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Theory of Formation of Polymer Crystals with
Folded Chains in Dilute Solution
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A detailed interpretation of the kinetics of homogeneous nucleation and growth of
crystals of a linear homopolymer from dilute solution is given. The probability of forming
both nuclei with folded chains, and conventional bundlelike nueclei, from dilute solution is
analyzed. It is predicted that at sufficiently high dilution, critical nuclei of length L¥ will
be formed from single polymer molecules by sharp folding of the chain backbone. The
step height of the nucleus is given approximately by L =4¢g./Af. Here g, is the free energy
required to form a unit area of the loop-containing end surfaces, and Af is the free energy
difference per unit volume of crystal between the crystalline and solution states. The
quantity Af is approximately proportional to the degree of supercooling AT. The growth
of these nuclei is then analyzed. After growth, the resulting crystal is flat and platelike,
the loops formed by the chain folds being on the upper and lower surfaces. Kinetic factors
determine that the distance between the flat surfaces in the grown crystal will vary over
only a narrow range about a value that is in the vicinity of 1*=4g./Af. (Neglecting effects
due to edge free energies, the theoretical upper and lower limits arel*=4g,/Af and 1¥*=2¢g ./ Af,
respectively.) In some cases the predicted temperature dependence of the step height of
the grown crystal, 1*=const./AT, may be modified by the existence of a constant term result-
ing from the presence of an edge free energy €,. A grown loop-type crystal is predicted to be
stable in comparison with a bundlelike crystal of the same shape and volume in a sufficiently
dilute solution. The logarithm of the nucleation rate is approximately proportional to
1/(AT)? near the melting point. The exponent n in the free growth rate law is predicted under
various assumptions. To the extent that comparison is possible, the predictions given agree
with the experimental results obtained by Keller and O’Connor and others on single crystals

of unbranched polyethylene grown from dilute solution.

A survey is given of homogeneous nueleation in bulk polymers, where the conventional
bundlelike nucleus containing segments from many different molecules is valid, and the
essential results compared with those calculated for the dilute solution case.

The theory given for loop nuclei is both general and precise enough at the critical points
to suggest that, on crystallization from sufficiently dilute solution, crystals of a definite step
height are commonly to be expected for other erystallizable linear polymers than polyethyl-
ene, provided loop formation is sterically possible.

1. Introduction

Recently, a number of investigators [1, 2, 3, 4]}
have prepared single crystals of high molecular
weight linear polyethylene by precipitation from
dilute solution through supercooling. As observed
with an electron microscope, these crystals are shaped
like flat parallelepipeds, and the X-ray studies of
Keller [1, 2] show that the polymer chains are oriented
perpendicular to the flat surfaces. The separation
of the flat surfaces is nominally about 120A, and is
sufficiently well defined to produce fourth-order re-
flections with low angle X-rays. The separation of
the flat surfaces, which for convenience will be called
the “step height,” actually depends on the crystal-
lization temperature, the step height being distmetly
smaller at low crystallization temperatures than it
is at high ones. Since the mean length of the poly-
ethylene molecules is far in excess of 120A, Keller has
proposed that the polymer molecules must be sharply
folded in the crystals; the loops resulting from these
folds form the two flat surfaces of the platelike
crystals.

1 Figures in brackets indicate the literature references at the end of this paper.
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There appears to be no simple alternative to the
initially somewhat startling proposal that the single
crystals observed involve chain folding, and we be-
lieve that Keller’s hypothesis may be accepted.
Keller has indicated that the idea of chain folding
in polymers is not entirely new, and refers to an
earlier suggestion due to Storks [5].

The objective of this paper is to present a theoreti-
cal account of how polymer crystals with chain
folds are formed in dilute solution, and why they
have the properties they do. It will emerge that
crystals with chain folds arise in dilute solution
because a primary (homogeneous) nucleus of this
type is on kinetic grounds the most likely to appear.
Once such a nucleus is formed, it can be shown that
the subsequent two-dimensional growth will closely
follow the pattern established by the primary nucleus.
Thus, the basic reasons such crystals form is to be
found in the kinetics of nucleation and growth.

The situation is quite different for homogeneous
nucleation in a highly crystallizable bulk polymer.
First, the primary (homogeneous) nucleus in bulk
polymers is thought to be formed by an alinement
of segments of different polymer chains to form a



bundlelike nucleus without folds [6, 7], and second,
the mean crystallite size in a semicrystalline bulk
polymer that has not reached its equilibrium crystal-
lite size distribution (a very difficultly achievable
state by any account) is determined largely by the
nature of impingements and chain entanglements,
and possibly certain strain effects, together with the
kinetics of nucleation and growth [6].  (The particu-
lar type of strain meant here is that which becomes
increasingly great with radial growth.) Eventually,
of course, the metastable distribution of crystallite
sizes resulting from impingements will change as the
impingements relax, and other mechanisms take
place, and the equilibrium distribution with large
crystallites will be slowly approached, but this does
not alter the fact that impingements, entanglements,
and possibly strain play an important, if not domi-
nant, role in determining the crystallite size in bulk
polymers as they are ordinarily found in the semi-
crystalline state. Impingements and entanglements,
play no important role in impeding the crystallization
in dilute solution.

In order to provide a clear development of the
theory of crystallization of chain molecules from
dilute solution, it is necessary first to bring out some
general points connected with homogeneous nuclea-
tion theory. At the same time, it 1s advantageous
to mention certain general features of homogeneously
induced crystallization in bulk polymers.

2. Homogeneous Nucleation and Crystal
Growth in Bulk Polymers

2.1. Homogeneous Nucleation in Bulk Polymers

~According to Turnbull and Fisher [8], the equilib-
rium rate of homogeneous or primary nucleation in
a supercooled bulk phase may be written as

NkET —AF*/kT,—A.p:/kT

I=— (1)

where N is Avogadro’s number, & Boltzmann’s con-
stant, A Planck’s constant, 7" the absolute tempera-
ture, AF the free energy of activation of the super-
cooled-liquid—nucleus interface, and A¢} the free
energy of formation of a primary (homogeneous)
nucleus of critical size. In eq (1), [ is in nuclei-
mole~!.sec™t. The quantity J=(kT/h)exp[—AF}/kT],
which is the jump rate in events per second at the
interface, may be written as (k7/h)exp[ASE/k—
AHGET], where AS¥ is the entropy of activation,
and AH; the enthalpy of activation. For a poly-
mer, it may be assumed that the smallest unit that
may attach to the embryo or nucleus in an element-
ary process is a small segment of molecular weight
M and length [, Hence we may write eq (1) in
the form

@)

where I is J\TkT/hZV[V‘,)eXp(AS”;/Ic), which has the
units nuclei-cm~%sec™’. The quantity V; is the spe-
cific volume of the supercooled liquid at the temper-

I: Ioe—AH;c/kTev.&b*/kT
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ature of crystallization. The main item of interest
here is the form of A¢} for bulk polymers. The
Turnbull-Fisher equation is derived on the assump-
tion that many elementary steps are required to
reach Ag¢j.

In a bulk polymer, it is commonly assumed that
the nucleus i1s bundlelike, and is formed through
the alinement of segments of different polymer
chains [6, 7]. This hypothesis certainly seems plaus-
ible for a bulk polymer, and can be used to give a
detailed interpretation of the rate of injection of
primary nuclei in a bulk polymer.

Two general types of bundlelike primary nuclei
must be considered. The first of these is one where
there is no minimum restriction on the length, or
the number of segments contained in its cross-sec-
tional area. Calculations for this nucleus yield re-
sults that are valid in a temperature range near
the melting point, region A. The second is a nucleus
where the length is restricted to [/, (which is the
length of a segment), but where the number of seg-
ments in the cross section is still unrestricted. Re-
sults obtained for this nucleus are valid in a temper-
ature range, region B, that extends from somewhat
below the melting point to a temperature that is
considerably lower. A discussion of the properties
of these two types of bundlelike nuclei has been
given in an earlier publication [6], and what is given
below is intended mainly as a summary. At still
lower temperatures, region C' type nucleation will
prevail, and this will be brought into the discussion
at the proper place.

Region A: Consider first the nucleus with un-
restricted length and cross-sectional area. The
model used is illustrated in figure la. For this
nucleus, the free energy of formation may be written
in a general way as

()

Here » is the number of segments in the cross section
of the nucleus, @ the cross-sectional area of a segment,
[ the length of the nucleus, €' a numerical constant
that depends only on the shape of the cross section,
and Af the free energy difference per unit volume of
crystal between the supercooled liquid and the crys-
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Ficure 1. Homogeneous bundlelike nucleus (bulk polymer) .

(a) Nucleus of length ¢ and ““radius” Vva/= valid in region A, where there is
no minimum restriction on 7 or ».

(b) Nucleus of fixed length /y and “radius” y/mr valid in region B.



tal. The quantity »a is the area of the end of the
nucleus or embryo. The quantity o, is the work
required to form a unit area of the lateral surface
from the crystal, and ¢, is the corresponding work
for the end of the crystallite. If at any given degree
of supercooling » and [ are increased, Ad,u, goes
through a maximum where it has the value A¢} .,
and then falls rapidly through zero to strongly
negative values, the latter implying increasing sta-
bility with increasing size. The critical values of /
and wva can readily be determined by setting
(0AG,4y/0),e and  (0Ap,wu,/Ovra), equal to zero.
Thus,

4oe

*__
= AT

(4)
and

(va)*= (5)

(Af )‘

Substitution of eqs (4) and (5) into (3) yields the
result
20:a20;

RO &

Adyay=

Thus, in region A, where both / and va are not sub-
ject to a minimum restriction, the rate of homogene-
ous nucleation is?

IA:I‘oe—AI'I;,/kTe—ZCga%y(,/(Af)u'T (7)

In this expression

O=2x} (8)

for a cylindrical nucleus, and

O 221V )

{sln Y ay

for a nucleus where the cross section is a parallelo-
gram with sides z and 7, and apex angle ¢. The
quzmmv (va)* is related to the square of the “ra-
dius” of the critical-sized nucleus.

For a strictly cylindrical nucleus, r*=[(va)* /x|t
=20,/Af, and Ay =8waia,/(Af)?, results that
have been given previously [6, 9]. The reaction
path on the Tree energy surface described by eq (3)
for the formation of the ecritical-sized nucleus is
shown in figure 2. The ecritical-sized nucleus of
length 7* and ‘‘radius” [(va)/x]* is indicated by an
astomsl\ and the reaction path is designated by the
heavy line O—+—B. The point = is at a saddle
pomt in the free energy surface. The embryo grows
into a nucleus and thence into the stable region

2 Even if it is assumed that the nucleus is an ellipsoid of revolution, an expres-
sion for 74 similar to eq (7) is obtained. (See S. Matsuoka and B. Maxwell,
Plastics Laboratory Technical Report 53E, Princeton University, 1959.) W hon
the nucleus is large, i.e., at low supercooling, the ratio of the major and minor
axes is determined by os/o.. However, such a nucleus will tend to take on the
shape of a disk or parallelepiped as the degree of supercooling is increased so that
region B is approached. Thus, the ovi erall behavior of 14, including its tempera-
ture dependence and transition to region B, is unaffected by assumptions con-
cerning the shape of the nucleus in region A.

75

AP
\
N
\
\
\
\
\
4 ¥
|
|
|
|
|
|
|
|
o | {va
|
[ /
| /
| /|
: /o)
/
I/
) R

L

Ficure 2. Free energy surface for formation of a critical-sized
homogeneous bundlelike nucleus for bulk polymers in region

The reaction path is the heavy line 0-+-B. The nucleus is of critical size at
t{:c szlnddlc point marked =, The free energy surface for region B is similar, except
that I*=

(which is below the /—[va]* plane) by both length-
wise and “‘radial” growth.

Region B: For a bundlelike nucleus, it is necessary
to recognize that ¢, might possibly be considerably
smaller than ¢,. As one traces the environment
of the various segments from the interior of the
crystal out through the lateral surface into the
liquid phase, a sharp and quite large drop in the
degree of order will be noticed just at the crystal
surface. Thus, the value of o, will correspond
reasonably closely to the surface free energy for a
nonpolymeric molecular erystal of the same chemical
type, and will commonly lie in the range 5 to 25
erg-em % On the other hand, the drop in degree
of order as one traverses a path from the center
of the crystal out through the end will not be as
sharp as m the case above. Because of this fact it
seems plausible to suppose that o, will in some poly-
mers be rather smaller than ¢, However, o, cannot
be zero, since this would imply no difference in free
energy between the end of the crystallite or nucleus
and the supercooled liquid.

The significance of the fact that o, may be con-
siderably larger than ¢, for the bundlelike nucleus
characteristic of primary nucleation in region A is
that [*, as given by eq (4), may, at some temper-
ature 7', that is not too far below the melting point,



fall close to the irreducible segment length, /,. In
this case, / must not be treated as a variable near
and below 7,. Using the relation [10]°

_ AbTAT

A.f—T: (10)

where Ak, is the heat of fusion at the equilibrium
melting temperature, 7,,, and A7=T,— T, where

T is the isothermal crystallization temperature, it
is found to a sufficient approximation that

_4To.,
o loﬁ]lf

AT, (11)

Here AT, is the degree of supercooling that cor-
responds to the onset of region B. At lower tempera-
tures, we must consider a primary nucleus with

fixed length /;, and variable va, as shown in figure 1b.
In this case we have

Ay 5y =2vac,+ Cyvalyo,—val,Af (12)
which leads to
Clyos z
i | ) S S
cos s 2] £
and
(?]2g2 \
Ad* py= Lk (14)

4(loAf—20,)

In region B (or mwre precisely, from somewhat
below 7. on down to considerably lower temper-
atures) the v(:(m(lm.(m lAf>>20, may be expected
to bold.  With this, eq (14) reduces to the simple

form,
Adj(n) = {;go;'g) (15)
and the rate of primary nucleation becomes
Ip— Ioe—Au;/k TG-C‘-’ loo2 /4AT K T §! 6)

The values of €' are the same as those given for
region A; for the particular case of a strictly cylin-
drical nucleus, Agj g, is wlya?/Af [6]. '

Equations of the general form of (15) and (16)
have sometimes been sharply eriticized, apparently
because of the incorrect belief that they could be
derived only on the basis that ¢,=0, the latter
being generally conceded to be impossible. How-
ever, the derivation sketched above makes it per-
fectly clear that eqs (15) and (16) hold if /,Af > >2g,,
and there is no implication that ¢,=0 [6].

