been formed, i t can 
grow by the addition of other polymer molecules 
upon it, one by one. This crys talliza tion will 
proceed by the formation of a secondary nucleus by 
a single molecule upon the lateral surface of the 
crystal. This growth of the crystals is trea ted in 
this section with emphasis on two points. First \ ve 
wish to demonstrate tha t the step height of the 
gro",ring crys tal has a tendency to remain at a 
con tant value 1* for kinetic reasons. Second, it is 
desired to obtain appropria te expre sions describing 
the volume rate of growth of these crystals. 

Before we discuss growth through secondary 
nucleation on the la teral surfaces, our neglect of 
nucleation of the end surfaces must be justified. 
The end surface of the primary crys tal is composed 
of loops formed by the folding of polymer molecules. 
The end surface of a secondary nucleus is also com­
posed of folds. Thus there is a distinct boundary 
betwee ll th e crys lal and such a secondary nucleus. 
The effec t of any affini ty between the loops in the 
two end surfacE'S upon Lhe fre e energy required to 
form a sc(~onda]'y nucleus is probably small. Then 
the free ellergy required to form a secondary nucleus 
upon Lhe end sUl'face of the crystal is almost as 
great as th aL required to form a primary nucleus. 
Some growth on Lhe end surface will, of course, 
occur. However, by the arguments given above, 
the step heigh t will be practically identical to that 
of the primary crystalli te. Secondary growth of 
this type can lead to small patches of secondary 
growth on the primary crystallite, or in olher cases 
to a disLinct pyramidal appearance due to successive 
layers being fonned. These effects should be sub­
dued by forming crystals at very low concentration. 

The free energy required to form a secondary 
nucleus upon the lateral surface of Lhe crystal is 
considerably smaller than that required to form a 
primary nucleus. The volume growth of a crystal 
proceeds through the formation of a stable secondary 
nucleus on the growing (lateral) surface of the crystal 
followed by complete "crystalliza~ion)) of the entire 
new molecule. The rate of addition of molecules to 
the crystal will be the average number of molecules 
in contact with the growing surface times the rate 
at which one of these molecules forms a stable 
llucleus, Po. The quan tity, Pu can be calculated by 
the method of Turnbull and Fisher [8]. 

(67) 

where Acp; is the free energy required to form a 
secondary or growth nucleus of critical size. Tho 

I 
j 



process of the formation of a fold by a molecule 
should be the same in primary and secondary 
nuclei, so that we an ticipate ~F~=~F;. This 
expression holds for growth wherc the activated 
state is reached through many successive elementary 
processes. Later, the case of growth through addi­
tion of a monomolecular layer will be considered, 
and eq (67) will be modified accordingly. 

The free energy of secondary nuclei of cri tical 
size, ilq, ~, will be considerably smaller than the cor­
responding energy for primary nuclei. The calcula­
t ion of ~q,i requires an accurate expression for the 
free energy of a secondary nucleus, ~q,g. We can 
obtain such an expression when the shape of the 
secondary nucleus is known and the number of 
segmen ts in a cross-sectional area is large. IL is 
probable that neither condition is satisfied for tb e 
secondary nucleus. We will, however, consider two 
extreme cases: (1) the cross section of the secondary 
nucleus has the same shape as that of the primary 
nucleus, and, (2) the secondary nucleus consists of a 
single layer of enfolded sections of a polymer mole­
cule upon the surface of the crystal. 

The former case where the shape of the cross sec­
tion of the secondary and primary nuclei arc the 
same is not likely to be correct, but it has the ad­
vantage that an accurate expression for its hee 
energy may be written down explicitly. In figure 8, 
a secondary nucleus of this type is shown on the 
lateral surface of tbe larger primary crystal. The 
free energy required to form this nucleus is the differ­
ence between the free energy required to form the 
total crystalline region P + S shown in figure 8, and 
the free energy required to form the crystal, P. If 
there are II step clements in the secondary crystal, 
the free energy required to form the secondary 
nucleus is 

~q,~=211aae+~ Fa asl;-IIal; il.f. (68) 

The equation above applies to the case where both 
the crystal and the secondary nucleus possess the 
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FIGURE 8. Schematic diagram of primary crystal, P, wilh a 

hypothetical secondary nucleus of the same cross-sectional 
shape, S, upon lateral sUljace of the crystal. 

A secondary nucleus or em bryo where 61*0 is shown in the text to be consider­
ably less stable than one of length I;. 

critical length 1;. It should be noted that the sec­
ondary nucleus possesses only one-half as much 
lateral surface energy as a primary nucleus of the 
same size and shape. We easily find that 

il ..1.*= ilq,;. 
'l' g 4 (69) 

Then the activation baJTier of a secondary nucleus 
would be only one-quarter of that required to form 
a primary nucleus. If the height of the step ele­
ments in the secondary nucleus is allowed to be 
I;+ ~I, the free energy required to form such a 
secondary nucleus can be calcula ted by the usual 
methods. It is found that the energy barrier ~q, '; 
which such a nucleus must surmount is 
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~A.. lf=~ ~A..*+ ilq,; (ill ) for ill > 0 
'l' g 4 'l' p 2 I; - , 

(70) 

11_ 1 *+ ilcf>; (ill) 2 f . 1<0 
~q,g-4 ilq,p 4 1;(lt+2~I J 01 il - . 

The variation in lengths of secondary nuclei will thus 
be small, since we have seen that ~q,; is large. 

If th e primary nucleus has a length I which is 
greater than 1;, the secondary nucleus will possess a 
length very close to It. It is clear that if Lhe sec­
ondary nucleus has the same cross-sectional shape as 
the primary nucleus, the step height of the crystal 
will not increase as the latter body grows. 

The activation barrier required to form a critical 
secondary nucleus of the same shape as the primary 
nucleus is large. It is therefore probable that the 
secondary nucleus of cri tical size is a monomolecula1' 
layer of step elements that lie along the growing 
crystal face. An accurate expression for the free 
energy of such a nucleus is not available, but the 
same assumptions that were used in the previous 
section may be applied here. The free energy 
required to nucleate on the growing crystal face is 
the same as that required for a monomolecular layer 
to turn a corner and grow on a new crystal face. 
Thus ~q,g is identical to ilq,' in eq (59). From th e 
results of the previous section concerning the forma­
tion of a primary crystallite it can be concluded that 
if the edge energy, f , is negligible the crystal will 
grow with a constant step height, 1*, which is given 
approximately by 

1*= 2<Te + kT. 
~f has 

1) 

'iiVhen the monomolecular layers have completely 
encircled the growing crystallite, it is improbable 
that additional layers will have step heights ap­
preciably larger than I * since such layers would 
extend above the gro'willg crystal face and therefore 
would require more free energy to construct. Thus 
the distribution will be somewhat sharper than that 
implied by eq (65), and the step height may decrease 
slightly from the value given by eq (71). In any 
case the crystal will grow with a very narrow distri-



bution of step h eigh ts about 1*, and the variation 
of step height hould be approximately 1/21f,(kT/hus ). 

For thi type of econd ary nucleus, Pg is obtained 
by the in tegration of (r/N )dl over all permissibl e 
values of 1. With a ui table choice of 0 1 in eq (63) 
we have approxllnately 

In this case log pg varie approximately a (AT)- l 
for moderate supercooling. 

Price [19] has independently considered the growth 
of crystal with folds through nueleatio n of mono­
molecular layers. 

At this po int it is appropriate to discu s the 
possibili ty of an edge free energy affecting the 
growth proce s appreciably. An edge free energy in 
a monomolecular secondary nucleus can be consid­
ered to arise as follows. If the growing crystal has 
flat surface containing loops, the packing of the 
loops increases the tability of the cry tal. If a 
monomolecular layer is placed upon the growing 
urface of the cl'ystal, where the step height of the 

growing surface differ from that of the layer, the 
loops in the monomolecular layer cannot be as 
efficiently packed as if they coi ncided with the flat 
surfaces of the crys lal. T his will lead to an edge 
energy appearing in the expression for the free 
energy required Lo form this monomolecular layer 

where E i the free energy required to form a un i t 
length of "edge" in the monomolecular laye)' . The 
introduction of t he parameter E in eq (73) will not 
affect the general conclusion previously obtained, 
but will affect the qua n titaLive results. 

We arc justified in considering this case sin ce it 
will be shown in section 3.5. that it can be experi­
mentally determined \vhether E is negligible 01' not. 
Equation (73) applies Lo a layer where Lhe step 
heigh t 01' the monomolecular layer is less than Lhat 
of the growing crystal surface. 