Region B type primary nucleation will prevail
down to a temperature 7%, corresponding to a degree

iThe relation Af=AhsAT|Towm is usually employed to give the free energy dif-
ference between the supercooled liquid and crystalline states. This expression
is not as precise for a glass forming system as eq (10).
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of supercooling of approximately
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In the case that o> >0, AT, will be larger than
AT, with the result that region B will cover a sub-
stantial range of temperature.

The free energy surface described by eq (12) has
a saddle point at [*={, and va= (va)*. 'Thus, both
the embryo and nucleus always have a length /;, but
once of stable size, there is no inherent restriction on
the addition of segments to increase the length.
Lengthwise growth is in fact certain to occur [6].
Such a nucleus will increase in size by appropriate
erowth mechanisms until stopped by impingements
or other factors (see sec. 2.2).

Region C: At crystallization temperatures below
T.., the “radius” of the primwary nucleus, [(va)y|'/?,
will be close to the size of the unit cell, i.e., it will
contain roughly 5 to 7 segments. While this radius
is not irreducible in a strict sense, the small size of
the stable nucleus below 7., will lead to an excess
number of nueclei owing to the fact that embryos of
this size in the superheated state will be carried down
in the supercooling process to the supercooled state.
This will cause an enhanced rate of crystallization
compared with region Bor A. In the particular case
where ¢, is larger than envisioned previously, and
exceeds [yCay/4[(va)y]'?, which is lya,/2r, for a cylin-
drical nucleus of radius 7y, region 5 will be absent,
and the system will go directly from region A type
homogeneous nucleation to that characteristic of
region C.

Several important points concerning the nature of
homogeneous nucleation in bulk polymers may now
be emphasized. The first is that two types of tem-
perature dependence are to be expected for the rate
of nucleation. Sufficiently near the melting point,
i.e., in region A,

I AH} a )
S A R KTV UT (18)
where the constant « is 2%, T, /ARG k. This is

the same general form as is exhibited by nonpoly-
meric systems. At moderate to high degrees of
supercooling, region B, the temperature dependence
is

iz AHG B ,
e N W Y T 1] 9
In 3 =—%T —Tar (19)
where the constant g i1s %217 /4Ahk. Equation

(19) 1s a special result in that it reflects the segmental
nature of the polymer chain, having been derived as-
suming /, was a constant. [In the special case where
oo = lyos/2r, region B will be absent, and the system
will exhibit a temperature dependence of the form of
eq (18) down to the A—C tramsition. However, in
some cases it is to be anticipated that o, will be
sufficiently less than ¢, to cause region B to make its
appearance. Region A will be large if o, ~0..



Both eqs (18) and (19) lead to a maximum in //];
when plotted as a function of temperature. The
terms exp[—a/T*(AT)*] and exp[—pB/T*AT] lead to
strongly negative temperature coefficients for the
rate of i injection of nuclei, but this effect is eventually
overwhelmed by the term exp[— A} /kT] that arises
from the jump rate, and which has a positive tem-
perature coefficient. Hence a maximum exists in
I, and I5.

The second point is that there is nothing in the
foregoing which suggests a highly uniform step
height of the general character found in crystals
formed from dilute solution. The only feature in
the theory for bulk polymers that is even slightly
suggestive of a pronounced step height, where the
long axes of tho polymer molecules are in the correct
configuration with respect to the crystal surfaces, is
the behavior of [* —4¢,T2/A;TAT in region A.
However, an unacceptably large value of ¢, has to
be introduced to cause [* to be anywhere near as
large as is observed for polymer crystals obtained
from dilute solution. Furthermore, such a nucleus
will certainly grow lengthwise, and it is very difficult
to imagine why it would grow to a practically com-
pletely uniform length which would correspond to a
step height. (More will be said of this later.)

The third point is that in a bulk polymer, the
bundlelike nucleus, made up from segments of dif-
ferent polymer chains, is energetically the most favor-
able that can be conceived. Unless prevented by
some factor not vet considered, this is the type of
nucleus that should commonly appear in a bulk
homopolymer. Then if no special strain effects inter-
fere (say in the radial growth), such nuclei should
erow both radially and lengthwise.

We turn now to some 0('1101‘11 considerations that
have to do with the nature of the growth of the
bundlelike primary nuclei, and the effects that cause
such growth to cease in bulk polymers, or at least
slow down to a marked extent. Once certain general
features of the growth process in bulk ])ol\nwr‘
have been l)lOlWhL out, the discussion of primary
nucleation and glowth in dilute solution with chain
folding can be given.

2.2. Crystal Growth, Bulk Rate Constants, and
Impingements in Bulk Polymers

Two features of the growth process in bulk poly-
mers are of interest here. The first is that the primary
bundlelike nucleus without chain folding can, at least
mitially, grow radially and lengthwise. Fach of these
growth mechanisms is nucleation controlled suf-
ficiently near the melting point. The second point
is that the growing (1\'stal% will impinge on one an-
other in such a manner as to essentially stop or
markedly retard lengthwise and radial growth in
a manner that can hardly lead to a highly uniform
step height of the type found in dilute solution. In
the special case where strain limits radial growth (see
below), only the distribution of lengths will be im-
pingement controlled, but this will still not cor-
respond to an essentially fixed step height.
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Consider first the types of growth that may occur,
at least initially, for a bundlelike nucleus. Denote
radial growth as @,=dr/dt (where in general
G.ocdlvalt/dt) and lengthwise growth as G,=dl/dt.
Further, define the free bulk growth rate as

b = (20)
where x’ is the mass fraction crystallized, ¢ the time,
and n an exponent that depends on type of nucle-
ation and the mode of growth. The free bulk growth

ate is the rate at which the polymer would erystal-
lize if the growing crystals were independent of one
another. Values of % for various modes of growth
with homogeneous initiation (i.e., primary nudu
born sporadu*allv in time) are shown in table
The relationship between Z,, I, G;, and G, are also
shown.

TasLe 1. Values of n and Zn for various modes of growth of

bundlelike nuclei (homogeneous nucleation)

Form of bulk rate
constant

Mode of growth

One-dimensional - ___ S 2 | ZyxIG
Two-dimensional .___ o | 3| ZyxIG?
Three-dimensional b___ | 4 | ZycIGIG?

|
2
|

= In these expressions / may refer to either 14 or Is.
b If branches develop, and ZsccIG3 k., where Gsph. is the mean growth rate in
the radial dimension.

The growth mechanism denoted by G 1s to be de-
seribed by an expression of the general form

G Goe AH*/kT =Y/ T3AT (20)
so that
Gz_ Al]? _ ’
In G =—%7 ~Ta7T (21)

Here v is a constant similar in character to 8, and
AH¥ is the enthalpy of activation at the super-
cooled-liquid—growth-nucleus interface. The form
of eq (20) arises from the fact that in the experi-
mentally accessible region the growth nucleus is
characterized by one fixed and temperature inde-
pendent dimension of molecular size, usually a
thlcl\neas of one molecule or segment length (circa
2.5 to 20A). However, the temperature dependence
of the growth mechanism denoted by G, may differ
from that of G, since the secondary nucleus may be
of a different nature. In general, both &, and @, will
go through a maximum below the melting point, and
will possess a strongly negative temperature depend-
ence near the melting point. In the event that
o, > 0, the radial growth nucleus in the experi-
mentally accessible region may have two fixed and
temperature independent dimensions of molecular
size. The radial growth nucleus will generally be
easier to form than the lengthwise growth nucleus,
so the condition @,>> @, is commonly to be antici-
pated. (See, however, remarks below concerning
possible retardation of radial growth by strain.)



We must now ask what processes retard the free
growth rate of the crystals in a bulk phase. Im-
pingements and entanglements are certainly im-
portant factors [6]. The growing crystallites will
run into each other, entanglements will occur in the
vieinity of such “collisions”, and this will tend to
stop growth. The retardations due to impingements
are relatively weak early in the crystallization, but
gradually get stronger. The isotherms in this range,
which is called “stage 1,” will commonly be super-
posable simply by shifting the time scale [6]. Esti-
mates of the free bulk growth rate constant, /7,
may be obtained by analysis of stage 1 data. How-
ever, the system will approach a degree of crystal-
linity, well short of complete crystallization, where
there is a massive degree of impingement (fig. 3).
We refer to this as the pseudoequilibrium degree ot
crystallinity, x,. Detailed theoretical calculations
due to Lauritzen [11], and certain experimental
studies [6], fully justify the view that impingements
will lead to the effect indicated. Near and above
Xn, the crystallization process is exceedingly slow.
Other workers have called this “secondary crystalli-
zation” but for convenience we have termed it
“stage 2.7 Relaxation of impingements and en-
tanglements to form crystallites with greater length
and radii is one of the principal crystallization
processes in stage 2. The equilibrium degree of
crystallinity is thus approached very slowly due to
the intercession of a massive degree of impingement
N 2

1.0

STAGE 2

STAGE |

0

log t

Schematic diagram showing course of crystallization
an a bulk polymer.

x is the mass fraction crystallized and ¢ the time. Stage 1 strongly reflects
the free growth rate x’=Zut». The pseudoequilibrium degree of crystallinity is
denoted Xm, and is the result of impingements and entanglements. Stage 2
slowly carries the crystallization beyond Xm.

Ficure 3.

2

&

After the stage mechanism has pursued its
course for a sufficient time, the length and radius of
a few of the crystallites will be large enough to melt
quite close to the equilibrium melting temperature,
T,,. In the vicinity of X, the crystallites will often
be rather small, and impingements will have set up
a distribution of crystallite sizes. These effects will
cause rather broad and low melting. The particular
distribution that prevails at x, changes only very
slowly toward the equilibrium one. Neither the
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distribution of radii and lengths resulting from im-
pingements, nor even the true equilibrium one, is
consistent with a uniform step height.

Another effect that may subdue growth of bundle-
like nuclei is strain. Thus, while bundlelike nucles
may form easily, radial growth to large size may be
hindered by the strain that results from the mis-
match of the segments in the crystal with those in
the “liquid” just outside the ends. Such a situation
could be treated theoretically in terms of a o, value
that increased with ». The effect mentioned could
conceivably severely restrict radial growth of bundle-
like nuclei in some cases, causing a nearly constant
crystallite radius to be observed. However, the
stoppage of lengthwise growth will in such a case
still be controlled by impingements, and not cor-
respond to a step height of the type found in folded
crystals.

Much of what has been said concerning the nature
of impingements may be found in more detail in a
previous article [6].

3. Homogeneously Induced Crystallization
of Polymer From Dilute Solution

3.1. Preliminary Analysis of Homogeneous
Nucleation From Dilute Solution

In order to set the stage for the detailed analysis
to follow in subsequent sections, an elementary
analysis of the problem of nuclei with chain folding
is given first. This has the advantage of permitting
an early emphasis on the simple physical picture
involved, and has the virtue of clearly indicating just
what points must be subjected to more searching
analysis.

When a polymer is dissolved at high dilution in a
relatively good solvent, the polymer molecules tend
to be essentially isolated from each other. If the
solution is supercooled, the polymer will tend to
crystallize from the solution. The kinetics of this
crystallization will be governed by the nucleation
and growth process. Since the polymer molecules
are essentially isolated from one another, the primary
nucleus will tend to be formed, if at all possible,
from a single polymer molecule. The formation of
these nuclei is ireated below and it will be shown
that in sufficiently dilute solution these nuclei, char-
acterized by chain folding, are kinetically favored
over bundlelike nuclei containing segments from
many molecules of the type discussed in the previous
section for bulk phases. This treatment explains
the main features of the single crystals obtained by
Keller and others, and predicts other properties
which should be capable of verification.

We shall outline in some detail the characteristics
of the single erystals of polyethylene prepared from
a dilute solution of xylene [1, 2]. These crystals, as
revealed by electron micrographs, are flat parallele-
pipeds which are shown schematically in figure 4a.
The step height, 1*, was measured by low angle
X-ray scattering, and reflections up to the fourth
order were observed. The step height increased
from 90 to 140 A with inereasing crystallization tem-



erature. The polymer chains lie approximately
perpendicular to the two large flat faces of the
crystal, i.e., parallel to the c-axis in figure 4a. The
loops formed by the folding of the polymer molecules
form the two flat surfaces of the crystal. In figure
4b the crystal is shown as viewed along the c-axis.
The polymer chains intersect the plane normal to
the c-axis at the corners and at the center of the
rectangle. The planes determined by the two rows
of carbon atoms in the zig-zag polymer chain back-
bone are shown as triple dashed lines. It has not
been definitely determined which chains in figure 4b
are connected by the loops, but Keller has indicated
that it is sterically possible for the chains at P and
() in the figure to be connected by a loop containing
three to five carbon atoms. The arrangement of the
chains shown in figure 4b is essentially that given
by Bunn [12].

C AXIS \k a v
! END SURFACE r \ by
) 7
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Ficure 4. Details of loop-type polyethylene crystals formed
from dilute solution.

(a) Polyethylene crystal with step height 1* showing orientation of chains.
(b) View of unit cell along c-axis showing orientation of ribbonlike hydro-
carbon chain - - -.

In the discussion of the nucleus with folds the
following definitions are employed. First, » is taken
to be the number of segments in the cross-sectional
area of the nucleus or embryo, and a is the cross-
sectional area of each segment. The area of the
end of the nucleus isva. The length of the nucleus or
embryo is designated 1,.  All of these definitions are
analogous to those used earlier for the bundlelike
nucleus. Refer to the set of segments comprising
the length of a nucleus or embryo, 1, as a step element;
the step element length includes the (small) length
involved in the folds at either end. The number of
step elements in a nucleus is equal to », and the total
number of folds is equal to »—1.

We now introduce a particular model of the
polyethylene crystal in order that we may have a
specific picture in mind while calculating the prop-
erties of crystals formed by the folding of polymer
chains. This model, which is essentially that sug-
gested by Keller and O’Connor, is shown in figure 5.
A single molecule forms the crystal through folding
of its backbone as it progresses outward in a double
spiral from a central position 0. (At a later stage
in the development of the crystal, other molecules
may, of course, participate.)

The above model of the nucleus with a double
spiral is only one of several possibilities, but it still
embodies the important general characteristics of
nuclei with chain folding. These characteristics
apply not only to polyethylene but also_to any
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Figure 5. Loops in homogeneous nucleus formed from dilute
solution.

(a) View of proposed loop nucleus along c-axis. Loop facing reader —, loop
away from reader. The cross marks near 0 show one unit cell (Cf fig. 4b).