The free energy required to form a monomolecLl­
lar layer with a larger sLep heigh t than the growing 
crystal surface requires the addition of a LeI'm 
2vh u sAl Lo eq (73), where At is the difference in 
sLep height. The free energy required to form a 
monomolecular layer with the same step heighL as 
the growing crystal surface is 

i.e. no term in E appears. 
Inspection of eq (73) shows that when 1< 2u ./M + 

h E/aAf , Acp ~' increases with increasing v . This will 
hold tr Llc uuLil the monomolecular layer extends 
around the enti1'e crys Lal when a maximum free 
energy will be attained. FurLher additions of step 
clements would then reduce the free energy. The 
activation bn rriel' would be very large parLicu-
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larly if the cr. tal were large. The formation of a 
table nucleu with a step height Ie s than 2u e/ Af + 

hE/aAf would undoubted ly proceed through the for­
mation of a diilerenLly shaped nucleus, bu t would in 
any case require a very large activation barrier. We 
sec Lhercio1'e that we need only con ider the case 

1> 2ue+ hE . 
Ai aAf 

(75) 

Inspection of eq (73) shows that it is identical to 
eq (59) if U e in the former equation is replaced by 
(Ue+ hE/2a ) in the latter . It i therefore unnece -
sary to repeat the calculations, and the step heigh t 
of the monomoleuclar layer will be 

(76) 

After the step h eight given by eq (76) is e tablished, 
additional monomolecular layers of this step height 
will require the free energy given by eq (74), while 
any deviation from this value will require a free 
energy that include the edge free energy. Then 
the distribution in step heights will be sharper than 
that calculated previously. 

We have not considered explicitly the case where 
th e monomolecular layer has a step height greater 
than the growing crystal face, but it can be sho\V'n 
that tIle rate of deposition of such a layer is negli­
gible, if there is an appreciable increase in step 
height. Thus while the sLep height of the primary 
critical nucleus may pel' ist for a time, it is expected 
th a t as the Cl'ys tal grows the step heigh t will be 
reduced to 1* as given by eq (76 ) and the grown 
crys tal will possess the sLep height t *. 

The above remarks apply when the edge free 
energy, E , is noL so large that the righ t hand side of 
eq (76 ) is larger than I ~, the step height of Lhe cri t­
ical nucleus. If, however , the value of 1* as given 
byeq (76 ) is larger than I ~, th en lhe grown crystal 
will have a sLep heigh t I ~ , characteristic of the 
homogeneo Llsly formed critical nucleus. 

It sllOu ld be mentiolled Lll at if the edge free energy 
ill t he pl'imal':'I~ nucleus, Ep , is i ll cluded in our ealcu­
Jalions it is fo und that 

(77) 

It musl he ullclersLood that Ep and E arc in general 
cl iff eJ'c nL and in fact it is likel~T that E is appreciably 
larger Li w n E1) . Similarl~- , the fre e energy required 
Lo form a c1'i tical nucleus is 

(78) 

It may be stated in summary that, independent of 
the value of E , the grown crystal will havc a step 
height that is qui te uni.form due to I inetic factol's 
that ari se from the nature of Lhe saddle point in the 



free energy surface of forming stable growth nuclei . 
However, the step height of the grown crystal will be 
numerically different for different values of E: (I) If E 

is negligibly small the step height of the grown crystal 
is given by eq (71). (II) If E has a moderate value 
the step height of the grown crystal is given by eq 
(76). (III) If E is very large the step height of the 
grown crystal is equal to that of the primary nucleus, 
and is given by eq (77) . Case I can be distinguished 
from II and III by a determination of the melting 
point of these crystals that will be described in 
section 3.5. Cases II and III may be distinguished 
by an accurate measurement of the melting point of 
the crystals combined with an accurate measurement 
of the variation of step height with the temperature 
of crystallization. 

In order that the overall kinetics of crystallization 
can be calculated, it is necessary to calculate ve(t, T), 
the volume at time t of a crystal that was nucleated at 
time T. The volume growth in a crystal proceeds 
through the formation of a stable secondary nucleus 
on the growing (lateral) surface followed by the 
"crystallization" of the entire new molecule. The 
rate of addition of molecules to the crystal will equal 
the product of the average number of molecules in 
contact with the growing surface, p , and the rate at 
which one of these molecules forms a stable nucleus, 
pg. Then the rate of volume increase of the crystal 
will be. 

(79) 

where aL is the fl.verage crystalline volume of a poly 
mer molecule. In section 2, the growth rate of the 
linear dimensions of a polymer crystal in a bulk 
phase was nucleation controlled and independent of 
time, unless impingements or chain entanglements 
between different crystals occurred. Impingements 
can he neglected in the growth of crystals in dilute 
solution. However, the growth rates are determined 
i.'f both diffusion and nucleation processes, and are 
not in general independent of time for the loop 
nucleus. The number of polymer molecules per unit 
volume of the solution at the growing surface of the 
crystal, net, T), will depend upon diffusion processes 
and the consumption of polymer molecules. N ever­
theless, since only a rough estimate of the growth 
rate will be attempted, it will be assumed that 

net, T) = no. (80) 

We can estimate p by assuming that every polymer 
molecule that approaches the edge of the crystal by 
a distance closer than one-half its mean end-to-end 
distance in solution, /I. , can form a secondary nucleus. 
Then, if /1.» 1*, 

(81) 

where P is the perimeter of the crystal and n o is 
taken as the average number of polymer molecules 
per unit volume at the growing surface of the crystal. 

It is assumed that the shape of the cross section 
of the crystal is a parallelogram with an acute angle 
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between two sides, if; = 70°. Experimental values of 
if;= 66° to 74° have been found by Till [3] for linear 
polyethylene crystals obtained from dilute solu tion. 
This is approximately the shape of the single crystals 
of polyethylene obtained by Keller [1]. It is also 
assumed that all four sides of the parallelogram have 
the sall". e length, X, i.e ., X= x= y. This assumption 
simplifi( ~s the following calculations, and is a con­
sequenc' of the double spiral model used (it is clear 
for figs. 4b and 5a that x= y). Many other models 
also would lead to the same result. Then the volume 
of the growing crystal is 

(82) 

The perimeter of the growing crystal is 

P = 4X. (83) 

Combining eqs (79), (81), and (83 ), 

dVe 2 L X (Ji= 47r/l. a pg no· (84) 

Integration of eq (84) gives immediately 

vcCt, 7) = aL+ 47r/l. 2aLPgno,C XdT ' . (85) 

Substitution of eq (82) into eq (84) yields after some 
manipulation 

dX 2'71'/l.2aL 
G= dt = 1* sin if; pono· (86) 

Under the approximations employed above, the 
growth rate, G, of the sides of the crystal is in­
dependent of the time. Integration of eq (85) yields 

where X(T,7) has been equated to zero . 
Substituting eq (87) into eq (85 ) it is found that 

°t )- L+ 87r2/1.4(aL)2(pg)2 ( )2 (t - 7)2. (88) 
vc\ , T - a 1* sin if; no 2 

Equation (74) gives us our desired result . It must 
be remembered that this equation is valid only in 
the early stages of the crystallization process, and 
only when diffusional effects are negligible. The term 
aL is the volume of the primary crystallite, and the 
second term represents the additional volume at 
time t due to accretion of new molecules on the 
lateral surfaces. 

3.4. Value of n for the Overall Crystallization 
Process From Dilute Solution 

In discussing crystallization from dilute solution 
we define the quantity, x, as the mass fraction of 
th e total amount of polymer in the solution that is 



crystalline. X will then be zero when no crystals 
have been formed, and will attain the value of unity 
if all the polymer present has entered the crystalline 
state. The crystalline mass i 

(89) 

where Pc and Vc are the density and volume of the 
crystalline phase. The total number of polymer 
molecules is DoV. , 'where V. is the initial volume of 
the solution and Do is the initial number density of 
polymer molecules. If all polymer molecules were 
crystallized, the crystalline volume would be ap­
proximately lloVsaL, where Lithe mean length of 
a polymer molecule. Hence the total mass of poly­
m er is 

(90) 

and by definition 

Mc Vc 
x = --= - - ' 

M tot DoaLV. 
(91) 

Since (noaLVs) is independent of time, the time 
dependence of X is determined by the time depend­
ence of Ve. The crystalline volume as a function of 
time is 

(92) 

where VsI (r )dr is the number of stable nuclei formed 
between rand r + dr, and vc(t, r ) is the volume of a 
crystal that was nucleated at r. From eqs (91 ) 
and (92). 