(b) Cut through plane RS showing odd-numbered loops (down) and even-
numbered loops (up).

polymer that can form such nuclei. First, it is
possible to form nuclei from a single polymer mole-
cule. Second, the crystals formed through chain
folding possess sharp and definite boundaries be-
tween crystalline and noncrystalline regions. This
is in contrast with the end surface of crystallites dis-
cussed in the section on bulk polymers. Third, a
change in any reasonably short period of time* of
the step height requires the melting (or dissolving)
of the crystal and recrystallization with a new “step
height”.  Fourth, if a molecule has formed an array
of v step elements, the v+ 1st step element may be
added simply by the folding of a free end (or ends)
of the polymer molecule. Fifth, when a polymer
molecule forms an array of » parallel step elements
there will be »—1 folds in the nucleus. It is em-
phasized that all five of these items hold for either
a double spiral model, a single spiral model (not
shown), or any of a number of other configurations.

The rate of formation of nuclei constructed from
a single polymer molecule through chain folding will
be calculated by a procedure very similar to that
used in section 2. Bold faced symbols are used for
many of the quantities involved in order to clearly
differentiate them from those pertaining to the con-
ventional bundlelike nucleus described earlier. The
free energy relative to the solution state of a primary
nucleus composed of v step elements of length 1 may
be written as

A¢,—2vac,+C+vale,+20/va e,—valAf, (22)

where a is the cross-sectional area of a segment in
the crystal, € is a numerical factor depending upon
the shape of the nucleus, and Af is the free energy
difference per unit volume of crystal between the
polymer in the supercooled solution and the crystal.
The quantity o is the work required to form a unit
area of the lateral surface from the crystal and o, the
corresponding work for the end of the crystal. The
quantity e, is the work required to form a unit length
of “edge” from the crystalline phase.

The relative size of o, and o, may be estimated
from the following considerations. Both the lateral

4 Over long periods of time, the step height will probably gradually increase
in an isothermal process by lengthwise diffusion of segments. This point is
treated more fully later.
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and end surfaces of the nucleus with folds present an
abrupt change from crystalline order with respect to
the solution. In addition, on the end surface, an
amount of work q keal/mole of loops will be required
to form a fold. When there are » segments in the
cross section of the nucleus, there will be »—1 folds,
and area of the two ends is 2 va. Then we have

(23)

SRR (o) US|
o’e-—aeo_i_ ova =°'eo+2a’

where o,, represents the (probably small) contribu-
tion to o, above that of fold formation. We should
expect to find q with a value on the order of magni-
tude of 1 keal/mole of loops.® In making this rough
estimate, it was assumed that the prineipal contribu-
tion to q was the energy required to bring the part of
the polymer chain in the folds (ca. five carbon atoms
in the case of polyethylene) into the appropriate
higher internal rotational states. If a=18>10"'°
em?, and q=1 keal/mole, q/2a=20 erg-cm—%. We
expect no really large difference between o, and o,
the lateral surface free energies of the nuclei with
loops, and the bundlelike nuclei, respectively. The
important differences in surface free energy between
bundlelike nuclei, and nuclei with loops, can be
summarized in the following way. For the bundle-
like nucleus we have

052 0, (24)
where o, is a “normal” value, usually in the range 5
to 25 erg-em~2  For nuclei with loops, we have
instead

o-e>o_s7

which is in sharp contrast to (24). Noting that o,
will ordinarily have a “normal” value, we may effect
the comparison between the loop and bundlelike
types of primary nuclei by writing

(25)

G20, (26)
G, >a,. 27)
The quantity Af in eq (22) may be approximated

by [13]
(T,—T) Ah,AT
T, T,

and

(28)

Af: Ahf *

where Ah, is the heat of fusion per unit volume of
crystal, and T,, is the equilibrium melting tempera-
ture of the crystal, both in the presence of large
amounts of the solvent.

The presence of the edge energy term in eq (22)
is not essential for the theory developed in this
paper, and the general conclusions drawn about
crystals with folds are independent of €,. Since the
value of €, will depend on the detailed morphology
of the crystals with folds, which is not treated in

5 The authors are indebted to Dr. C. W. Beckett for a helpful discussion con-
cerning the probable value of q.
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this paper, and for the reason that its inclusion at
this juncture would not elucidate any essential
points, it is set equal to zero in the remainder of this
section. Nevertheless this term is included in eq
(22) for completeness, and the consequences of e,
possessing a nonnegligible value will be assessed later.

The energy surface described by eq (22) is shown
in figure 6. It is formally similar to the energy
surface for bundlelike nuclei. In both cases the
most probable nucleation path passes through the
saddle point. The difference between the two
types of nuclei is that certain restrictions apply to
the paths of nucleation on the surface for nuclei

A,

Ficure 6. Free energy surface for formation of critical-sized
homogeneous nucler with loops (dilute solution).

The heavy line 0-+-B shows most probable reaction path; * is the saddle point
across ridge D—E. The dottedline 0 - - + I « - - C'shows an other possible reac-

tion path across ridge D—E, where A¢§>A¢;,

with loops that do not apply to bundlelike nuclei.
For nuclei or embryos with folds, the elementary
process is the addition or subtraction of a step ele-
ment. Then the paths by which nuclei with folds
are formed are characterized by a length that is
invariant as the embryo or nucleus grows. Two
paths of nucleation are shown in figure 6. One
path passes through the saddle point, while the other
path passes over a higher energy barrier. It will
be shown subsequently that most of the nuclei
formed will pass through or near the saddle point,
and will therefore possess a length close to the value
at the saddle point, Ij. The coordinates of the
saddle point may be found by calculating (0A¢,/0l),



and (0A¢,/0va), from eq (22), and equating them to

zero. It 1s found that
4o
o ki 9
ln Af’ ( 9)
and

(31)

Already from eq (29) we can preceive the origin
of a large nucleus length for nuclei with folds as
compared with that for bundlelike nuclei. From
this expression and Af=Ah,AT/T,, it is found for
nuclei with folds that

46£3T7Vl

Ah,AT

*_ ¢

JE== (32)

whereas from eq (4) and (10) we find, omitting

the relatively unimportant factor 7,/7, that for
bundlelike nuclei

m

_40—3—17”

3 . Q¢

e Ah AT (33)
Since from eq (27), o, >0, it is seen that I should
generally be considerably larger than [* under
corresponding conditions of supercooling. As will
be seen later, our estimate that o,~20 erg-cm™
leads to values of 1* in the vicinity of 100A at a
moderate degree of supercooling. The fundamental
reason for the large value of I¥ as compared to /* is,
of course, the work q required to form the fold.

On account of the relatively large value of o, com-
pared to o,, it is to be anticipated that the nuclei
formed in the experimentally accessible temperature
range for dilute solutions will not ordinarily be sub-
ject to a minimal restriction of the type that causes
the appearance of region B or C type nucleation in
bulk polymers. Thus, our treatment of nuclei with
chain folds is in some respects analogous to region
A type nucleation in bulk polymers.

Equation (32) shows that 1¥ should increase as
the crystallization temperature increases. Nuclei
with lengths greater or less than 1¥ are improbable
for kinetic reasons, as will be brought out subse-
quently.

It is seen that there is little difficulty in explaining
why a nucleus with folds should have fairly large
dimensions, corresponding in magnitude to the step
height determined by Keller. The really critical
issue is why this nucleus of length L does not con-
tinue to grow in the 1 dimension, but chooses instead
to grow in the x and y dimensions. This question
will be pursued in considerable detail later, but it is
considered fitting at this juncture to mention the
general nature of the arguments showing that the
crystal will maintain a length 1* that is close to I3
as it grows. The presence of the folds on the end
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surfaces prevents rapid growth of the nucleus or
embryo in the I direction of the simple type that
can readily occur for a bundlelike nucleus in its /
direction. The problem then becomes that of
assessing the relative growth rates in the 1 direction,
and on the lateral surfaces, for the loop type nucleus.
Consider first what happens after a critical-sized
nucleus with folds is formed. Since there will likely
be very few other polymer molecules close by, the
molecule already involved in the nucleus will con-
tinue to “crystallize,”” forming a primary crystallite
containing one molecule. It can be demonstrated
that the primary crystallite which on a kinetic
basis has the highest probability of formation will
in fact possess a length that is close to 13. It is, for
example, highly improbable on energetic grounds
that a new loop will protrude far above the plane of
loops already established. The same is true of the
set of new loops in a larger body. A quite similar
argcument applies to the growth of the crystallite
when another polymer molecule enters the picture.
Again the energetically least expensive growth nu-
cleus contains a loop, and has a length 1* that is
close to 1%. Growth on the two primary crystallite
faces containing the loops is not impossible, but
will be subdued by the circumstance that a sec-
ondary or growth nucleus on this surface is nearly
as difficult to form as the original primary nucleus.
Considerable attention will be paid to the possible
variation of the step height as the ecrystal grows,
and this will be shown to be small. The relatively
narrow distribution of step heights around the
mean value of the step height is related to the nature
of the saddle point in the free energy surface describ-
ing the rate of nucleation and growth.

In appendix 5.1 it is shown that to good approxi-
mation the number of stable nuclei formed isother-
mally per unit volume of solution per unit time is

kT

I__}T n06~AF;/kTe—A¢;/kT

(34)

where ny is the number of polymer molecules
per unit volume of solution and AF% is the free
energy of activation for a polymer molecule forming
an additional step element. The approximate tem-
perature dependence of A¢3 can be obtained from
eqs (28) and (31):

o 2(%6%0,T2, ) -
A¢,,— (Ahf)z(AT)z (';O)
Hence,
i Al e (36)

I, kT TT)?

where L= (kT/h)n, exp (AS}H/k), and a=20"c?
o, T2/(Ah,)’k. (Here we have set AFj=AH}—
TAS%.) Equation (36) 1s seen to be of the same

form as eq (18) except for the relatively unimportant
factor 72/7°. Thus the temperature dependence
of the nucleation rate at moderate supercooling is
predicted to be similar to that of bundlelike nuclei in
a bulk polymer in region A.



At this point it is convenient to indicate qualita-
tively why the nucleus with chain folds described
by eq (29-31) and eq (34-36) is the most probable
in dilute solution. The basic reason for this be-
havior is as follows: The free energy required to form
a critical bundlelike nucleus in a very dilute solution
is greater than the free energy required to form a
critical nucleus with loops. This happens because
the selection of segments to form the bundlelike
crystals requires many polymer molecules to be
gathered together. This leads to an important
change in the difference between the configurational
entropy of the crystalline state and the solution state.
The change in entropy increases the free energy re-
quired to form a critical bundlelike nucleus. This
effect is absent or greatly reduced for nuclei with
loops, since such nuclei can be formed with a single
polymer molecule, or a very few polymer molecules.
Then stable nuclel with loops are formed much more
rapidly than stable bundlelike nuclei from a suffi-
ciently dilute solution. To be more quantitative,
it will be shown in section 3.2 that when polyethylene
is dissolved in xylene, crystallization will proceed
primarily by formation of stable nuclei with loops
when 2,<0.001, where », is the volume fraction of
polymer. It should be pointed out that while diffu-
sional effects in dilute solutions will tend to reduce
the rate of formation of bundlelike nuclei even
further, these effects are important only at very low
concentrations, where the reduction in configura-
tional entropy has already effectively eliminated the
formation of bundlelike nuclei.

The above arguments, concerning the entropy
contribution to the free energy required to form a
critical nucleus from a dilute solution, also apply to
the entropy contribution to the free energy of a
grown crystal. It will be shown that a loop-type
crystal is more stable than a bundlelike crystal of
the same shape and volume in a sufficiently dilute
solution.

Brief consideration will now be given to certain
aspects of the overall kinetics of crystallization.
When a stable nucleus is formed, the nucleus will
continue to grow until the molecule is consumed,
forming a primary crystallite. At exceedingly low
concentrations, where the polymer molecules are
very widely separated, and long-range diffusion im-
portant, it is possible that the crystallization might
proceed mainly through formation of such primary
crystallites.

Since the birth time of such a crystallite is essenti-
ally the time required to form the critical nucleus,
the time required for complete growth being negligi-
ble in comparison, the process will in effect be
equivalent to sporadic formation of objects (primary
crystallites) that do mnot grow. In this case, =
would be unity in the free growth rate expression

(37)

(Note that n=1 in this case is not to be interpreted
in the customary manner as one-dimensional growth
of objects born at t=0.) At more moderate con-
centrations, where the degree of crystallinity could

W=

be more readily measured, subsequent growth of
each nucleus would proceed through secondary
nucleation of other adjacent polymer molecules.
This nucleation will oceur principally on the lateral
surfaces of the growing crystal, leading to growth of
the x and y dimensions, because the energy of
formation is much smaller for nucleation on the
lateral surfaces than on the end surfaces, which
contain the folds. The relationship between x’,
and the actual mass fraction of polymer crystallized
will be given in section 3.3. Then we expect the
nuclei, which are born sporadically in time, to grow
principally in a two-dimensional manner leading to
an overall ecrystallization isotherm described by
n=3. As the crystallization proceeds, n will drop
in value due to diffusional effects and the consump-
tion of polymeric material. The secondary nuclea-
tion mechanism will be discussed further in section
3.3.

3.2. Detailed Analysis of Homogeneous Nucleation
Rate and Constancy of Step Height in the Primary
Crystallite

In section 3.1. we have outlined in simplified form
the principal features of homongeneous nucleation
from dilute solution. In the present section we
shall treat the nucleation process in greater detail
with particular emphasis on the variation in step
height of the nuclei. We shall at first discuss an
ensemble of nuclei, each of which is characterized by
a fixed step height I, where 1 may differ from 1%,
The objective is to calculate the distribution in
step height in the stable nuclei formed in such a
system. Later the assumption that each nucleus
in the set has a fixed step height will be relaxed,
and found not to alter the general findings (see also
appendix 5.1.). In this calculation the edge energy
e, will be equated to zero. Its inclusion would not
alter the results in an important manner, but would
needlessly complicate the analysis at this stage.

Consider a primary nucleus that is composed of
v step elements, all of length 1.  The energy of such
a nucleus was given in eq (22) and is rewritten here
with €,=0:

(38)

The energy surface represented by this equation
is plotted in figure 6. Under the present assump-
tion, a nucleus of » step elements of length 1 can
change by an elementary process only to nuclei of
either »—1 or »-+1 step elements of length 1. A
stable nucleus of length I must be formed through
the progressive addition of step elements until the
free energy, A¢,, is negative. Then the path of
nucleation will be along the points

Vot wnt2 . ..., (39)

where v,, 1s the minimum size of a nucleus. Two
such paths are shown in figure 6, and will be dis-
cussed in more detail shortly

It should be noted that if an embryo is to become
stable, it must possess a length, 1, greater than a

A¢,—2vac,+Clva o,—valAf.



certain minimum. This can be seen clearly if eq (38)
is differentiated with respect to »:

_D_A&, (Jo‘ﬂ_al

%26, —
> W +a(2s,—1Af)-

(40)

It can be seen by inspection that the right hand
side of eq (40) decreases monotonically with increas-
ing v for all positive ». If the length of the embryo
is so small that 1<2e,/Af, then 0A¢,/0v is always
positive. The free energy of such embryos will in-
crease indefinitely with the addition of step elements,

and the embryos can never become stable. Then
stable nuclei can be formed only when
1>2"e o (41)

When eq (41) is satisfied, 0A¢,/0v decreases mono-
tonically with » from a positive value to a finite
negative value. Under these circumstances the free
energy of the embryos, A¢,, increases with the addi-
tion of step elements until a maximum value, A¢},
is reached when there are v* step elements. The free
energy decreases monotonically as further step ele-
ments are added. Two such paths of nucleation are
shown in figure 6.