1 it X=-L I (r) Vc(t,r) dr 
Doa 0 

(93) 

Both the nucleation rate and the crystal growth rate 
will be reduced as crystallization proceeds due to 
the depletion of crystallizable material. Also vc(t, r) 
will be reduced in value if long range diffusion effects 
are important, and at the beginning of the crystalli­
zation process the nucleation rate J(r) will not have 
attained its equilibrium value. These circumstances 
introduce serious difficul ties into an accurate evalua­
tion of X from eq (93 ). Instead of attacking these 
problems, we shall limit ourselves to the presenta­
tion of an approximate expression for X in a form 
that has been widcly used in the interpretation of 
expr,rimental data. 

In order to introduce this approximate expression, 
we define a new quantity, x' , which is the value of 
X that would result if all crystals were growing in a 
solution where the number density of uncrys tallized 
polymer molecules remained at the constant value 
Do. From its definition it is clear that X' may take 
on values from 0 to 00. We shall assume that an 
adequat e representation of the effect of the depletion 
of crystallizable material is given by 

(94) 

91 

H ere Xw is the limiting value of x. In dilute solution 
it is expected that XU! is very close to unity, and it 
will be assumed henceforth that Xw= 1. (In the 
corresponding expres ion for bulk polymers [6], Xw 
can be considerably less than unity as a result of 
impingements). Equation (94 ) is clearly accurate 
at mall values of t, and probably reasonably ac­
curate up to moderate values of x. From an inte­
gration of eq (94) it i found that 

x = l -e-x' . (95) 

We have ca t our expression for X into this form for 
convenience in comparing our resul ts with experi­
mental data. Expressions of the form of eq (95) 
with x/ = Zntn have been derived phenomenologically 
by Mandelkern, Quinn, and Flory [9] and others [6], 
and have been widely used in interpreting experi­
mental data. These expressions are plotted for 
various integral values of n and comparison is made 
with experimental isotherms. The value of n which 
yield the best fit provides information concerning 
the geometry of the crystal growth. For example, 
if the crystals are nucleated sporadically in time and 
exhibit lineal two dimensional growth, n will be 
equal to three. It should also be noted that if 
x' = Zntn, the isotherms defined by eq (95 ) obtained 
at various temperatures should be superposable 
sinlply with a shift in the time scale. 

The quantity x' is defined as that value of X 
which would resul t if all crystals were growing in a 
solution of constant number density Do of polymer 
molecules. Then the equilibrium nucleation rate is 
given by eq (51) and vc(t ,r ) by eq (88). Substituting 
the e values in eq (93) it is found that 

whcre 

(96a) 

Z leT - ' F*lk'" - Ll. f!j '/ kT =_ e u" ' e v 
1 II, 

(96b) 

(27T"X2De) 2 aL (leT) ( )2 - Ll.F'/k T - 1J.t/J° l kT ----- p e "e" 
3 J* sin f 11, ~ 

(96c) 

where pg is probably of the form given by eq (72). 
It can be shown that the linear term (ZIt ) often 

lies in an experimentally inaccessible region. Then 

SubsLitu tion of eq (97) into eq (95) yields 

- z,t' x = l -e (98) 

It is in order at this point to mention the principal 
approximations made in deriving eq (98 ) for simple 
loop-type crystals: (a) the depletion of crystallizable 
material was approximated by eq (94); (b ) the growth 
of the crystals 'was assumed to be nucleation con-
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trolled instead of diffusion controlled ; (c) the equilib­
rium nucleation rate was assumed to hold at all 
t imes; and Cd) nucleation on the end surface of the 
crystals has been n eglected. 

The approximation for depletion of crystallizable 
material should be reasonably accurate for small 
and moderate values of x, although not valid for 
values of X near unity. Since at sufficiently low 
concentrations of crystallizable material the crystal 
growth must become diffusion controlled , eq (98) 
cannot be accurate when X is near unity. The 
validity of the assump tion of nucleation controlled 
growth for low and moderate values of X is more 
difficult to evaluate. It is believed reasonable by 
thc authors that, except at very low concentrations 
of the crystallizable material, the efff'cts of long 
range diffusion will not predominate. When these 
effects do predominate, the exponent of the time in 
eq (98) will be lowered somewhat. Finally, it is 
expected that the growth rate of the crystals is 
much more rapid than the primary nucleation rate. 
Under these circumstances the effects of the transient 
nucleation rate may be observed for low values of x. 
This could cause the observed exponent of the time 
in eq (98) to be quite large for small values of x , 
even exceeding n = 4. (In this region, the value of 
n is fictitious in the sense it does not reflect the type 
of nucleation and growth of the crystals.) If 
growth through secondary nucleation on the end 
surfaces is important the value of the exponent will 
be increased over what it would h ave bren in the 
absence of such growth. 

Our r esults may be summarized as follows: If Lhe 
phenomenological expression 

(99) 

is fi tted to experimental data, we should expect that 
the best fit at moderate values of X should be 
obtained for values of n near three. If long range 
diffusion limits crystal growth, somewhat lower 
values of n can be expected , whereas growth of the 
crystals through nucleation on the end surfaces will 
raise the value of n. At low degrees of crystallinity, 
higher values of n might be observed due to the 
effects of a transient nucleation rate. The value 
n = 3 is, of course, that appropriate to (lineal) 
two-dimensional growth of objects born sporadically 
in t ime. 

These results agree reasonably well with the 
experimental isotherms obtained dilatometricall:v by 
Mandclkern and Quinn [17, 18] on crystallization of 
polyethylene from a 0.25 percent solution of 
a-chloronaphthalene. Mandelkern has not investi­
gated the morphology of the resulting polyeth~rlene 
crystals, but he states that this concentration is 
comparable to that in which platelike crystals arc 
formed. Superposable isotherms were obtained for 
crystallization temperatures from 97° to 104°C. 
The superposability of these isotherms is in 
marked contrast to the results hc obtained with 
more concentrated solu tions, but similar to that 
obtained for bulk crystallization. In addition, 

Mandelkern compared curves of the form of eq (99) 
with his isotherms and concluded that if the first 5 
percent of the transformation is neglected, an almost 
exact fi t is obtained for the major portion of the 
process if values of n = 3 and n = 4 are used. The 
first 5 perc en t of the crystallization process would 
require considerably higher values of n for a proper 
fit . 

The agreement between our results and the 
experimental isotherms is consistent with the assump­
tion that these isotherms r esult from the formation 
of crystals with folds. We shall proceed on this 
assmnption and investigate the temperature depend­
ence of the rate of overall crystallization in section 
3.6 . In order to perform this analysis we must 
estimate the equilibrium melting temperature, Tm. 
I n estimating Tm, certain pitfalls can be avoided 
by elucidating some properties of crystalf'. with folds 
that, resul t from their m etastability. This is done 
in the next section . 

3.5. Metastability of Crystals Formed by Chain 
Folding I 

In previous sections the nucleation and growth 
of polymer crystals with loops has been discussed. 
vVe shall now give a brief treatment of the metas ta­
ble character of these crystals. It will be demon­
strated first that crystals with loops formed isother­
mally ,,,ill have a relatively sharp melting point 
T';', appreciably below the equilibrium mel ting tem- \ 
perature in the presence of solvent, Tm. The 
possibility that crystals with loops may have a 
tendency to increase their step height when stored 
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at elevated temperatures will also be discussed. 
Before these points can be treated, it is necessary 
to consider the free energy difference between the 
crystalline state and the solution state for a crystal 
with loops. 

If a crystal has JJ step elements of length I, its 
free energy with respect to the solution state is 

Equation (100) is formally identical with expressions 
for the free energies of nuclei that have been pre- " 
sen ted in previous sections, but several important 
distinctions must be noted. The crystal under con­
sideration has been formed with a length 1 in an 
isothermal manner. ,Ve redefine the temperature 
of crystallization as Tx. Equation (100) represents 
the free energy of the crystal at a temperature T, 
which is not necessarily the same as the temperature 
of crystallization, T". The variation of the free "I 
energy of the crystal, ~¢c , with temperature is pri­
marily due to the variation of the thermodynamic 
driving force, ~f, with temperature. The approxi­
mate variation of ~f with temperature was given in 
eq (28) which is rewritten here for convenience 

(101) ~ 
I 



Finally, v is a very large number SlO ce eq (100) 
applies to a cryst ai , not a nucleu . 

The volume of the cn-stal is val. Then the free 
energy difference per llni't volum e of crys tal between 
the crys talline and olution states is 

, Since the crys tal ha a large number of step clements, 
v - J.> is small, and the second term on the righ t hand 
side of eq (102) will be neglected. Then 

(1 03) 

The most slabl e crys tal a t any tempera ture will be 
lba t crystal which has a minimum valu e of t:.¢c/val. 
It is clear from eq (103) that crys tals with large step 
heights are more stable th an crystals with smaller 
tep heights. It is, of course, not surprising that a 

larger crys tal is more stable than a smaller one. 
, However , when a loop-type crystal of length I and 
, of a given volume has been formed, i t will probably 

be difficult for t he step h eight to increase simply 
by having the crys tal change its shape. Such an 
increase of step heigh t would tend to be slow because 
of the complicated d'iffusion mechanism with length­
wise "sliding" of the polymer chains that would be 
involved. The ensuing discussion is carried out on 
the assumption that, in a mel tin g experimen t or 
sufficien tly shor t duration, I will no t increase 
appreciably . 

If crys tals with loops with length 1* are formed 
isothermally at a tempera ture of crys tallization, T x , 

they will melt a t a tempera ture appreciably below 
the equilibrium mel ting temperature. In order to 
find the melting point we shall first derive an 
expression valid for any I. The temperature at 
which a crystal melts can b e deduced from eq (103). 
A crys tal with loops, which has a step heigh t I, is 
stable at its temperature of formation with respect 
to the solution sta te. If, after the crysLal was 
formed, the tempemture i increased , the free energy 
increases. When the free energy of the crystal with 
respect to the solution sta te vanishes, the crys tal 
will mel t. Then the tempera ture of melting of a 
crys tal with step height, I, is obtained by equating 
eq (103) to zero and solving for the temperature: 

T ' 'I T [ 2O'eJ m( ) = m I - t:.h/I · (104) 

We sec that Tm is th e melting tempera ture of a 
crystal with infini te step heigh t. 

"rhe above expression , eq (104) has been derived 
with two tacit assump tions. It has been assumed 
tha t the l'3, te of heating in the melting experimen t 
is suffi ciently l'3,pid 0 that the s tep h eigh t, I, does 
no t increase and sufficiently slow so tha t the actual 
melting temperature of the crys tal will be observed 
to a elose approximation. The recrystallization a t 
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greater step heigh Ls after melting need not be con­
sidcrcd ince the large negative temperatUl'e coeffi­
cient of the crys Lalliza tion process enSUl'es that 
recrys tallization i very slow. 

vVe have seen that in an isothermal crys tallization 
the step heights of the crys tals will be very elose t o 
a characLer.is tic valu e, 1*. Thus all the crys tals 
formed in an isothermal crys tallization will melt at 
almost the same tempel'3,t ure. This t emperat ure, 
T~! , which is where th ese crys tals melt, i. e., redis­
solve, is obtained by ubstitu ting the appropriate 
value of 1* into eq (1 04): 

T' T [ , 20'. ] 
m= m 1- dh)* (i 05) 

Let us firs t consider the case where the edge free 
energy, f, of nucleating a monomolecular layer is 
negligible. Then from eq (71) and eq (2S) 

(106) 

Sillce lcTx/CO's is 20 A or less and 1* is chal'3,cteris­
lically ncar 120 A, it follows that when eq (106) is 
substituted into eq (105), th en T';' is only a few 
degrees greater than T x. Thus, if th e edge energy 
is negligible, the crystals formed at a temperature of 
crys talliza tion, T x , will melt only a few degrees 
above T x. H ence, an investiga tion of the tempera­
tUl'e a t whi ch the crystals melt in solut ion can de­
termine whether f is negligible or not. The com­
bination of lhese res ulls wi th an aeC Llra te determi­
nation of the varia tion of step heigh t I * with the 
temperature of crys lallization , Tx , should determine 
th e impor tance of f an d f p . If the step h eigh t of 
th o crystal is as large as tha t of the crili cal primary 
nucleus with f p neglected, then 

(107) 

Substitu ting this value in eq (105) it is found that 

(lOS) 

Then even if the s tep heigh t is as large as tha t of a 
primary nucleus the crystal will tend to melt at a 
temperature approximately midway between the 
equilibrium melting temperaLure in lhe presen ce of 
solven t, and the temperature of crystallization. 

The presence of a substan tial munber of crystal­
li tes with a small number of step elements would 
tend to broaden the melting curve, and imperfections 
du e to branches might have a similar effec t . It is 
to be understood that T~ is to be m easUl'ed under 
condit ions where the warmin g rate is slow enough 
so that thermal equilibrium is established , but no t 
so slow that 1* has time to increase appreciably. 

A direct determination of the equilibrium m el ting 
temperature in dilu te solution, T"" by slow warming 
may prove very difficult because of the persistence 
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of the step height. The "Tm" value so obtained 
could easily be somewhat low. 

The above results were derived for crystals in 
solution, but it is believed that they would be quali­
tatively true if the crystals were removed from the 
solution and the solvent eliminated from the crystals. 
For example, a mass of dried loop-type crystals, 
previously initiated and grown to large x and y 
dimensions in an isothermal manner from dilute 
solution at a temperature below T m , should melt 
fairly sharply and well below Tm, the (bulk) equi­
librium melting temperature. 

It is not difficult to show that a crystal with loops 
is more stable than a bundlelike crystal of the same size 
and shape in a sufficiently dilute solution. The 
free energy difference between a loop-type crys­
tal and the solution state is given in eq (1 00) 
The free energy difference between a bundlelike 
crystal of the same size and shape and the solution 
state is obtained by replacing a, ..:1f, U s, and U e in 
eq (100) by a, fl.fd, O"Sd, and (O"ed-lcTlogev2/2a). 
The quantities a, !J. jd, and O"ed are comparable to 
a , ..:1f, and u s. The end surface free energy for a 
bundlelike crystal in dilute solu tion was seen to 
be (O"ed - (lcTlogev2 /2a) in section 3.2, and in 
a sufficiently dilute solution this surface energy 
is greater than U e' Then in a sufficiently dilute 
solution the loop-type crystal is more stable than 
a bundlelike crystal of the same shape and volume, 
because the end surface energy contribution to 
the bundlelike crystal is much larger. In fact 
if the solu tion is sufficiently dilute so that loop-type 
nuclei are kinetically favored over bundlelike nuclei, 
the grown loop-type crystal are at the same time 
more stable than a bundlelike crystal of the same 
shape and volume. This result applies to crystals 
in solution. 

If a loop-type cryst.al of a given volume and cross­
sectional shape is in a dilute solution, the step height 
of this crystal will eventually approach an "equilib­
rium" value, where the total surface energy of the 
crystaI:-will ;be minimized. The "equilibrium" value 
of the step height can be obtained by differentiating 
eq (100) with respect to 1 with the volume, val, 
held constant, and then equating this result to 
zero. If the resulting equation is solved for I , it 
is found that the "equilibrium" value of the step 
height is (4 u e/OU.)2/3p!3, where V is the volume of 
the crystal. This result is based on the assumption 
that the polymer chains are much longer than the 
step heights considered. From this formula it 
follows that the "equilibrium" value of the step 
height is roughly equal to the lateral dimensions 
of the crystal. From this it is clear that the 
experimentally observed polyethylene crystals with 
characteristic step heights near 120 A have not 
attained their "equilibrium" step height through 
"sliding" diffusion. 

3.6. Kinetics of the Overall Crystallization Process 
for Dilute Solution 

In this section the theoretical expressions for the 
rate of overall crystallization are compared with the 
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available experimental data with particular emphasis 
on the temperature dependence of the rate expres­
sions. Unfortunately there are no available rate 
data in those systems where crystals with loops have 
been identified through morphological studies. The 
only accurate rate data for crystallization from dilute 
solution are the dilatometric measurements of 
Mandelkern and Quinn [17, 18] on the crystallization 
of linear polyethylene from a 0.25 percent solution 
of a-chloronaphthalene. The morphology of these 
crystals was not investigated, but Mandelkern states 
that the concentration range is comparable to that 
in which platelike crystals are developed. This en­
courages the belief that crystals with folds were 
predominant, especially since the temperature de­
pendence of the shape of the isotherms is in marked 
contrast to results obtained for crystallization from 
more concentrated polymer solutions. An analysis < 

will be performed on the assumption that crystal­
lization through chain folding was predominant. 