The number of step elements in the embryo at the
energy barrier can be calculated by equating 0A¢,/0v
to zero in eq (40):

(Cayl)?

e N
¥ = 1a(laf—2q,) 2
The energy barrier is
Agi——COr) (43)

4(1af—2a,)

We have already seen that this energy barrier is a
minimum when

4o
*__w7(‘
;= AT’ (44)
and that this minimum energy barrier is
2C% %0,
f s e, i
A, (af)? (45)

With some algebraic manipulation of eqs (43), (44)
and (45), we may write the energy barrier, A¢}, as

(11— 1)]

1+2(/F—

This expression gives the value of the barrier hinder-
ing the formation of a stable nucleus composed of
step elements of length I; these values of Ag} lie on
the ridge D—E on the free energy surface shown in
figure 6. Since the energy barrier to be surmounted
is & mirimum at I1=1I, where there is a saddle point
in’ the ridge, it can be seen intuitively that the rate

Ag),—Ag; |:1 + (46)
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of formation of nuclei will be largest when the nuclei
have lengths near this value.

The effect of deviations of length from I¥ on the
rate will now be established. In appendix 5.1., the
rate of formation of these nuclei was calculated using
the procedure of Turnbull and Fisher [8]. It was
determined that the number of stable nuclei with
lengths between 1 and 1-4dl formed per unit time per
unit volume of solution is

i(hdl=gdl 9‘“;’# ¢TAFINT g BN (47)
where o
a’y20, (1aAf—20,)*

| w(kT)?

The value of £ may be considered valid at best to
within an order of magnitude. However, it varies
slowly with I compared to the factor exp [—A¢}/kT].
Substitution of eq (46) into eq (47) leads to

g:
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This equation shows clearly that the nucleation rate
is most rapid when 1=1# and that the distribution
in the lengths of the nuclei formed will become
sharper as the height of the barrier at the saddle
point, Ag¢}, 1noreasos

The derivation given above can be generalized
further to include various step heights ll, L ...,
for each individual nucleus, rather than just one.
The general conclusion is that eq (48) is a reasonable
measure of the variation in lvn(rth of the stable nuclei
formed. The fraction of stable nuclei with lengths
between I, and I, can be calculated directly from eq

(48):
f L
Fly, ) ="R——

j i)l
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fl xp KT 1+2 i 1)] "
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o kT L 1+2(01F—1) }‘

The lower limit of the integral in the denominator
represents the smallest possible size of a stable
nucleus. This expression will prove useful in esti-
mating the percentage variation of 1 about its
probable value, I#.

The total nucleamon rate is obtained by integration
of eq (48). When (A¢#/kT)>>1, the number of
stable nuclei formed per unit time per unit volume of
solution is
nokl’

e~ AFY/RT o= A /KT =

J
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where K= (20,)f(Af)a%/x*Ca,(kT)%. For most cases
of interest, K is within an order of magnitude of
unity, and following Turnbull and Fisher, we shall
set K equal to unity. Then we have for the nuclea-
tion rate

I=

o~ AFH/ET o= ABY /KT

nk L 5
: (51)

Substitution of eqs (45) and (28) into eq (51) yields

_ AOF 1%,
kT(Ah,)?(AT)?

(loop nuclei in dilute solution)
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At temperatures near T,, it is clear that the last
factor furnishes the principal temperature depend-
ence of 1.

We turn now to some numerical values to illustrate
the general characteristics of the nucleation of
crystals with loops.  Unfortunately, no complete set
of experimental data is available, so we must be
satisfied with estimates. Attention will be centered
on the case of the crystallization of polyethylene from
xylene at 90° C, for Keller and O’ Connor [1] have
measured the step height as formed under these
conditions and found it to be about 140 A. It
should be noted that xylene is a reasonably good
solvent, so that there is no separation into two liquid
phases at low concentrations. This condition must
be satisfied for the theory given here to be applicable.
An estimate on o, may be obtained by combining
eq (28) and eq (29) so that

o, :LAhfF; (AT/Tm> ) (53)
where we have approximated the step height of the
crystal by I3 in this equation. Quinn and Mandelkern
[14] have measured the heat of fusion of polyethylene
and have found it to be 67 cal-g='. From Bunn’s
X-ray data [12] on bulk crystalline polyethylene
at room temperature, it may be estimated that
the cross-sectional area of the chain segment is
18:5X107* e¢m? and that the volume of each
~CH,CH,— unit is 47107 em?.  (These values
are adjusted to be correct at 90° C.) It is deter-
mined from these results that Ah,, the heat of fusion
per unit volume of crystal, is 2.8 X10° erg:em 3. We
will (somewhat arbitrarily) assume that this is the
heat of fusion Ah, in the presence of large quantities
of solvent. It is then found that

o,—=980 [E’L—T——Sﬁ] erg-cm=2

The melting point of polyethylene crystals in very
dilute solutions of xylene is difficult to estimate with
confidence. A lower limit on T,, of 95° C may be
calculated from the theory of the depression of the
melting point of a polymer by diluent [15] with the
1nteract10n parameter x;=0. The true value of T,,

(54)
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is very probably somewhat higher, since x; almost
certainly differs from zero. 1t is considered probable
that T, lies between 95° C and 120° C for this -
particular solvent. Then o, lies between 13 and 75
erg-em 2. A value of o, in this range seems reason-
able, since it corresponds to an energy of loop forma-
tion of 0.7 to 4 kecal/mole of loops. We should
expect polymers with stiffer chains to possess higher
values of o, than polyethylene. In continuing the
numerical analysis o, will be set equal to 30 erg-cm ™2
In eq (54) this implies T,,=374.5° K, and therefore
Af=1.17 X10% erg-em™ at 90°C. To estimate the
value of A¢X/kT at this temperature, the shape
constant C must be known. If it is assumed that
the shape of the cross section of the nucleus is a
parallelogram with an acute angle, y=70° between
the sides, ('=4.13. Then from eq (45) or (31)

2
S

ES
%:1.56
at 7=90° C. A reasonable value of o, might lie
between 5 and 20 erg-cm™? (Thomas and Stavely
[16] have found ¢=20.4 erg-cm~? for benzene). Then
A¢y/kT must lie between 38 and 600.

Crystallization could not be observed if A¢j/kT
possessed a value of 600. For the particular case of
crystallization from a 0.01 percent solution of poly-
ethylene in xylene, A¢*/kT must be well below 100.
If o, lies between 5 and 6 erg-em™*, A¢y/kT lies be-
tween about 40 and 50. In any case it i1s clear that
the value of Ag}/kT for slow but measurable crystal-
lization processes is a large number. This is because
olo, possesses large values for nuclei with folded
chains. Omne might expect that ole, lies between
500 and 10,000 erg®cm~° for most polymers where
the nuclei involve chain folding. The quantity oo,
relevant to the case of bundlelike nuclei in bulk is
much smaller, values of 25 to 250 erg®.cm=° being
reasonable.

The distribution in step heights of critical nuclei
about I¥ can be estimated from eq (49). If when
polyethylene is crystallized from a 0.01 percent solu-
tion of xylene, I!*=140 A and A¢*/kT=50, the evalu-
ation of eq (49) shows that 73 percent of 'the critical
sized nuclei have step heights between 126 and
157 A. This distribution is sufficiently narrow so
that several orders of low angle X-ray scattering
might be expected,® if the grown crystals possess
this distribution. This is in satisfactory agreement
with experiment.

These numerical values will be discussed further
after the growth of the crystals through secondary
nucleation of other polymer molecules has been in-
vestigated in the next section.

We now wish to show in some detail that the
formation of bundlelike nuclei in sufficiently dilute
solution is negligible compared to nucleation through
chain folding. The nucleation rate of bundlelike

¢ Tt is quite possible that local rearrangements of the segments would cause the
step elements in the nucleus to become even more uniform in a relatively short
period of time.



nuclei of circular cross section in the presence of
diluent, 7,, has been calculated by Mandelkern [13].
With appropriate changes in notation his result is

] "I: (@A
6)

(bundlelike nuclei in dilute solution)
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where AF is the activation energy required for
transport across the nucleus-liquid interface, Af,1s the
bulk free energy difference per unit volume of crystal
between the crystalline and solution states, ag,, is the
free energy required to build a unit area of the lateral
surface from the bundlelike crystal in solution, and
, 18 the volume fraction of the polymer in the solu-
tion. o, is a surface free energy cmlosp()n(lilw to
e, the free energy required to build a unit area of
end surface in the bulk polymer. ¢, must be less
than e, the energy required to form a unit area of a
surface containing loops. "T'he pre-exponential factor,
1,4, 1s not particularly sensitive to 2, varying approxi-
mately as the first power of ny. It is to be expected
that oy, Afs, and « should have values very nearly
equal to a,, Af, and a, the corresponding terms for
nuclei with folds. Then the important dependence
of 1, upon », occurs in the last factor in eq (56). The
last factor decreases very rapidly with decreasing v,,
and the nucleation rate 10'1' bundlelike nuclei is re-
duced correspondingly. Thus at sufficient dilution
the nuclei with folds are the preferred type, as may
be seen by comparing eq (52) with eq (56).

\ _more quantitative comparison can be made if

eq (52) is divided by eq (56):
A 4 9 m
=l (\D{ ¢p '_i:r)apd (:’:'A ! lobe p,]}
(57)

where Co= 0ok T’ /h1y,) exp [— (AFE—AF)) [kT]. In eq
(57) it has been assumed that Af Af,,, 1T .m(l
a=a. Here A¢} is the energy required to form a
critical nucleus with loops.  When I/1,;>1, the stable
nuclei formed are primarily those with loops. It is
instructive to evaluate eq (57) for polyethylene
crystallized from xylene. (} is not very sensitive to
either concentration or temperature and probably
has a wvalue between 107° and 1. We find
2rkT/C*ae,~1/3, if &, is assigned the value of 30
erg-em 2. Then eq (57) becomes

(I/1;) = Coexp{— (A¢y/kT)[14-5 log,v,— (4m0,4/(*s,)]}
(58)

It has been shown that A¢;/]L T is a large number.
If »,=0.001 and Co=107", I/, lies between 10" and
10°% as A¢j/kT varies between 40 and 80. Thus in
a 0.1 percent solution of polyethylene in xylene,
crystallization should definitely occur through the
formation of nuclei with loops. At ('on(,ontlatlons
near 10 percent I/1,<1, and bundlelike nuclei will
dominate the crystallization process. The transition

85

between the two types of crystals occurs nea

2,=0.01. Equations (57) and (58) must be appllc(l
wnh caution near this transition region for two
reasons: (a) the nucleation rate for erystallites with
loops was derived for very dilute solutions and is
probably inaccurate at higher concentrations; (b) I
and 7, are rates for extreme types of nucleation, and
in the transition region the stable nuclei formed are
probably partially bundlelike and partially formed
through chain folding. Nevertheless eq (57) indi-
cates that there is a fairly sharp value of the volume
fraction of polymer, 2., such that when v, >,
bundlelike nuclei are formed, and when »,<v,,,
nuclei with loops are formed. If there is some
restraint on the radial growth of bundlelike nuclei,
such as the type of strain mentioned earlier, stable
bundlelike nuclei may be even more difficult to form
than has been indicated, and »,, would have a
higher value than that deduced from eq (58). Even
without this, the important point remains that loop-
type nuclei will predominate at low concentration.

In extremely dilute solution the preponderance of
nuclei with loops over those that are bundlelike is
enhanced even further by diffusional effects. Since
at higher concentrations loop nuclei are already the
most important in the system, we see no compelling
need to give a detailed analysis of the effect of long
range diffusion.

The above comparison naturally raises the question
of why the configurational entropy contribution to
the free energy of formation of a bundlelike nucleus
is so much more sensitive to the concentration of
the solution than is the corresponding term for a
nucleus with folds. Qualitatively this can be
answered as follows. In forming a critical bundlelike
nucleus the segments of many molecules must be
brought together. The entropy reduction in bringing
together different polymer molecules in dilute solu-
tion is sensitively dependent upon the concentration.
In forming a critical nucleus with folds from a single
polymer molecule, the segments of this molecule
must be brought together in an appropriate manner.
There is a corresponding entropy contribution but
this contribution does not depend upon the concen-
tration of the solution. This qualitative explanation
an be placed on a quantitative basis if a lattice
model is used. The lattice model is not accurate for
dilute solutions, but calculations based upon it should
be roughly correct. It is found that the reduction
in entropy due to the gathering of molecules in a
bundlelike crystal is —k& In v, per segment in the cross
section of the crystal. This result yields an end
surface energy of the form o,,— (k7/2a) log, », and
leads to eq (56). By analogy, for a crystal with
folds, the reduction in entropy is —% In v, per polymer
molecule contained in the nucleus. If a single poly-
mer moleculeisinvolved in the formation of a critical
nucleus with folds this contribution need not be
considered and eq (52) results. If many molecules
are involved in the crystal the free energy contribu-
tion per unit area of surface of the crystal is
— (/L) (kT/2a)log »,, where 11s the step height of the
crystal, and L 1s the mean length of the polymer
molecules. This term is unimportant for high molec-



ular weight polymers. In any case since this “surface
energy”’ term is proportional to the step height of the
crystal, it will be included in the bulk free energy
difference per unit volume of crystal, Af.

It has already been shown that for kinetic reasons
almost all of the critical nuclei possess lengths very
close to I§=4¢,/Af. The critical nucleus can often
be formed from a single polymer molecule. After
these nuclei are formed, the remainder of the polymer
molecule forming the nucleus will “crystallize’” onto
the nucleus until a primary crystallite is formed by
a single molecule, which has a crystalline volume al.
where L is the length of the molecule. The distri-
bution in step heights of this primary crystallite will
now be briefly considered.