In preparation for an analysis of the experimental 
data a brief discussion will be given of the temper­
ature dependence of the overall crystallization rates. 
Expressions for the overall crystallization rate were 
presented in eq (97) and (98) and will be rewritten 
here for convenience: 

(1 09) 
where 

When the temperature of crystallization is not too 
far from the melting point so that ~T is small, the 
principal variation of Z3 with temperature is due to 
the factor p~ exp{ -~q,UkT} . The quantity ~q,t 
has been previously obtained: 

..:1.1.*=202 u ;u eT ;' 1 (111) 
'l' p (...:1h,) 2 (..:1T) 2' 

The temperature dependence of pg is much smaller 
than exp { - ~q,t/kT} . In fact it seems more likely 
that log pg has a differen t temperature dependence 
than ~q,;. In any case we may wTite , 

a' 
Z 3= Z 30C-1'(t.T )" (112) 

where at low degrees of supercooling, Z30 varies 
slowly with temperature compared to exp {- a ' / 
T(~T)2 } . In the case where pg does not contribute 
appreciably to a ,' we have 

For the remainder of this section it will be assumed 
that eq (113) is valid, although this is not essential 
to our analysis . A 



It has been shown thaL eq (109) is an adequate 
description of the isotherms of crystallization at 
moderate values of X for the crysLallization of linear 
polyethylene from a dilute olution of a-chloro­
naphthalene. If Lhe Lemperature of crystallization 
is changed, the value of Z3 i changed. The shape of 
the isotherm remains unchanged al though the time 
scale is shifted. This allows us to specify the rate 
of the crystallization process by the time required for 

) the value of X to reach 0.5. Then from eq (l 09) 

(1l4) 

If the logarithm to tbe base 10 i taken of both sides, 
and eq (1l2) is substituted into the result, it is found 
after some manipulation that: 

It is clear from eq (1l5) that if experimental values 
of 10glO(l jt~) were plotted against T- l(AT)-2 for 
various crystallization temperatures, an approxi-

~ mately straight line should be obtained. The value 
of the product (u / a- .) could be obtained from the 
slope of this straight line. Since AT= Tm- T, it is 
clear that the equilibrium melting temperature, Tm, 

must be known before such a plot could be con­
structed. 

Mandelkern and Quinn [17, 181 have observed the 
i othermal crys tallization of linear polyethylene 
from a 0.25 percent solution of a-chloronaphthalene 
dila tome trieally. The shapes of their isotherms 
agree at values of moderate X with eq (109), so that 
it seems reasonable to apply eq (115) to the tempera­
ture dependence of these isotherms. Mandelkern 
has tabulated the values of t~ for one degree inter­
vals of the crystallization temperature between 
97° C and 104° C. He also quote the equilibrium 
melting temperature a being between 109° C and 
110° C [18], and presents a plot of 10g (ljt~) versus 
100j(AT)2 which is based on this value of Tm. In 
figure 9 a similar plot is pre ented. Figure 9 is con­
structed from the tabulated values of Mandelkern, 
plotting 10g (l jt~) against 105jT (AT)2 with Tm= llO° 
C. The curve shown in figure 9 is certainly not a 
straight line, but is rather concave upwards. More-

> over , the slope at the lower degrees of supercooling is 
smaller in magni tude than the corresponding slope 
for bulk polyethylene which would appear to indicate 
that u s2 a- . is smaller than the corresponding product 
for the bulk polymer. These facts stand in apparent 
contradiction to the theory presented in tbis paper. 

The morphology of the crystals was not investi­
gated by Mandelkern and Quinn. It is therefore 
possible that the theory developed in this paper is not 
applicable to the data plotted in figure 9. However, 
it i no easier to explain the curvature in figure 9 if 
one assumes that bundlelike crystals were nucleated 
either homogeneously or heterogeneously. Since 
the deviation from a straight line of 10g(1/tJ1 ) plotted 
against T- 1AT- 2 or T-1AT- l is not accounted for 
by the hypotheses just given, a fur ther discussion of 
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tbe daLa will be given. This discussion will show 
that the experimental data are not necessarily incon­
sistent with the theory presented in this paper and 
will serve the useful purpose of emphasizing tho 
care required in obtaining eA--perimental evidence 
that provides a critical te t of this theory. 

-1,----,---,----,----,----,---,----,----, 

- 2 

° 
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FIGURE 9. Plot of log (l lt y,) against [105I T (AT)2] for a 0.25 
percent polyethylene solt.tion in a-chI01'onaphlhalene wilh 
T m= 110o C. 

(Afler M andelkern, see ref. [IS)). 

Upon reflection, a possible resolu tion of the 
apparent discrepancy can be seen. Suppose that 
the value Tm= 1100 C was obtained by dilatometri­
cally observing the melting of tbe crystals in the 
solution. In the previous section it was shown that 
crys tal formed in dilute solution may melt harply 
well below the equilibrium melting temperature for 
dilute solution. Then the correct value of Tm might 
be appreciably higher than 110°. Rough estimates 
of Tm can be made by two separate methods. First, 
if it is assumed that eq (108) is accurate, and that 
the observed melting temperature, T~, is 1100 C, 
the equilibrium melting temperature is obtained if 
the crystallization temperature is given. For ex­
ample, if it is assumed that for a sample crystallized 
at 96° C the observed melting temperature of these 
crys tals is 110° C, then T m= 124° C. If the tempera­
tures of crystallization and observed melting were 
103° and 110° C, Tm= ll7° C. Tbis method of 
es timating T m has two drawbacks: (a) the estimate 
fmnishes a range of values of T m instead of a single 
value, and, (b ) eq (108) is probably not very accurate. 
Another method of estimating Tm is to plot loglo(l jt I / 2) 
against (l05jT(AT)2) for various values of T m. 
Tm is taken to be that value which yields a straight 
line plot, if such a value exists. This method of 
estimating Tm is based on the correctnes of eq (115). 
In figure 10 plots of log( l jt I/2 ) against 105jT (AT)2 
are presented for the assumed values of Tm= 117° C 
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FIGURE 10. Plot of log (l l ty,) against (105/ T (AT)2) for 0.25 
percent polyethylene solution in OI-chloronaphthalene for tuo 
assumed values of 'I' m showing approach to straight-line be­
havior. 

The slope of tbe line obtained with T m~ 124° 0 implies a O';O'e value of ~1070 
erg3 em- 6, 

and T",= 124 ° C. The ploL for T",= 117° C has 
considerable curvature, but the plot for T",= 124° C 
is fitted well by a straight line. 

It is found from the slope of the plot in fig ure 10 
for Tm = 124° C that (O'i O' e) = 1070. This value is 
much larger than the con esponding value obtained 
from the data on bulk polyethylene wh ere (<T;O' .) "" 
100, as calculated from the slope of the plot of 
(log l i tI tz) against 100/ (!::.T)2 presented by Manclel­
kern [18] . This is consistent with the concept that 
O' .><T e, eq (27). Then the supposit ion that Tm= 
124° C resolves each of the apparent discrepancies 
between the theory presented in this paper and the 
experimental rates. It is, of course, not clear that 
the plot of 10g(1 It I/2) should b e exactly straight since 
Z 30 in eq (115) is temperature dependent. However 
even if Tm is as low as 117° C the plot in figure 10 
corresponds to a value of 0';0' e which is larger than 
that observed for the bulk polymer. It is clear that 
there is no inconsistency between this data and the 
theory presented in this paper if Tm is appreciably 
larger than 110° C. 

Such high values of Tm are not inconsistent with 
the errors in estimating T m. In determining the 
h eat of fusion of polyethylene, Quinn and 
Mandclkern [14] measured the melting temperature 
of polyethylene as a function of concentration in 
various solvents. The heat of fusion per mole of 
repeat units, !::,J-Iu, ,vas calculated by fitting the 
experimental data to the equation 

_ 1 _ _ .l..-=~ [VuJ {v _ BVI V 2}. (116) 
T m(d) Tm !:::.I-Iu VI I R T m(d) I 

Here T m is the equilibrium melting temperatme of 
the bulk polymer, Vu and V I are the molar volumes 
of the repeating unit and the diluent respectively B 
is the interaction energy density characteristic of the 
solvent solution pair, and T m(d) the equilibrium 
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mel ting temperature in the presence of diluent. eWe 
adhere to ~he assumption. that a value of Tm(d) for 
vI~ l obtamed un~er equilibrium conditions is very 
close to Tm.) 'While !:::.Hu 'was determined within a 
few percent, Quinn and Mandelkern state that B 
cO,uld be ~n elTor by several cal·cm- 3 • For poly-
8 Gllylene 111 a-chloronaphthalene they obtain a 
value B~ O . If a valu e of B = 2 cal·cm. - 3 were 
assigned and flHu left unchanged Tm(d)~124 ° C as 
VI~l. Thus T m(d) = 124 ° C lies within th e assiO'ned . 1 b expenmenta error . On the other hand it is some-
what difficult to reconcile the data of Quinn and 
Mandelke~'n for moderate concentrations of poly­
ethylene m a-chloronaphthalene with a value of 
T n,rd) for vI~ l as high as 124° C. In short no 
definite conclusion can be drawn bu t the authors 
feel. that the apparent discrepandy may arise from 
an mconect value of Tm-

Even if the correct valu e of Tm is 110° C for a 
dilute solution of polyethylene in a-chloronaph tha­
lene, the data of M andelkel'l1 and Quinn are not 
!leces?arily inconsistent with the theory presented 
111 thls paper. Equation (11 5) was derived on the 
assumption that the equilibrium nucleation rate 
was atta!ned. If, however , the growth rate of the 
crystals IS so great compared to the nucleation rate 
that the early nuclf'a tion t ransien t determines the 
overall. crystallization rate, a different type of 
expressJOn may: be expected, No attempt will be 
made Lo obtam an accurate expression for the 
transient nucleation rate , but the influence of AF* 
the free en.ergy barrier to addition of another ste~ " 
element, will be very pronounced. This would lead 
to a plot of log (l I t'/,) versus T- 1AT- 2 similar to that 
shown in figure 9. It should be noted that the first 
5 percent of the isotherms obtained by Mandelkern 
seemed to imply a transient nucleation rate. It 
should also be noted that if transient nucleation is 
d~termining the rat~ of. crystallization of crystals 
WIth loops, a l'eductlOn 111 the concentration of the 
solution will reduce the growth rate and straigh ten 
the plot of log (l l ty, ) versus T - I(AT)-2. The curv­
ature of the plot obtained by Mandelk:ern and Quinn 
c?uld apparently be explained if (; p were not negli­
gIble because then Aq,t would be given by eq (78) 
an~ hence a straigh t line plot would not be ·expected. 
ThIS, however, does not account for the low value of 
0';0' . obtained from their da ta when Tm is 110° C. 
The ~ata of Mandelkern and Quinn may also be " 
expl~l~l~C~ by other special assump tions, but these 
posslbllItles do not appear to be as likely as the ones 
cited. 

It ~s clear that for a proper eva.luation of the 
expenmental data an accurate value of Tm must be 
obtained. Since it has been shown in section 3.4 
tJlat crystals. with loops may melt well below equi- ~ 
hbnum mcltmg temperature, it is possible that this 
represents a serious problem for dilute solutions. 
One. possibility is to measure the temperature of 
meltl~lg and the c~ara~teristic step height, 1*, as a 
functlOn of crystallIzatl<?]~ t~mperat~re and attempt 
to extrapolate to the eqUlhbnum meltmg temperature 
by the use of eq (105). \ 



4. Discussion 

4 .1 . Brief Summary of Results 

The general predietions yielded by the present, 
study ean be summarized in the following manner: 

When a crystallizable linear polymer is precipitated 
from sufficiently dilu te solu tion by supercooling, 
platelike crystals with a definite step height 1* will 
form , In the e crys tals, the chain axes of the polymer 
molecules will be perpendicular to the two large flat 
faces of the platelike crystals, The aforementioned 
flat faces will contain chain folds, i. e., they will con­
sist of loops, The step h eight depends on the tem­
perature of crystallization, and on the surface free 
energy, U e, of the interface containing the loops. The 
step height is larger fo1' higher crystallization tem­
peratures, and increases with U e. The latter quan tity 
will be fairly large, owing to the fac t that the work: re­
quired to form a loop is involved. (The correspond­
ing quantity for bundlelike nuclei, U e, is considerably 
smaller since it contains ]10 loop energy.) At the 
degree of supercooling commonly encountered in 
practice, AT = 10 to 40° C, 1* may be expected to lie 
in the range 50 to 500A, The most perfect crystals 
will be formed from higllly dilu te solu tion, and with 
unbranched polymer. :More imperfect specimens 
will be formed from more concentrated solution , and 
a threshold will be reached wh ere very poor crystals 
will form. The step height will be remarkably uni­
form if the crystalliza tion is carried out isothermally 
from a highly dilute solu tion. Pyramidal growth, 
where one crystal with fixed step height grows on the 
fla t (loop containing) face of another, is to be ex­
pected at moderate dilution, bu t single crystals 
should be common at 10\,\1' concen tration. In excep­
tional cases, crystals consisting of bu t one molecule 
may be observed. Much morc common will be crys­
tals that have grown to fairly large dimensions by 
successive addition of new polym er molecules through 
secondary nucleation on the lateral surfaces. These 
will have substan tially th e same step heigh t as the 
primary crystallite . In many cases, dis tinct protru­
sions on the lateral surfaces due to secondary nuclea­
tion and growth may be seen. The more perfect 
crystals will often have a regular shape of simple 
geom etric form when viewed normal to the surface 
containing the loops. Depending on the crystal 
system , the crystals co uld, for example, be diamond­
or hexagon-shaped. 

The overall rate of crystallization 'will probably 
follow a law where n= 3 or n= 4, most likely nearer 
the former , over the main part of the process, but 
deviations from the suggested range in the early and 
late stages are a distinct possibility . In the early 
stages a steady-state rate of nuclea tion may take 
some time to develop, and in the late stage, where the 
majority of the molecules have already been swep t 
from the solvent, n may fal l. 

The crystals containing chain folds formed in 
dilu te solu tion are metastable: Even in the case 
where a crystallite of step height 1*, which is formed 
in solu tion at a crystallization temperaLure, T x , is 
allowed to grow to very large size in th c other two 

528863- 60- - 7 97 

dimen ions, it will still mel t appreciably lower than 
T m , the melting temperature in the presence of sol­
vent of a crys tallite that is large in all three dimen­
sion. (Cry tals free of solvent formed by drying 
crystals with loops formed in dilute solution will be­
have in a q uali tatively similar manner, and mel t well 
below the equilibrium bulk melting temperature, T mo) 
The ob erved mel ting point, T;", of a set of crys tai­
lites formed i othermally from dilute solution may 
be surprisingly sharp (but low) owing to the uni­
formity of the step height. This will be especially 
true for large crystals precipi tated from very dilu te 
solution. If a set of crystals with loops with charac­
teristic step height If, is formed at an isothermal crys­
tallizatio n temperature TI , and then the temperature 
of the solu tion raised to T 2 , where the characteristic 
step height is It It will still tend to persist for some 
period of time at T2. Thus the mel ting point T';' 
characteristic of (It T1) will tend to persist even though 
the temperature of the sol ution is raised . The equilib­
rium melting temperature of crystal with loops in 
dilute solu tion may thus be very diffi cult to deter­
mine accurately in some cases by the conventional 
method of slowly raising the temperatw'e. 

An isotherm al increase of I due to "sliding" type 
diffusion in the cl'ystnJ may occur. 

The temperature dependence of the rate of nuclea­
tion for nuclei with loops should follow a law of the 
general form In (/j1o) rx. ex jT (AT)2. The value of 
u~u e that may be estimated from ex should be larger 
than the value of u~ u e obtained for the bundlelike 
nuclei characteristic of homogeneous bulk nucleation 
in the same polymer. In order to test the tempera­
ture dependence of 1110, it is necessary to have a 
reliable value of Tm , so that AT is known accurately. 
4.2. Crystals With Loops in Bulk Polymers, and 

Heterogeneities 
The theOl',\T given in the foregoing sections deals 

wi th homogeneous initiation of loop- type crystals 
in dilu te solu tion. The theory renders it clear that 
neal' and below some threshold value of the con­
centra tion, that loop-type nuclei will begin to pre­
domina te, provided that loop forma tion is sterically 
feasible. The theory docs not attempt to predict 
what type of crystal might tend to form in an in ter­
mediate concentration range where bundlelike and 
loop-type nuclei compete. We have indicated that 
in crystallizable linear polymers in bulk that the 
conventional bundlelike nucleus seems highly prob­
able. It should be clearly understood that what is 
meant here is that bundlelilce nuclei of homogeneous 
origin seem probable in such bulk polymers; this is 
no t necessarily related to what type of nucleus 
migh t form by heterogeneou s nucleation on the 
surface of a wettable foreign par ticle. Moreover, 
we do not incline to the view that crystals with loops 
are impossible to form by a homogeneous process 
in a bulk pol:rmer, and this subj ect, though obviously 
speculative, deserves brief discussion , 

In a bulk polymer , where V2 = 1, bundlelike 110moge­
neo us nuclei should certainly predominate if u e>ue. 
(There is li ttle reason to expect that th e free energies 
of activation controlling the jump-rate at the super-



cooled-liquid- crystal interface would be such as 
to cause a preponderance of loop-type nuclei in 
bulle) Then if bundlelike nuclei can grow, the 
polymer will crystallize without loop formation . 
However , if the radial growth of the bundlelike 
nucleus is severely impeded by the strain effect 
mentioned in section 2.2 , which results from the 
increasing difference in the lattice spacing of the 
crystal and " liquid" just outside the ends of the 
bundlelike nucleus as it grows radially, actual 
crystallization resulting from such nuclei may be 
greatly subdued. Then another crystallization proc­
ess may enter. Since according to our formula­
t ion, the formation of a few loop- type nuclei is 
possible at v2= 1, and in view of the fact that these 
would grow if crystallizable material were present, 
t he majority of crystallites actually observed in the 
bulk phase in such a case would be of the loop­
containing variety. The hypothesis that bundle­
like nuclei may be prevented from growing to large 
size by strain, coupled with the reasonable belief 
that loop- type nu clei, once formed, migh t not be 
subj ect to such a strain effect on growth, thus leads 
to the possibility that loop-type crystals could make 
up the main part of the crystallization in the bulk 
phase. Even then, numerous buncllelike nuclei 
would b e present. The main point of the present 
tbeory, however, is that loop-type nuclei (and sub­
sequently crystals derived from them) are quite 
certain to appear at suffi ciently great dilu tion, 
provided that loop formation consistent with crystal 
structure is sterically possible. The theoretical 
prediction of homogeneously indu ced loop- type 
crystals in bulk depends on additional factors, and 
is altogether more of an open qu estion . 