It will be assumed that the primary crystallite will
be formed from the critical nucleus by the addition
of step elements in the manner shown by figure 5a,
so that the step elements are added in a mono-
molecular layer to the existing already “crystallized”
nucleus. This monomolecular layer will be added
to one side of the nucleus until a “corner” of the
nucleus is reached. At this stage the step height
may be maintained near 4¢,/Af although lower values
may be attained. When the monomolecular layer
of step elements reaches the “corner” of the nucleus,
the next step element must be added so that it
extends beyond the corner of the nucleus. This
situation is shown schematically in figure 7a and
7b, where the additional step element 1s designated

by A.
/ 4’
/ /e
—/A][h / "'Z\B'/
“n (c)

(b) h

The addition of step elements around a ‘‘corner”’
of a nucleus.

(a) and (b): Perspective and a top view of the addition of a step element, A,
to a nucleus. The step element A must be added in order that a monomolec-
ular layer can be established along the face of the crystal. (¢) Top view of the
step elements B, C, D, . . . , that can be added to the crystal face after the first
step element, A, has attached to the ‘‘corner’ of the nucleus.

Ficure 7.

A monomolecular layer may then be added along
the surface of the nucleus by the addition of step
elements B, O, D, ete., as is shown in figure 7¢. The
calculation of the rate at which this monomolecular
layer is deposited on the surface of the nucleus is
complicated by two factors: (a) an accurate expres-
sion for the free energy of such a monomolecular layer
is lacking, and; (b) the fundamental expression for
the rate of crystallization of a monomolecular layer
is somewhat different from the expression used for
the primary crystallization.” The first complication
will be avoided by using a purely geometric model for
the free energy of the monomolecular layer. Thus
each step element will be assumed to be a parallele-
piped which has the surface energies appropriate to

7The Turnbull-Fisher theory is not applicable when the activated state is
reached in one step, as in the present case of a monomolecular layer. The treat-

ment of the nucleation rate in appendix 5.2 deals with the situation where the
growth nuecleus is formed in one step.
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the bulk crystal. This model should yield answers
that are qualitatively correct. Then if the step
height of the added step elements A, B, C, D, . . .,
is less than the step height of the nucleus, the free
energy required to add v step elements around the
corner of the nucleus is

A¢’'=2he |} 2vac,—valAf (59)
where h= (a/sing)? is the length of the side of the end
surface of the step element. The usual method of
finding the activation energy by setting 0A¢/0l=0,
0A¢/ova=0, and substituting into A¢, is inapplicable
in the case of monomolecular growth with »=1,
since the free energy surface does not have a saddle
point that corresponds to a minimum activation
energy. Hence we must examine the free energy
ridge for »=1 over which the system must pass in
more detail.

The increment of energy required to add the step
element at the corner of the nucleus is obtained by
setting »=1 in eq (59):

A¢'*=2hsl—a(laf—20,). (60)
At the degree of supercooling in the range of experi-
mental interest, 2he, >aAf, and therefore A¢'* in-
creases with increasing 1. Of course, if the length of
the step element becomes larger than the nucleus,
additional terms increase A¢’* even more rapidly

with 1. The addition of further step elements B,
C, D, ... change the free energy by a constant
amount

A¢, . —Ap,=—FE=—a(laf—2¢0,). (61)
It is clear that the step element must have a length
greater than 2e¢,/Af or the resulting crystal is un-
stable.

The addition of the corner step element A requires
an activation barrier A¢’*. Addition of further step
elements of this length reduces the free energy by an
amount /7 per step element. In appendix 5.2 it is
shown that the equilibrium rate of deposition of
monomolecular layers of step heights between 1 and
14-dl is

rdl=dl % ¢ AP KT gmAg kT

{ )

where AF* is the activation energy of the elemen-
tary process of adding the step element, N is the
number of primary nuclei which are growing, and
(', is a normalization constant.

The rate of deposition of the monomolecular layer
depends upon the step height, 1, of the layer. At
1=26,/Af this rate is zero and as | increases the rate
increases until a maximum is attained and then the
rate decreases with a further increase of 1. It will
be shown that the rate is appreciable in only a narrow
range of values of 1.

2 sinh (E2kT)
1426788 % ginh (E/2kT)




A numerical analysis shows that for the case in
which we are interested, the rate in eq (62) can be
approximated by

r=2 k_h]: NC, ~AF" /KT g2 kT ginhy [21%’]

kT

—

NO}e—AF‘/kTe—l(zha,—aAr)/kTe— 2a0 ,/kT

; a(laf—2q,) ’
sinh [T (63)
The mean length of the step height of this layer can
be taken as

f Ir dl
20,/AL

2%kT 2T 7
4ho,—3aAf ' 4ho,—aAf

20,

dl Af

1

(64)

f v
%0,/Af

Similarly, the mean square deviation is

f T a=Dra
—a=hemm=d Lo e
f rdl
2, /AT
. (2kT)* . (2kT)? (65
=\ @ho,—3aal)? ' (4ho,—aan? S (&9

The{square root of eq (65) can be usedTas a measure
of the deviation of the step heights from the mean

value, T.
When he, >">aAf, eqs (64) and (65) become
= 20,, kT
1=t Tho, (662)
and
e _l<k£ g
<A=D>=3 ho, (66b)

Now if h=42 A, ¢,=6 erg-cm~? and 7T=363° K,
then k7 /he, is about 20 A. The mean deviation
about this average value is about 14A. Then when
the monomolecular layer passes around the “corner”
the length of the step height falls from 4¢,/Af to a
value slightly greater than 2e,/Af. The distribution
of step heights about this mean value is quite sharp.
Every time the monomolecular layer reaches a
“corner”” this identical situation will be repeated.
It might be expected that there is a tendency for
the step height to increase, as the monomolecular
layer is being crystallized along the side of a primary
nucleus. An analysis of this process shows that the
step height will remain near that given by eq (66a).

In summary, it can be said that if the edge energy
€, is negligible, the primary crystallite will have an
interior section which has a step height I¥=4¢,/Af,
and the outer section will have a step height near
1=20,/Af+kT/he,. More will be said of this process
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in the next section. If the edge energy e, is not
negligible it will affect the growth of the critical
nucelus into a primary crystallite. This effect will
also be discussed in the next section.

3.3. Constancy of Step Height in Overall Growth
Process and Volume Increase of a Folded
Crystal Dilute Solution

When a primary crystal has been formed, it can
grow by the addition of other polymer molecules
upon it, one by one. This crystallization will
proceed by the formation of a secondary nucleus by
a single molecule upon the lateral surface of the
crystal. This growth of the crystals is treated in
this section with emphasis on two points. First we
wish to demonstrate that the step height of the
growing crystal has a tendency to remain at a
constant value 1* for kinetic reasons. Second, it is
desired to obtain appropriate expressions describing
the volume rate of growth of these crystals.

Before we discuss growth through secondary
nucleation on the lateral surfaces, our neglect of
nucleation of the end surfaces must be justified.
The end surface of the primarvy crystal is composed
of loops formed by the folding of polymer molecules.
The end surface of a secondary nucleus is also com-
posed of folds. Thus there is a distinct boundary
between the crystal and such a secondary nucleus.
The effect of any affinity between the loops in the
two end surfaces upon the free energy required to
form a secondary nucleus is probably small. Then
the free energy required to form a secondary nucleus
upon the end surface of the crystal is almost as
ereat as that required to form a primary nucleus.
Some growth on the end surface will, of course,
occur. However, by the arguments given above,
the step height will be practically identical to that
of the primary crystallite. Secondary growth of
this type can lead to small patches of secondary
growth on the primary crystallite, or in other cases
to a distinet pyramidal appearvance due to successive
layers being formed. These effects should be sub-
dued by forming crystals at very low conecentration.

The free energy required to form a secondary
nucleus upon the lateral surface of the crystal is
considerably smaller than that required to form a
primary nucleus. The volume growth of a crystal
proceeds through the formation of a stable secondary
nucleus on the growing (lateral) surface of the erystal
followed by complete “crystaliization’ of the entire
new molecule. The rate of addition of molecules to
the crystal will be the average number of molecules
in contact with the growing surface times the rate
at which one of these molecules forms a stable
nucleus, p,. The quantity, p, can be calculated by
the method of Turnbull and Fisher [8].

m
P =@£ (j—Al«“/I:Te—-AQj:/I;T
b ]

i (67)

where A¢¥ is the free energy required to form a
secondary or growth nucleus of critical size. The
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process of the formation of a fold by a molecule
should be the same in primary and secondary
nuclei, so that we anticipate AFi=AF;. This
expression holds for growth where the activated
state is reached through many successive elementary
processes. Later, the case of growth through addi-
tion of a monomolecular layer will be considered,
and eq (67) will be modified accordingly.

The free energy of secondary nuclei of critical
size, A¢s, will be considerably smaller than the cor-
responding energy for primary nuclei. The calcula-
tion of A¢} requires an accurate expression for the
free energy of a secondary nucleus, A¢,. We can
obtain such an expression when the shape of the
secondary nucleus is known and the number of
segments in a cross-sectional area 1s large. It is
probable that neither condition is satisfied for the
secondary nucleus. We will, however, consider two
extreme cases: (1) the cross section of the secondary
nucleus has the same shape as that of the primary
nucleus, and, (2) the secondary nucleus consists of a
single layer of enfolded sections of a polymer mole-
cule upon the surface of the erystal.

The former case where the shape of the cross sec-
tion of the secondary and primary nuclei are the
same is not likely to be correct, but it has the ad-
vantage that an accurate expression for its free
energy may be written down explicitly. In figure 8,
a secondary nucleus of this type is shown on the
lateral surface of the larger primary crystal. The
free energy required to form this nucleusis the differ-
ence between the free energy required to form the
total crystalline region P+ S shown in figure 8, and
the free energy required to form the crystal, P. 1If
there are v step elements in the secondary crystal,
the free energy required to form the secondary
nucleus is

A¢;:2vao’e+§ \va o I5—valiAf. (68)

The equation above applies to the case where both
the crystal and the secondary nucleus possess the

Fiaure 8. Schematic diagram of primary crystal, P, with a
hypothetical secondary mnucleus of the same cross-sectional
shape, S, upon lateral surface of the crystal.

A secondary nucleus or embryo where Al==0 is shown in the text to be consider-
ably less stable than one of length ];.
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critical length 5. It should be noted that the sec-
ondary nucleus possesses only one-half as much
lateral surface energy as a primary nucleus of the
same size and shape. We easily find that

At
4

Agi= (69)

Then the activation barrier of a secondary nucleus
would be only one-quarter of that required to form
a primary nucleus. If the height of the step ele-
ments in the secondary nucleus is allowed to be
¥4 Al the free energy required to form such a
secondary nucleus can be calculated by the usual
methods. Tt is found that the energy barrier A¢';
which such a nucleus must surmount is

Ad; (Aﬁfor Al>0
2 I =

!
A¢/=, A¢]
(70)
Ag¢y  (AD?

4 Wl—,for AISO

p Al
Ad’gﬁzz Ao

The variation in lengths of secondary nuclei will thus
be small, since we have seen that A¢j is large.

If the primary nucleus has a length 1 which is
greater than I, the secondary nucleus will possess a
length very close to I5. It is clear that if the sec-
ondary nucleus has the same cross-sectional shape as
the primary nucleus, the step height of the crystal
will not increase as the latter body grows.

The activation barrier required to form a eritical
secondary nucleus of the same shape as the primary
nucleus is large. It is therefore probable that the
secondary nucleus of critical size is a monomolecular
layer of step elements that lie along the growing
crystal face. An accurate expression for the free
energy of such a nucleus is not available, but the
same assumptions that were used in the previous
section may be applied here. The free energy
required to nucleate on the growing crystal face 1s
the same as that required for a monomolecular layer
to turn a corner and grow on a new crystal face.
Thus Ag, is identical to A¢’ in eq (59). FKFrom the
results of the previous section concerning the forma-
tion of a primary crystallite it can be concluded that
if the edge energy, e, is negligible the crystal will
grow with a constant step height, 1*, which is given
approximately by

20, kT
x_<Fe .
F="4t The, 1)

When the monomolecular layers have completely
encircled the growing ecrystallite, it is improbable
that additional layers will have step heights ap-
preciably larger than I* since such layers would
extend above the growing crystal face and therefore
would require more free energy to construct. Thus
the distribution will be somewhat sharper than that
implied by eq (65), and the step height may decrease
slightly from the value given by eq (71). In any
case the crystal will grow with a very narrow distri-



bution of step heights about 1*, and the variation
of step height should be approximately 1/2% (kT /he,).

For this type of secondary nucleus, p, is obtained
by the integration of (r/N)dl over all permissible
values of 1. With a suitable choice of €, in eq (63)

we have approximately
4he o, )
kTAf

kT(zAf> < U?)e\p{ |
72)

In this case log p, varies approximately as (AT)~
for moderate supercooling.

Price [19] has independently considered the growth
of erystals with folds through nucleation of mono-
molecular layers.

At this point it is appropriate to discuss the
possibility of an edge free energy affecting the
growth process appreciably. An edge free energy in
a monomolecular secondary nucleus can be consid-
ered to arise as follows. If the growing crystal has
flat surfaces containing loops, the packing of the
loops increases the stability of the crystal. If a
monomolecular layer is placed upon the growing
surface of the erystal, where the step height of the
growing surface differs from that of the layer, the
loops in the monomolecular layer cannot be as
efficiently packed as if they coincided with the flat
surfaces of the erystal. This will lead to an edge
energy appearing in the expression for the free
energy required to form this monomolecular layer

A¢y =2ho 1+ 2vac,+ vhe—val Af (73)
where € is the free energy required to form a unit
length of “edge’ in the monomolecular layer. The
introduction of the parameter e in eq (73) will not
affect the general conclusions previously obtained,
but will affect the quantitative results.

We are justified in considering this case since it
will be shown in section 3.5. that it can be experi-
mentally determined whether e is negligible or not.
Equation (73) applies to a layer where the step
height of the monomolecular layer is less than that
of the growing crystal surface.

The free energy required to form a monomolecu-
lar layer with a larger step height than the growing
crystal surface requires the addition of a term
2vho Al to eq (73), where Al is the difference in
step height. The free energy required to form a
m()nomoloculal layer with the same step height as
the growing crystal surface is

A¢,'=2ho |+ 2vac,—ralAf, (74)
i.e. no term in e appears.

Inspection of eq (73) shows that when 1< 2a,/Af -
he/aAf, A¢, increases with increasing ». This will
hold true until the monomolecular layer extends
around the entire crystal when a maximum free
energy will be attained. Further additions of step

elements would then reduce the free energy. The
activation barrier would be very large particu-
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larly if the crystal were large. The formation of a
stable nucleus with a step height less than 2¢,/Af--
he/aAf would undoubtedly proceed through the for-
mation of a differently shaped nucleus, but would in
any case require a very large activation barrier. We
see therefore that we need only consider the case

2<re -
>t aAf (@5)
Inspection of eq (73) shows that it is identical to
eq (59) if o, in the former equation is replaced by
(o6,+he/2a) in the latter. It is therefore unneces-
sary to repeat the calculations, and the step height
of the monomoleuclar layer will be

e 20,

+aAf+ ho’s (76)

After the step height given by eq (76) is established,
additional monomolecular layers of this step hv]ght
will require the free energy given by eq (74), while
any deviation from this value will require a free
energy that includes the edge free energy. Then
the distribution in step heights will be sharper than
that calculated previously.

We have not considered explicitly the case where
the monomolecular layer has a step height greater
than the growing crystal face, but it can be shown
that the rate of deposition of such a layer is negli-

gible, if there is an appreciable increase in step
height. Thus while the step height of the primary

critical nucleus may persist for a time, it is expected
that as the crystal grows the step height will be
reduced to I* as given by eq (76) and the grown
crystal will possess the step height I*.

The above remarks apply when the edge free
energy, e, is not so large that the right hand side of
eq (76) is larger than L%, the step height of the crit-
ical nucleus. If, however, the value of 1* as given
by eq (76) is larger than L%, then the grown crystal
will have a step height I¥ characteristic of the
homogeneously formed critical nucleus.

It should be mentioned that if the edge free energy

in the primary nucleus, €,, is included in our calcu-
lations it 1s found that
40,  2C€
Pe=—2t4 2 (77
» Af+ o, )

It must be understood that e, and e are in general
different and in fact it is likely that e is appreciably
larger than e,. Similarly, the free energy required
to form a critical nucleus is

2(%0%c
et el e
Ady= (Af)? TG0

202 o€, (78)
(Af)

[t may be stated in summary that, independent of
the value of e, the grown crystal will have a step
height that is quite uniform due to kinetic factors
that arise from the nature of the saddle point in the



free energy surface of forming stable growth nuclei.
However, the step height of the grown crystal will be
numerically different for different values of e: (I) If €
is negligibly small the step height of the grown crystal
is given by eq (71). (II) If € has a moderate value
the step height of the grown crystal is given by eq
(76). (ILI) If e is very large the step height of the
grown crystal is equal to that of the primary nucleus,
and is given by eq (77). Case I can be distinguished
from II and IIT by a determination of the melting
point of these crystals that will be described in
section 3.5. Cases Il and III may be distinguished
by an accurate measurement of the melting point of
the crystals combined with an accurate measurement
of the variation of step height with the temperature
of crystallization.

In order that the overall kinetics of crystallization
can be calculated, it is necessary to calculate v (¢, 7),
the volume at time ¢ of a crystal that was nucleated at
time 7. The volume growth in a crystal proceeds
through the formation of a stable secondary nucleus
on the growing (lateral) surface followed by the
“crystallization” of the entire new molecule. The
rate of addition of molecules to the crystal will equal
the product of the average number of molecules in
contact with the growing surface, p, and the rate at
which one of these molecules forms a stable nucleus,
p.. Then the rate of volume increase of the crystal
will be.

dv,

”_ZaLPpg

T (79)

where alL is the average crystalline volume of a poly
mer molecule. In section 2, the growth rate of the
linear dimensions of a polymer crystal in a bulk
phase was nucleation controlled and independent of
time, unless impingements or chain entanglements
between different crystals occurred. Impingements
can be neglected in the growth of crystals in dilute
sotution. However, the growth rates are determined
vy both diffusion and nucleation processes, and are
not in general independent of time for the loop
nucleus. The number of polymer molecules per unit
volume of the solution at the growing surface of the
crystal, n(t, 7), will depend upon diffusion processes
and the consumption of polymer molecules. Never-
theless, since only a rough estimate of the growth
rate will be attempted, it will be assumed that
n(t, ) =mn,. (80)
We can estimate p by assuming that every polymer
molecule that approaches the edge of the crystal by
a distance closer than one-half its mean end-to-end
distance in solution, A, can form a secondary nucleus.
Then, if A>1%
p=P(mA\*)n, (81)
where P is the perimeter of the crystal and m, is
taken as the average number of polymer molecules
per unit volume at the growing surface of the crystal.
It is assumed that the shape of the cross section
of the crystal is a parallelogram with an acute angle
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between two sides, y=70°. Experimental values of
Y=166° to 74° have been found by Till [3] for linear
polyethylene crystals obtained from dilute solution.
This is approximately the shape of the single erystals
of polyvethylene obtained by Keller [1]. It is also
assumed that all four sides of the parallelogram have
the same length, X i.e., X=x=y. This assumption
simplifics the following calculations, and is a con-
sequenc of the double spiral model used (it is clear
for figs. 4b and 5a that x=y). Many other models
also would lead to the same result. Then the volume
of the growing crystal is

v.=I*X%sin ¢. (82)
The perimeter of the growing crystal is
P=4X. (83)
Combining eqs (79), (81), and (83),
dv, 5
Wzl&qﬂ\ alp,Xn,. (84)
Integration of eq (84) gives immediately
v,(t, ©)=aL+4r\’aLp,n, f Xdr'.  (85)

Substitution of eq (82) into eq (84) yields after some
manipulation

~ dX  27N\*aL

G_%_l* sin ¥ PRt

(86)

Under the approximations employed above, the
growth rate, G, of the sides of the crystal i1s in-
dependent of the time. Integration of eq (85) yields

2rN’al

X(t,T)=m pny(t—1) (87)

where X(7,7) has been equated to zero.
Substituting eq (87) into eq (85) it is found that

e s SriAt(al)?(p,)? , (t—1)2
Vckt;T)—aL‘i“W (mo) —y (88)
Equation (74) gives us our desired result. It must

be remembered that this equation is valid only in
the early stages of the crystallization process, and
only when diffusional effects are negligible. The term
aL is the volume of the primary crystallite, and the
second term represents the additional volume at
time ¢ due to accretion of new molecules on the
lateral surfaces.

3.4. Value of n for the Overall Crystallization
Process From Dilute Solution

In discussing crystallization from dilute solution
we define the quantity, x, as the mass fraction of
the total amount of polymer in the solution that is



crystalline. x will then be zero when no crystals
have been formed, and will attain the value of unity
if all the polymer present has entered the crystalline
state. The crystalline mass is

Mc:Pch (89)
where p, and V, are the density and volume of the
crystalline phase. The total number of polymer
molecules is n,V,, where V, is the initial volume of
the solution and m, is the initial number density of
polymer molecules. If all polymer molecules were
crystallized, the crystalline volume would be ap-
proximately n,V.al, where L is the mean length of
a polymer molecule. Hence the total mass of poly-
mer is

Mtot:pcnovsaL) (90)

and by definition

M, V.
X"Mu. nealLV, ®)
Since (malV,) is independent of time, the time
dependence of x is determined by the time depend-
ence of V.. The ecrystalline volume as a function of
time 1s
(92

V.—V, f I(r)v(t,r)dr )

where VI (7)dr is the number of stable nuclei formed
between 7 and r-+dr, and v,(¢, 7) is the volume of a
crystal that was nucleated at 7. From eqs (91)
and (92).

1 e
x=5a7 |, LOVeltir)dr (99)

Both the nucleation rate and the crystal growth rate
will be reduced as crystallization proceeds due to
the depletion of crystallizable material. Also v, (¢, 7)
will be reduced in value if long range diffusion effects
are important, and at the beginning of the crystalli-
zation process the nucleation rate I(r) will not have
attained its equilibrium value. These circumstances
introduce serious difficulties into an accurate evalua-
tion of x from eq (93). Instead of attacking these
problems, we shall limit ourselves to the presenta-
tion of an approximate expression for x in a form
that has been widely used in the interpretation of
experimental data.

In order to introduce this approximate expression,
we define a new quantity, x’, which is the value of
x that would result if all erystals were growing in a
solution where the number density of uncrystallized
polymer molecules remained at the constant value
n,. From its definition it is clear that x” may take
on values from 0 to . We shall assume that an
adequate representation of the effect of the depletion
of erystallizable material is given by

dx dx’

M‘JD

X

}: ll'—]

(94)
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Here X,, is the limiting value of x. In dilute solution
it is expected that X, is very close to unity, and it
will be assumed henceforth that X,=1. (In the
corresponding expression for bulk polymers [6], X,
can be considerably less than unity as a result of
impingements). Equation (94) is clearly accurate
at small values of t, and probably reasonably ac-
curate up to moderate values of x. From an inte-
gration of eq (94) it is found that
le—e_x'. (95)
We have cast our expression for x into this form for
convenience in comparing our results with experi-
mental data. Expressions of the form of eq (95)
with x’=Z,t" have been derived phenomenologically
by Mandelkern, Quinn, and Flory [9] and others [6],
and have been widely used in interpreting experi-
mental data. These expressions are plotted for
various integral values of 7 and comparison is made
with experimental isotherms. The value of 7 which
yields the best fit provides information concerning
the geometry of the crystal growth. For example,
if the crystals are nucleated sporadically in time and
exhibit lineal two dimensional growth, n will be
equal to three. It should also be noted that if
x'=17Z,t", the isotherms defined by eq (95) obtained
at various temperatures should be superposable
simply with a shift in the time scale.
The quantity x’ is defined as that value of x
which would result if all crystals were growing in a
solution of constant number density n, of polymer

molecules. Then the equilibrium nucleation rate is
given by eq (51) and v.(¢,7) by eq (88). Substituting
these values in eq (93) it is found that
x' =Z,t+Zt? (962)
where
Zl:k’? e—AE‘;/L7'€—A¢;/kY' (96b)
(27A’n,)?  al k‘T) o, — AFS/KT ,—ABS/KT
Zs= 3 Fsinyg\ h (p.)%e ‘

(96¢)

where p, is probably of the form given by eq (72).
It can be shown that the linear term (Z,¢) often

e 3 : 2 . ,

lies in an experimentally inaccessible region. Then

q (21I'A2nn)2 aL <kT> ) —_\F‘/kT —AB* KT
L 3 J—— sty ? ?!
x'=(1) 3 I*sin ¢ \ A )’ ‘ )
(97)
Substitution of eq (97) into eq (95) yields
x=1—¢ ™ (98)

Tt is in order at this point to mention the principal
approximations made in deriving eq (98) for simple
loop-type crystals: (a) the depletion of crystallizable
material was approximated by eq (94); (b) the growth
of the crystals was assumed to be nucleation con-



trolled instead of diffusion controlled; (¢) the equilib-
rium nucleation rate was assumed to hold at all
times; and (d) nucleation on the end surface of the
crystals has been neglected.

The approximation for depletion of crystallizable
material should be reasonably accurate for small
and moderate values of x, although not valid for
values of x near unity. Since at sufficiently low
concentrations of crystallizable material the crystal
growth must become diffusion controlled, eq (98)
cannot be accurate when x is near unity. The
validity of the assumption of nucleation controlled
egrowth for low and moderate values of x is more
difficult to evaluate. It is believed reasonable by
the authors that, except at very low concentrations
ot the crystallizable material, the effects of long
range diffusion will not predominate. When these
effects do predominate, the exponent of the time in
eq (98) will be lowered somewhat. Finally, it is
expected that the growth rate of the crystals is
much more rapid than the primary nucleation rate.
Under these circumstances the effects of the transient
nucleation rate may be observed for low values of x.
This could cause the observed exponent of the time
in eq (98) to be quite large for small values of x,
even exceeding n=4. (In this region, the value of
n 1s fictitious in the sense it does not reflect the type
of nucleation and growth of the crystals.) If
growth through secondary nucleation on the end
surfaces is important the value of the exponent will
be increased over what it would have been in the
absence of such growth.

Our results may be summarized as follows: If the
phenomenological expression
—Zin

x=1—c¢ (99)
is fitted to experimental data, we should expect that
the best fit at moderate values of x should be
obtained for values of n near three. If long range
diffusion limits crystal growth, somewhat lower
ralues of n can be expected, whereas growth of the
crystals through nucleation on the end surfaces will
raise the value of 7. At low degrees of crystallinity,
higher values of n might be observed due to the
effects of a transient nucleation rate. The value
n=3 1is, of course, that appropriate to (lineal)
two-dimensional growth of objects born sporadically
in time.

These results agree reasonably well with the
experimental isotherms obtained dilatometrically by
Mandelkern and Quinn [17, 18] on crystallization of
polyethylene from a 0.25 percent solution of
a-chloronaphthalene. Mandelkern has not investi-
gated the morphology of the resulting polyethylene
crystals, but he states that this concentration is
comparable to that in which platelike crystals are
formed. Superposable isotherms were obtained for
crystallization temperatures from 97° to 104°C.
The superposability of these isotherms is in
marked contrast to the results he obtained with
more concentrated solutions, but similar to that
obtained for bulk ecrystallization. In addition,
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Mandelkern compared curves of the form of eq (99)
with his isotherms and concluded that if the first 5
percent of the transformation is neglected, an almost
exact fit is obtained for the major portion of the
process if values of n=3 and n=4 are used. The
first 5 percent of the crystallization process would
require considerably higher values of n for a proper
fit.

The agreement between our results and the
experimental isotherms is consistent with the assump-
tion that these isotherms result from the formation
of crystals with folds. We shall proceed on this
assumption and investigate the temperature depend-
ence of the rate of overall crystallization in section
3.6. In order to perform this analysis we must
estimate the equilibrium melting temperature, T,,.
In estimating T,, certain pitfalls can be avoided
by elucidating some properties of crystals with folds
that result from their metastability. This is done
in the next section.

3.5. Metastability of Crystals Formed by Chain
Folding

In previous sections the nucleation and growth
of polymer crystals with loops has been discussed.
We shall now give a brief treatment of the metasta-
ble character of these crystals. It will be demon-
strated first that crystals with loops formed isother-
mally will have a relatively sharp melting point
T,, appreciably below the equilibrium melting tem-
perature in the presence of solvent, T,. The
possibility that crystals with loops may have a
tendency to increase their step height when stored
at elevated temperatures will also be discussed.
Before these points can be treated, it is necessary
to consider the free energy difference between the
crystalline state and the solution state for a crystal
with loops.