At various places in the literature, eviden ce has 
been given suggesting that crystals with folds may 
arise in bulk polymers (see ref. [1]) . The presen tly 
available evidence that such "structures" as are seen 
in bulk polymers may be associated with a step 
heigh t resulting from nuclei with chain fold s that 
are of homogeneous origin is incomplete. If it is in 
fact true that step structures associated with folds 
actually exist in the bulk pbase, we b elieve full con­
sideration must b e given to the possibility that 
heterogen eities or surfaces may be involved. We 
consider it possible that nuclei with folds may form 
at th e surface of a heterogeneity in a bulk phase, 
som e or n early all of the energy deficit arising from 
the bending energy q being made up by th e interac­
tion energy of the polymer molecule with the hetero­
gen eity . Also, special structures may tend to develop 
at the surface of a bulk polymer specimen . 

From a theoretical point of view, very consider­
able confusion can be caused by assuming that any 
structure seen in a bulk polymer, or on its surface, 
is a result of homogeneous initiation . It is now 
known that quite stringent measures are frequently 
required to develop the in trin sic nucleation mecha­
nism in a bulk polymer. For example, careful filtra­
tion and selection of samples coupled with strong 
superheating prior to crystallization is evidently 
advisable in some instances. Precautions of the 

type just mentioned , which are designed to enhance 
the homogeneous nucleation m echanism , do not seem 
to be commonly employed in morphological studies 
on bulk polymers . 

Our views concerning the existence of loop-type 
crystals in bulk polymers may b e summarized as 
follows: (a) 'iVhile the evidence that loop-type 
crystals exist in bulk polymers is mounting, proof 
that such crystals are of homogeneous origin is lack­
ing; (b) if such loop-type crystals are in some polymer 
proved to b e of homogeneous origin, considerat ion 
should be given to th e possibility that strain subdues 
or prevents the growth of hlUldlelike nuclei and, since 
a few loop-type nuelei will be present, thus allow the 
predominant crystalline form to possess loops; (c) 
a likely source of loop-type nuclei is a heterogeneity, 
and full consideration must be given to this fact in 
interpreting data on bulk polymers that have no t 
been subj ected to special t reatmen t; (d) a proof th at 
crystals with chain folds occurred in a bulk polymer 
by either homogen eous or heterogeneous initiation 
would no t invalidate the general approach here for 
the formation of loop- type nuclei and crystals from 
dilute solution . 

With regard to the effect of heterogeneities in 
dilu te solution, it is clear that they will accelerate 
the crystallization process. However, by careful 
filtration, cen trifugation , or previous precipitation , it 
should be possible to eliminate the effect, of foreign 
bodies to a degree sufficien t to permit the intrinsic 
mechanism to manifest itself. Judging from the 
remarks of K eller and O'Connor [1] concel'lling th eir 
techniqu e and r esul ts, i t would appeal' tha t many 
of the crystals that they discussed were formed in the 
body of the solution , and no t on motes in the solu­
tiCln , 01' on the container walls . Th ere is also reason 
to believe that some of th e other work cited , notably 
the rate studies of M andelkel'll [17 , 18], may refer to 
homogeneous initiation. Nevertheless, it is manda­
tory to exercise considerable care in carrying out 
rate experiments in dilute solution in such a way as 
to subdu e the effect of foreign bodies. 

4.3. Concluding Remarks 

In this paper , a point of v iew is expressed that 
leads to a numb er of definite predictions concel'lling 
the formation of polymer crystals with loops from 
dilute solution. Perhaps the most important and 
compelling prediction is that crystals of this type 
will be deposited from sufficiently dilute solution 
if it is physically possible to form a fold that is con­
sistent with lattice structure and steric considera­
tions. D efinite predictions are also given , under 
certain assumptions, concerning t he variation of 
step height with crystallization temperature, meta­
stability and melting point, t h e n law connected with 
the appearance of loop-type crystals from dilute 
solution, the temperature dependence of the kinetics 
of crystallization, and the constancy of step h eight 
in a crystal grown in an isothermal manner. In 
addition, rou gh numerical estimates of important 
fundamental quantities, such as O'e , are given . 
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In sofar a iL can be tes ted , t h l' til eory seems to b e 
in aL least app roximatr acco rd wit h the facLs 
presenLly Imo\m. It is bcl ievrcl LhaL the theory is 
sufficien tly to t he poin L as to provide a r easonable 
framework for future expe rim ental studie even if it 
proves noL to b e quantitatively correct. Morcover , 
sp ecific expcrimcntal approaches, togethcr with thcir 
attcnda nt (and somctimrs fo rmidablc) difficul tie 
are menLioncd . 1"0 claim is m adc that Lhc Lhcory is 
complcLc. For example , i t i obviou that the 
intcresLing dctails of th c sLrllcLurc of Lhe fold itself llF 

havc b een largely passcd over, and some of the 
possibilit ie concr l't1mg thc g rowt h m echanism wlli ch 
could , for in sLance, leftd to a ramp- type of growth 
cluc to piral di slocaLions haY(' not bern Jllrntioned. 

5. Appendix 

5.1. Equilibrium Nucleation Rates of Crystals With 
Chain Folds 

\i\Te wish to calculatr thc rC[ui librium nucleation 
raLc pc]' uni t volume of crys tals fo rm ed by chai n 
folding. Thc metbod of derivation , which is m rrrly 
outlincd below, is Lhat used by Turnbull and Fishel' 
[8]. Th r ]'eadcr is rdrl'l'rd to t bat papC'l' for dctails. 

A nuclcus of v stcp elemr n ts of lrngt h, I, can gain 
or losc a step clemcn t by a n c1rlllcn tar,)' process. 
This nucleus may bc sp ecified b~T I a nd v whrrr v 
may possess th r valu rs 

'J - , 

vm lS the minimum. number of step elemrl) Ls in a 
nuclc us. Thc numbrl' of nuclri pc]' unit volumc 
with v segmcnts a nd a IrngLh betwcen I ancl I+ dl is 
'11 (v,l)dl. Th c frrr enrrgy of a primary emhr:\To or 
n ucleus is 

(A- l ) 

This fUll ct ion ha,s a maximum valLI e at 

! (CO's I) 2 

V = 4a (l.:lf- 20'e)2' (A - 2) 

Thc valup of ilq, ,, when expa nded about v I is 

l wherc 
(A - 3) 

4 (l.:lf- 20'e) 
(A - 4) 

A nucleus of lengLh I call only becomc table by 
addition of step clements. I cann ot yal'y wiLhout 
dissolu tion of th e minimum sizc nucleus. The frce 
cnergy diagram for nu clci of v and v+ 1 step elemrnts 
wi th ome fixcd l el1gLh I is shown in fi g ure 11. Thr 
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REACTION COORDINATE 

FW U RE 11 . Cross section oj free energy sUiJace Jar the most 
probable leaction path between embryos oj v ,tep elements 0 

length I and e mbr yos oj (v + 1) step elements oj length I. 
T he energy minima at (" I ) and ( 11) represent the fre~ energy ditTcrencc frOID 

t he liquid stale of Lbe two difl'crcnt embryos, respectively. 

raLe that nuclri with v step elcmrnts brcome n uclci 
with v+ 1 strp cirmrnts is 

. (leT) { VVI} '11 (v,l)dl h e 13 - leT ' 

whereas thr ratr of thc backward reaction is 

7] (V+ l ,l)dIC[) exp { -0,}. 
Thcn thc neL ratc of nucleaLion i(l)dl is 

i (l )dl= (le[) [ '11 (v,l)dl exp { -~;} 

- 'I1 (v+ l ,l)dl ex13 { -0, } J 
Now 

(1\..- 5) 

(1\..- 6) 

whcrc .:lFt is the frce energy ban icr as ociatecl with 
additio n or sub traction of a scgm enL from th e 
nuclei . The value of .:lFt will b e indcpcndcnt of 
v a nd probably independc nt of I. 