If a crystal has » step elements of length 1, its
free energy with respect to the solution state is

A¢,—2vac, - Co/val—rvalAf. (100)
Equation (100) is formally identical with expressions
for the free energies of nuclei that have been pre-
sented in previous sections, but several important
distinctions must be noted. The erystal under con-
sideration has been formed with a length 1 in an
isothermal manner. We redefine the temperature
of crystallization as T,. Equation (100) represents
the free energy of the crystal at a temperature 7,
which is not necessarily the same as the temperature
of crystallization, T,. The variation of the free
energy of the crystal, Ag,, with temperature is pri-
marily due to the variation of the thermodynamic
driving force, Af, with temperature. The approxi-
mate variation of Af with temperature was given in
eq (28) which is rewritten here for convenience

Af=Ah, (TT,"F— 1 >

(101)



Finally, » 1s a very large number since eq (100)
applies to a erystal, not a nucleus.

The volume of the crystal is val. Then the free
energy difference per unit volume of erystal between
the crystalline and solution states is

)

Since the crystal has a large number of step elements,
v~% is small, and the second term on the right hand
side of eq (102) will be neglected. Then

) 20, h<Tm 7>
7

The most stable crystal at any temperature will be
that erystal which has a minimum value of Ag¢./val.
1t is clear from eq (103) that crystals with large step
heights are more stable than crystals with smaller
step heights. It is, of course, not surprising that a

+( as
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T m

—aAh, (- (102)

val

Ao,

- (103)

larger crystal is more stable than a smaller one.
However, when a loop-type erystal of length 1 and

of a given volume has been formed, it will probably
be difficult for the step height to increase simply
by having the crystal change its shape. Such an
increase of step height would tend to be slow because
of the complicated diffusion mechanism with length-
wise ‘“sliding” of the polymer chains that would be
involved. The ensuing discussion is carried out on
the assumption that, in a melting experiment of
sufficiently short duration, 1 will not increase
appreciably.

If crystals with loops with length 1* are formed
isothermally at a temperature of crystallization, T,,
they will melt at a temperature appreciably below
the equilibrium melting temperature. In order to
find the melting point we shall first derive an
expression valid for any 1. The temperature at
which a crystal melts can be deduced from eq (103).
A crystal with loops, which has a step height 1, is
stable at its temperature of formation with respect
to the solution state. If, after the crystal was
formed, the temperature is increased, the free energy
increases. When the free energy of the crystal w ith
respect to the solution state vanishes, the crystal
will melt. Then the temperature of melting of a
crystal with step height, 1, is obtained by equating
eq (103) to zevo and solving for the temperature:

' (]) = _ 2 |
To="Ta | 1—251

We see that T, is the melting temperature of
crystal with infinite step height.

The above expression, eq (104) has been derived
with two tacit assumptions. It has been assumed
that the rate of heating in the melting experiment
is sufficiently rapid so that the step height, I, does
not increase and sufficiently slow so that the actual
melting temperature of the erystal will be observed
to a close approximation. The recrystallization at

(104)
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greater step heights after melting need not be con-
sidered since the large negative temperature coeffi-
cient of the crystallization process ensures that
recrystallization 1s very slow.

We have seen that in an isothermal erystallization
the step heights of the erystals will be very close to
a characteristic value, 1*. Thus all the ecrystals
formed in an isothermal crystallization will melt at
almost the same temperature. This temperature,
T,, which is where these crystals melt, i.e., redis-
solve, is obtained by substituting the appropriate
value of 1* into eq (104):

20,
: “Ah,l*]

case where the edge free

TI/IL: Tm ( 1 0«.))

Let us first consider the

energy, €, of nucleating a monomolecular layer is
negligible. Then from eq (71) and eq (28)
pe20e, Tn | KT, (106)
Ah, T, —T, "' Co, :

Since kT,/Co, is 20 A or less and 1* is characteris-

ically near 120 A, it follows that when eq (106) is
substituted into eq (105), then T, is only a few
degrees greater than T,. Thus, if the edge energy
is negligible, the crystals formed at a temperature of
crystallization, T,, will melt only a few degrees
above T,. Hence, an investigation of the tempera-
ture at which the crystals melt in solution can de-
termine whether e is negligible or not. The com-
bination of these results with an accurate determi-
nation of the variation of step height I* with the
temperature of crystallization, T,, should determine
the importance of e and €,. If the step height of
the crystal is as large as that of the critical primary
nucleus with €, neglected, then

46{ Tm

T,
Substituting this value in eq (105) it is found that

(T,+T,n) (108)

m

Then even if the step height 1s as large as that of a
primary nucleus the crystal will tend to melt at a
temperature approximately midway between the
equilibrium melting temperature in the presence of
solvent, and the temperature of crystallization.

The presence of a substantial number of crystal-
lites with a small number of step elements would
tend to broaden the melting curve, and imperfections
due to branches might have a similar effect. It is
to be understood thal T/, is to be me: wured under
conditions where the warming rate is slow enough
so that thermal equilibrium is established, but not
so slow that 1* has time to increase appreciably.

A direct determination of the equilibrium melting
temperature in dilute solution, T,,, by slow warming
may prove very difficult because of the persistence



of the step height. The “T,”” value so obtained
could easily be somewhat low.

The above results were derived for crystals in
solution, but it is believed that they would be quali-
tatively true if the crystals were removed from the
solution and the solvent eliminated from the crystals.
For example, a mass of dried loop-type crystals,
previously initiated and grown to large x and y
dimensions in an isothermal manner from dilute
solution at a temperature below T,, should melt
fairly sharply and well below 7),, the (bulk) equi-
librium melting temperature.

It is not difficult to show that a crystal with loops
s more stable than a bundlelike crystal of the same size
and shape in a sufficiently dilute solution. The
free energy difference between a loop-type crys-
tal and the solution state is given in eq (100)
The free energy difference between a bundlelike
crystal of the same size and shape and the solution
state is obtained by replacing a, Af, o, and o, in
eq (100) by a, Afs, 0w, and (ceq—kT logeny/2a).
The quantities a, Afs, and oy are comparable to
a, Af, and o, The end surface free energy for a
bundlelike crystal in dilute solution was seen to
be (0eq— (kKTlogwy/2a) in section 3.2, and in
a sufficiently dilute solution this surface energy
is greater than o, Then in a sufficiently dilute
solution the loop-type crystal is more stable than
a bundlelike crystal of the same shape and volume,
because the end surface energy contribution to
the bundlelike crystal is much larger. In fact
if the solution is sufficiently dilute so that loop-type
nuclei are kinetically favored over bundlelike nuclei,
the grown loop-type crystal are at the same time
more stable than a bundlelike erystal of the same
shape and volume. This result applies to crystals
in solution.

If a loop-type crystal of a gien volume and cross-
sectional shape is in a dilute solution, the step height
of this erystal will eventually approach an “equilib-
rium” value, where the total surface energy of the
crystal'will '(be minimized. The “equilibrium’” value
of the step height can be obtained by differentiating
eq (100) with respect to 1 with the volume, val,
held constant, and then equating this result to
zero. If the resulting equation is solved for 1, it
is found that the “equilibrium” value of the step
height is (46,./Cay)?*V'3 where V is the volume of
the crystal. This result is based on the assumption
that the polymer chains are much longer than the
step heights considered. From this formula it
follows that the “‘equilibrium” value of the step
height is roughly equal to the lateral dimensions
of the crystal. From this it is eclear that the
experimentally observed polyethylene crystals with
characteristic step heights near 120 A have not
attained their “equilibrium’ step height through
“sliding” diffusion.

3.6. Kinetics of the Overall Crystallization Process
for Dilute Solution

In this section the theoretical expressions for the
rate of overall crystallization are compared with the
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available experimental data with particular emphasis
on the temperature dependence of the rate expres-
sions. Unfortunately there are no available rate
data in those systems where crystals with loops have
been identified through morphological studies. The
only accurate rate data for crystallization from dilute
solution are the dilatometric measurements of
Mandelkern and Quinn [17, 18] on the crystallization
of linear polyethylene from a 0.25 percent solution
of a-chloronaphthalene. The morphology of these
crystals was not investigated, but Mandelkern states
that the concentration range is comparable to that
in which platelike crystals are developed. This en-
courages the belief that crystals with folds were
predominant, especially since the temperature de-
pendence of the shape of the isotherms is in marked
contrast to results obtained for crystallization from
more concentrated polymer solutions. An analysis
will be performed on the assumption that crystal-
lization through chain folding was predominant.

In preparation for an analysis of the experimental
data a brief discussion will be given of the temper-
ature dependence of the overall crystallization rates.
Expressions for the overall crystallization rate were
presented in eq (97) and (98) and will be rewritten
here for convenience:

x=1—¢ %" (109)

where
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When the temperature of crystallization is not too
far from the melting point so that AT is small, the
principal variation of Z; with temperature is due to
the factor p? exp{—Ae¢j/kT}. The quantity A¢¥
has been previously obtained:

_2(C%c¢%0, T
~ (4h))?

1
(AT)*

A’ (111)

The temperature dependence of p, is much smaller
than exp{ —Ag¢}/kT}. In fact it seems more likely
that log p, has a different temperature dependence
than A¢j. In any case we may write

a/

Z3:Z30(3_m, (112)
where at low degrees of supercooling, Zi varies
slowly with temperature compared to exp {—a’'/

T(AT)*}. In the case where p, does not contribute
appreciably to «,” we have
2C%20, T}
'Y 95%em, 11
o nra—2Tel0] (113)

For the remainder of this section it will be assumed
that eq (113) is valid, although this is not essential
to our analysis.
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It has been shown that eq (109) is an adequate
description of the isotherms of crystallization at
moderate values of x for the crystallization of linear
polyethylene from a dilute solution of a-chloro-
naphthalene. If the temperature of crystallization
is changed, the value of Z; is changed. The shape of
the isotherm remains unchanged although the time
scale is shifted. This allows us to specify the rate
of the crystallization process by the time required for
the value of x to reach 0.5. Then from eq (109)

Z5(t12)%=log,2. (114)
If the logarithm to the base 10 is taken of both sides,
and eq (112) is substituted into the result, it is found
after some manipulation that:

1 1
logy | — |=5 logw
tyo] 3

It is clear from eq (115) that if experimental values
of logi(1/ty;) were plotted against 7-'(AT)"* for
various crystallization temperatures, an approxi-
mately straight line should be obtained. The value
of the product (o/e,) could be obtained from the
slope of this straight line. Since AT=T,,—T, it is
clear that the equilibrium melting temperature, T,,
must be known before such a plot could be con-
structed.

Mandelkern and Quinn [17, 18] have observed the
isothermal crystallization of linear polyethylene
from a 0.25 percent solution of a-chloronaphthalene
dilatometrically. The shapes of their isotherms
agree at values of moderate x with eq (109), so that
it seems reasonable to apply eq (115) to the tempera-
ture dependence of these isotherms. Mandelkern
has tabulated the values of #,; for one degree inter-
vals of the ecrystallization temperature between
97° C and 104° C. He also quotes the equilibrium
melting temperature as being between 109° C and
110° C [18], and presents a plot of log(1/t;) versus
100/(AT)* which is based on this value of T,. In
figure 9 a similar plot is presented. Figure 9 is con-
structed from the tabulated values of Mandelkern,
plotting log(1/t;) against 10°/T(AT)* with T, =110°
(. The curve shown in figure 9 is certainly not a
straight line, but is rather concave upwards. More-
over, the slope at the lower degrees of supercooling is
smaller in magnitude than the corresponding slope
for bulk polyethylene which would appear to indicate
that oc, is smaller than the corresponding product
for the bulk polymer. These facts stand in apparent
contradiction to the theory presented in this paper.

The morphology of the crystals was not investi-
gated by Mandelkern and Quinn. It is therefore
possible that the theory developed in this paperis not
applicable to the data plotted in figure 9. However,
it i1s no easier to explain the curvature in figure 9 if
one assumes that bundlelike crystals were nucleated
either homogeneously or heterogeneously. Since
the deviation from a straight line of log(1/#:,) plotted
against 77'AT~? or T'AT~! is not accounted for
by the hypotheses just given, a further discussion of

1 alog,e

Zy ]___ :
log,2 | 3 T'(AT)?

(115)
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the data will be given. This discussion will show
that the experimental data are not necessarily incon-
sistent with the theory presented in this paper and
will serve the useful purpose of emphasizing the
care required in obtaining experimental evidence
that provides a critical test of this theory.

= T T T T T T T ‘j
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Fraure 9. Plot of log (1/t.) against [10°5/ T(AT)?] for a 0.25

percent polyethylene solution in a-chloronaphthalene with
=il (©f

(After Mandelkern, see ref. [18]).

Upon reflection, a possible resolution of the
apparent discrepancy can be seen. Suppose that
the value T, =110° C was obtained by dilatometri-
cally observing the melting of the crystals in the
solution. In the previous section it was shown that
crystals formed in dilute solution may melt sharply
well below the equilibrium melting temperature for
dilute solution. Then the correct value of T,, might
be appreciably higher than 110°. Rough estimates
of T,, can be made by two separate methods. First,
if it is assumed that eq (108) is accurate, and that
the observed melting temperature, T, is 110° C,
the equilibrium melting temperature is obtained if
the crystallization temperature is given. For ex-
ample, if it is assumed that for a sample crystallized
at 96° C the observed melting temperature of these
crystalsis 110° C, then T, =124° C.  If the tempera-
tures of crystallization and observed melting were
103° and 110° C, T,=117° C. This method of
estimating T, has two drawbacks: (a) the estimate
furnishes a range of values of T,, instead of a single
value, and, (b) eq (108) is probably not very accurate.
Another method of estimating T,, 1s to plot logyo(1/£,/5)
against (10°/7(AT)?) for various values of T,,.
T, is taken to be that value which yields a straight
line plot, if such a value exists. This method of
estimating T,, is based on the correctness of eq (115).
In figure 10 plots of log(1/t,,) against 10°/T(AT)?
are presented for the assumed values of T,,=117° C
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Ficure 10. Plot of log (1/t) against (105 T(AT)2) for 0.25

percent polyethylene solution in a-chloronaphthalene for two
assumed values of T,, showing approach to straight-line be-
havior.

The slope of the line obtained w ith T, =124° C implies a 0'3 o, value of ~1070
ergd cm~5,

and T,=124° C. The plot for T,=117° C has
considerable curvature, but the plot for T, =124° C
is fitted well by a straight line.

It is found from the slope of the plot in figure 10
for T,=124° C that (¢%¢,)=1070. This value is
much larger than the corresponding value obtained
from the data on bulk polyethylene where (o¥0,)~
100, as calculated from the slope of the plot of
(10(r 1/t/2) against 100/(AT)* presented by Mandel-
kern [18]. This is consistent with the concept that
o, >0, eq (27). Then the supposition that T,=
124° C 1'0solvos each of the apparent discrepancies
between the theory presented in this paper and the
experimental rates. It is, of course, not clear that
the plot of log(l/tl/y) should be e\actlv straight since
Zy in eq (115) is temperature dependent. HOWOVOI
even if T,, is as low as 117° C the plot in figure 10
corresponds to a value of oo, which is larger than
that observed for the bulk polymer. It is clear that
there is no inconsistency between this data and the
theory presented in this paper if T, is appreciably
larger than 110° C.