Now if JI is a large number we are justified in 
treating JI as a continuous variable. With this 
approximation eqs (A- 5) and (A- 6) b ecome 

i (l)dl=-k~dl {~:+k~ o (~:p) } e- ~F;Wl' 
(A-7) 

where higher derivatives with respect to JI have been 
neglected. This equation is easily integrated from 
JI = S to JI = (x). Using the boundary condition 
7j( (X) ,1) = 0 for the equilibrium case we have 

'(1) kT [7j s e~l'ip(S)/k Tl - H /k T 
~ =T r oo e p J , dJlet.l'ip(v)/kT . 

(A- 8) 

The right hand side of eq (A- 8) may be evaluated 
if s is chosen so JI",< <s< <Jlt . W e find then by 
usc of eq (A- 3) that 

which is a good approximation when ~q,;/kT> > l. 
W e may evaluate 7j (s ,I) if S is sufficiently small that a 

Maxwellian dis trib u tion holds. Then 

(A - lO) 

If S is sufficien tly small we may assume that only the 
surface energy terms are important . Then 

(A- ll) 

Since the sum over all states s,1 must equal the 
number of polymer molecules per unit volume we 
may evaluate A . Treating s and I as continuous 
variables running from zero to infinity 

{ f OO f OO t.1'i' /k } -l 
A= no J o dv J o dl e- • T • (A- 12) 

Substitution of eq (A- ll ) into (A- 12) gives us 

(s I) et. l'ip(S)/kT=[OuSa'~eJn . 
7j , cJ7r (kT ) 3/2 0 

(A- 13) 

Then substituting (A- I3 ) and (A- g) into (A- 8) we 
have the desired expression 

· (I)=[a2~. (l~f- 2u.) 3/2J n okT -t.F;/kT -~l'it/kT 
~ 7r (kT)21 h e e" . 

(A- -14) 

We may calculate th e total nucleation rate by 
integrating eq (A- 14) over all I. The number of 

stable nuclei formed per unit yol1lme of solution 
per unit time is 

where 

[- K DokT - t.F* /k T - ~I'i * /k T - h e p ep 

K 

202U;Ue 

( ~f) z 

(2u. ) 3/2 (.~f) a 2 • 

cJ7rCus (kT)3/Z 

(A- 15) 

(A- 16) 

(A- l7) 

Throughout this appendix i t has been assumed 
that each llucleus is composed of step elements of 
uniform length. This assumption has simplified 
th e derivation of eq (A- I5 ) and has led to an explicit 
expression for the distribution of the lengths of the 
step elements in stable nuclei in eq (A- I4). It is, 
of course, possible that an embryo or nucleus could 
be composed of step elem ents of different lengths. 
The remainder of this appendix is devoted to dis­
cussing this more general case. This discussion will 
support the validity of the above r esults. 

In the general case an embryo or nucleus will have 
v step clements w"hich have lengths : 11, 12, ••• Iv. 
The principal difficulty in treating this case is in ob­
taining and handling appropriate expressions for the 
free en ergy of such nuclei. Fortunately for the pur­
poses of this paper the problem is considerably 
simplified. "When the edge energy, E, needed to form 
a monomolecular layer is large, the free energy 
gained by packing the loops in a flat surface is appre­
ciable. H ence embryos or nuclei with different step 
heights 11, 12, •• • lv, are energetically improbable 
compared to nuclei whose step elements have the 
same step height. Then in this case it is clearly 
justified to treat nuclei which may b e characterized 
by a single step height. But it is only when E is a 
large quantity that the distribution of step heights 
in primary critical nuclei need to be considered, for 
it is only then that the step height of the crystal will 
be determined by the step height of the critical 
primary nucleus, so that the distribu tion in step 
h eights of the primary nuclei control the distribution 
in step h eights of the crystals. If E is a smaller quan­
tity the distribu tion of the step heights of the crystals 
will b e independent of that of the primary nuclei, 
and only the total nucleation rate is of interest. 
The total nucleation rate is g iven by eq (A- I5) in 
any case . 

5.2. Equilibrium Rate of Formation of Mono­
molecular Nuclei on a Crystal Face 

vVe wish to calculate the equilibrium nucleation 
rate of monomolecular nuclei on a crystal face. 
This problem is similar to the one treated in the 
previous appendix, except that th e free energy sur­
face is different. In particular, the activated nucleus 
is reach ed in a single elementary process from the 
supercooled liquid. It will be assumed that the 
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nucleu can con tain JJ s tep elements where JJ can 
possess the value 

0, 1,2, . (B -1) 

The free energy l'Cquired to form a nucleus of JJ step 
elements is 

v= O 
(B- 2) 

v= I ,2, ... 

Then the activated state is at v= l , where ~~~=~~/ t. 
The same method of derivation will be used as in 
appendix 5.1. Then the rate at which nuclei with v 
step elemen ts become nuclei with ( JJ + 1) step cle­
ments is 

(B- 3) 

whereas the rate or the backward reaction is 

(B - 4) 

Here 1/ , is the Jlumber of nu clei pC'l" un it volume 
witll v step clemeJlts. The net rail' of nucleation per 
unit volume, r, is 

(B- 5) 

If the rate is an C'qu ilibrium rate , r doC's not depend 
on v . Combin ing (B- 2) \\' it11 (B- 5) 

_ kT - t> F*/k7' ( E/2 .. T - E/2kT } r- T e 1/"e - 1/ '+ Je 

v= I,2 , ... 

a nd (B - 6) 

r= (k[) e- t>I'*fk1'( 1/0e- t>~':/2kT- 1/let>~': /2kT } . (B - 7) 

From eq (B- 6) 

_ +,E/kT_ (.!!...) t>F'/kT { [evE/kT_ l] } . (B- 8) 
1/, - 1/le r kT e 2 sinh E j2kT 

Since we are concCJ'll ed with the equilibrium rate , 
1/ , must be bounded as JJ --'7 00. In order that this is 
satisfied 

r = 21/1 (kT) e-t>F' /k7' sinh ( E ) . 
h . 2kT (B ·9) 
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Combining eq (B-7) and (B- 9) we may solve foJ' r : 

( leT) - t> ~'* /kT - t.l1 /kT r = 1/o II: e e 

{ 2 inh (Ej2kT) } 
1 + 2e - t.~'t/2k7' sinh (Ej2kT) (B- 10) 

This then is the des ired equilibrium rate of forma­
tion of these nuclei. 

Three point in this derivation are worthy of com­
ment. First the derivation in this appendi.., differs 
from that in appendix 5.1 in that the activated state 
is attained by a single elementary process. Then 
the expression obtained in eq (B- 10) must b e applied 
with due caution since more detailed knowledge of 
the nucleat ion process is assumed than in the previ­
ous appendix. The second poillt is that by solving 
for 1/ , from eqs (B- 8), (B- 9), and (B- 10) it is found 
that 

1/, = ) +2 exp {- ~cf:/ tj2kT} inh (E j2kT)' (B- l1) 

Thus 1/, is independent of v , and does not vanish as 
v become infinitcly large. This raises the que tion 
of whe ther a very large Lime is req uil'ed before the 
equilibri urn. 1'a te is ac] ieved so tlla t the trans ien t rate 
CRllllOt be neglected. This question can be answered 
b~T a solution of tb e time dependent problem. It 
can be shown 1'0), the case ll'ea Lcd here thaL the 
eq uilibrium rate is closely approached after the num­
ber of nu clei with a few step c1ements bave nearly 
reached the value fo un cl in eq (B- 11 ). Thus the 
equilibrium raLe derived in eq (B- 10) is applicable 
to the case at hand . Thirdly in both appendixes 
5.1. a nd 5.2. it has been assumed tacitly that nuclei 
can be initiated at ollly one point in the polymer 
chain . If this assumption is taken into account in 
an appropriate manner, a numerical factor will be 
in troduced into the nucleation rates obtained. This 
factor will almost certainly b e less than 104 . 

Equation (B- 10) is first used in section 3.2. to 
describe the formation of a primary crystalli te 
through monomolecular accretion from a critical­
sized loop-type nucleus. It is later used to describe 
th e growth of a crystallite in section 3.3., i.e., 
~~/t --'7~~;. Since in sections 3.2. and 3.3. the 
quantity rdl is taken as the rate of formation of 
nuclei with step heights between I and I+ dl, the 
quantity 1/0 will contain a normalization constant 0, 
which arises because the rates of more than one 
competing process are considered. 
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