Such high values of T, are not inconsistent with
the errors in estimating T,. In determining the
heat of fusion of polyethylenc, Quinn  and
Mandelkern [14] measured the melting temperature
of polyethylene as a function of concentration in
various solvents. The heat of fusion per mole of
repeat units, A, was calculated by fitting the
()\p(\runontal data to the equation

o} o

V]{“

Here 7, is the equilibrium melting temperature of
the bulk polymer, V, and V; are the molar volumes
of the repeating unit and the diluent respectively, B
is the interaction energy density characteristic of the
solvent solution pair, and 7, the equilibrium
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melting temperature in the presence of diluent. (We
adhere to the assumption that a value of 7, for
»;—1 obtained under equilibrium conditions is very
close to T,.) While AH, was determined within a
few percent, Quinn and Mandelkern state that B
could be in error by several cal-em~®. For poly-
echylene in  a-chloronaphthalene they obtain a
value B~0. If a value of B=2 cal-cm.™® were
assigned and A, left unchanged 7, .,-—>124° C as
v—1. Thus 7,(;)=124° C lies within the assigned
experimental error. On the other hand it is some-
what difficult to reconcile the data of Quinn and
Mandelkern for moderate concentrations of poly-
ethylene in a-chloronaphthalene with a value of
T for »—1 as high as 124° C. In short, no
definite conclusion can be drawn, but the authors
feel that the apparent discrepancy may arise from
an incorrect value of T,,.

Even if the correct value of T,, is 110° C for a
dilute solution of polyethylene in a-chloronaphtha-
lene, the data of Mandelkern and Quinn are not
necessarily inconsistent with the theory presented
in this paper. Equation (115) was derived on the
assumption that the equilibrium nucleation rate
was attained. If, however, the growth rate of the
crystals is so great compared to the nucleation rate
that the early nucleation transient determines the
overall crystallization rate, a different type of
expression may be expected. No attempt will be
made to obtain an accurate expression for the
transient nucleation rate, but the influence of AF%,
the free energy barrier to addition of another step
element, will be very pronounced. This would lead
to a plot of log (1/t;) versus T-*AT~? similar to that
shown in figure 9. It should be noted that the first
5 percent of the isotherms obtained by Mandelkern
seemed to imply a transient nucleation rate. It
should also be noted that if transient nucleation is
determining the rate of crystallization of crystals
with loops, a reduction in the concentration of the
solution will reduce the growth rate and straighten
the plot of log (1/t;) versus 7-'(AT)2 The curv-
ature of the plot obtained by Mandelkern and Quinn
could apparently be explained if e, were not negli-
gible because then Ag¢j would be given by eq (78)
and hence a straight line plot would not be expected.
This, however (loes not account for the low value of
a?ae obtalnod from their data when T, is 110° C.
The data of Mandelkern and Quinn may also be
explained by other special assumptions, but these
possibilities do not appear to be as likely as the ones
cited.

It is clear that for a proper evaluation of the
experimental data an accurate value of T,, must be
obtained. Since it has been shown in section 3.4
that crystals with loops may melt well below equi-
librium melting temperature, it is possible that this
represents a serious problem for dilute solutions.
One possibility is to measure the temperature of
melting and the characteristic step height, 1*, as a
function of crystallization temperature and attempt
to extrapolate to the equilibrium melting temperature
by the use of eq (105).



4. Discussion

4.1. Brief Summary of Results

The general predictions yielded by the present
study can be summarized in the following manner:

When a erystallizable linear polymer is precipitated
from sufficiently dilute solution by supercooling,
platelike crystals with a definite step height 1* will
form. In these erystals, the chain axes of the polymer
molecules will be perpendicular to the two large flat
faces of the platelike crystals. The aforementioned
flat faces will contain chain folds, i.e., they will con-
sist of loops. The step height depends on the tem-
perature of crystallization, and on the surface free
energy, o, of the interface containing the loops. The
step height is larger for higher crystallization tem-
peratures, and increases with ¢,. The latter quantity
will be fairly large, owing to the fact that the work re-
quired to form a loop is involved. (The correspond-
ing quantity for bundlelike nuclei, o,, is considerably
smaller since it contains no loop energy.) At the
degree of supercooling commonly encountered in
practice, AT=10 to 40° C, I* may be expected to lie
in the range 50 to 500A. The most perfect crystals
will be formed from highly dilute solution, and with
unbranched polymer. More imperfect specimens
will be formed from more concentrated solution, and
a threshold will be reached where very poor erystals
will form. The step height will be remarkably uni-
form if the erystallization is carried out isothermally
from a highly dilute solution. Pyramidal growth,
where one crystal with fixed step height grows on the
flat (loop containing) face of another, is to be ex-
pected at moderate dilution, but single crystals
should be common at low concentration. In excep-
tional cases, crystals consisting of but one molecule
may be observed. Much more common will be crys-
tals that have grown to fairly large dimensions by
successive addition of new polymer molecules through
secondary nucleation on the lateral surfaces. These
will have substantially the same step height as the
primary crystallite. In many cases, distinct protru-
sions on the lateral surfaces due to secondary nuclea-
tion and growth may be seen. The more perfect
crystals will often have a regular shape of simple
geometric form when viewed normal to the surface
containing the loops. Depending on the crystal
system, the crystals could, for example, be diamond-
or hexagon-shaped.

The overall rate of crystallization will probably
follow a law where n=3 or n=4, most likely nearer
the former, over the main part of the process, but
deviations from the suggested range in the early and
late stages are a distinet possibility. In the early
stages a steady-state rate of nucleation may take
some time to develop, and in the late stage, where the
majority of the molecules have already been swept
from the solvent, n» may fall.

The ecrystals containing chain folds formed in
dilute solution are metastable: KEven in the case
where a crystallite of step height 1*, which is formed
in solution at a crystallization temperature, T,, is
allowed to grow to very large size in the other two
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dimensions, it will still melt appreciably lower than
T,, the melting temperature in the presence of sol-
vent of a crystallite that is large in all three dimen-
sions. (Crystals free of solvent formed by drying
crystals with loops formed in dilute solution will be-
have in a qualitatively similar manner, and melt well
below the equilibrium bulk melting temperature, 7,.)
The observed melting point, T,, of a set of crystai-
lites formed isothermally from dilute solution may
be surprisingly sharp (but low) owing to the uni-
formity of the step height. This will be especially
true for large crystals precipitated from very dilute
solution. If a set of erystals with loops with charac-
teristic step height I, is formed at an isothermal crys-
tallization temperature 75, and then the temperature
of the solution raised to 7%, where the characteristic
step height is If, I¥ will still tend to persist for some
period of time at 7%, Thus the melting point T,
characteristic of (If, 7') will tend to persist even though
the temperature of the solution is raised. The equilib-
rium melting temperature of crystals with loops in
dilute solution may thus be very difficult to deter-
mine accurately in some cases by the conventional
method of slowly raising the temperature.

An isothermal increase of 1 due to “sliding” type
diffusion in the crystal may occur.

The temperature dependence of the rate of nuclea-
tion for nuclei with loops should follow a law of the
general form In (I/l))ca/T(AT)?. The value of
o2o, that may be estimated from « should be larger
than the value of ¢%0, obtained for the bundlelike
nuclei characteristic of homogeneous bulk nucleation
in the same polymer. In order to test the tempera-
ture dependence of I/l it is necessary to have a
reliable value of T,, so that AT is known accurately.

4.2. Crystals With Loops in Bulk Polymers, and
Heterogeneities

The theory given in the foregoing sections deals
with homogeneous initiation of loop-type crystals
in dilute solution. The theory renders it clear that
near and below some threshold value of the con-
centration, that loop-type nueclei will begin to pre-
dominate, provided that loop formation is sterically
feasible. The theory does not attempt to predict
what type of crystal might tend to form in an inter-
mediate concentration range where bundlelike and
loop-type nuclei compete. We have indicated that
in crystallizable linear polymers in bulk that the
conventional bundlelike nucleus seems highly prob-
able. It should be clearly understood that what is
meant here is that bundlelike nuclei of homogenecous
origin seem probable in such bulk polymers; this is
not necessarily related to what type of nucleus

might form by heterogenecous nucleation on the
surface of a wettable foreign particle. Moreover,

we do not incline to the view that crystals with loops
are 1mpossible to form by a homogeneous process
in a bulk polymer, and this subject, though obviously
speculative, deserves brief discussion.

In a bulk polymer, where »,= 1, bundlelike homoge-
neous nucler should certainly predominate if o, >0,.
(There is little reason to expect that the free energies
of activation controlling the jump-rate at the super-



cooled-liquid—crystal interface would be such as
to cause a preponderance of loop-type nuclei in
bulk.) Then if bundlelike nuclel can grow, the
polymer will crystallize without loop formation.
However, if the radial growth of the bundlelike
nucleus 1s severely impeded by the strain effect
mentioned in section 2.2, which results from the
increasing difference in the lattice spacing of the
crystal and “liquid’ just outside the ends of the
bundlelike nucleus as 1t grows radially, actual
crystallization resulting from such nucler may be
greatly subdued. Then another crystallization proc-
ess may enter. Since according to our formula-
tion, the formation of a few loop-type nuclei is
possible at »,=1, and in view of the fact that these
would grow if crystallizable material were present,
the majority of crystallites actually observed in the
bulk phase in such a case would be of the loop-
containing variety. The hypothesis that bundle-
like nuclei may be prevented from growing to large
size by strain, coupled with the reasonable belief
that loop-type nuclei, once formed, might not be
subject to such a strain effect on growth, thus leads
to the possibility that loop-type crystals could make
up the main part of the crystallization in the bulk
phase. Even then, numerous bundlelike nuclei
would be present. The main point of the present
theory, however, is that loop-type nueclei (and sub-
sequently crystals derived from them) are quite
certain to appear at sufficiently great dilution,
provided that loop formation consistent with crystal
structure is sterically possible. The theoretical
prediction of homogeneously induced loop-type
crystals in bulk depends on additional factors, and
is altogether more of an open question.

At various places in the literature, evidence has
been given suggesting that crystals with folds may
arise i bulk polymers (see ref. [1]). The presently
available evidence that such “structures’ as are seen
in bulk polymers may be associated with a step
height resulting from nuclei with chain folds that
are of homogeneous origin is incomplete. If it is in
fact true that step structures associated with folds
actually exist in the bulk phase, we believe full con-
sideration must be given to the possibility that
heterogeneities or surfaces may be mvolved. We
consider it possible that nuclei with folds may form
at the surface of a heterogeneity in a bulk phase,
some or nearly all of the energy deficit arising from
the bending energy ¢ being made up by the interac-
tion energy of the polymer molecule with the hetero-
geneity. Also, special structures may tend to develop
at the surface of a bulk polymer specimen.

From a theoretical point of view, very consider-
able confusion can be caused by assuming that any
structure seen in a bulk polymer, or on its surface,
is a result of homogeneous initiation. It is now
known that quite stringent measures are frequently
required to develop the intrinsic nucleation mecha-
nism in a bulk polymer. For example, careful filtra-
tion and selection of samples coupled with strong
superheating prior to ecrystallization is evidently
advisable in some instances. Precautions of the

type just mentioned, which are designed to enhance
the homogeneous nucleation mechanism, do not seem
to be commonly employed in morphological studies
on bulk polymers.

Our views concerning the existence of loop-type
crystals in bulk polymers may be summarized as
follows: (a) While the evidence that loop-type
crystals exist in bulk polymers is mounting, proof
that such crystals are of homogeneous origin is lack-
ing; (b) if such loop-type crystals are in some polymer
proved to be of homogeneous origin, consideration
should be given to the possibility that strain subdues
or prevents the growth of bundlelike nuclei and, since
a few loop-type nueclei will be present, thus allow the
predominant crystalline form to possess loops; (c)
a likely source of loop-type nuclei 1s a heterogeneity,
and full consideration must be given to this fact in
interpreting data on bulk polymers that have not
been subjected to special treatment; (d) a proof that
crystals with chain folds occurred in a bulk polymer
by either homogeneous or heterogeneous initiation
would not invalidate the general approach here for
the formation of loop-type nuclei and erystals from
dilute solution.

With regard to the effect of heterogeneities in
dilute solution, 1t is clear that they will accelerate
the crystallization process. However, by careful
filtration, centrifugation, or previous precipitation, it
should be possible to elimimate the effect of foreign
bodies to a degree sufficient to permit the intrinsic
mechanism to manifest itself. Judging from the
remarks of Keller and O’Connor [1] concerning their
technique and results, it would appear that many
of the crystals that they discussed were formed in the
body of the solution, and not on motes in the solu-
tion, or on the container walls. There is also reason
to believe that some of the other work cited, notably
the rate studies of Mandelkern [17, 18], may refer to
homogeneous initiation. Nevertheless, it is manda-
tory to exercise considerable care in carrying out
rate experiments in dilute solution in such a way as
to subdue the effect of foreign bodies.

4.3. Concluding Remarks

In this paper, a point of view is expressed that
leads to a number of definite predictions concerning
the formation of polymer crystals with loops from
dilute solution. Perhaps the most important and
compelling prediction is that crystals of this type
will be deposited from sufficiently dilute solution
if it is physically possible to form a fold that is con-
sistent with lattice structure and steric considera-
tions. Definite predictions are also given, under
certain assumptions, concerning the variation of
step height with crystallization temperature, meta-
stability and melting point, the # law connected with
the appearance of loop-type crystals from dilute
solution, the temperature dependence of the kinetics
of crystallization, and the constancy of step height
in a crystal grown in an isothermal manner. In
addition, rough numerical estimates of important
fundamental quantities, such as o, are given.
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an be tested, the theory seems to be
in at least approximate accord with the facts
presently known. It is believed that the theory is
sufficiently to the point as to provide a reasonable
framework for future experimental studies even if it
proves not to be quantitatively correct. Moreover,
specific experimental approaches, together with their
attendant (and sometimes formidable) difficulties
are mentioned. No eclaim is made that the theory is
complete. For example, it is obvious that the
interesting details of the structure of the fold itself
have been largely passed over, and some of the
possibilities concerning the growth mechanism which
could, for instance, lead to a ramp-type of growth
due to spiral dislocations have not been mentioned.

Insofar as it

5. Appendix

5.1. Equilibrium Nucleation Rates of Crystals With
Chain Folds

We wish to calculate the equilibrium nucleation
rate per unit volume of crystals formed by chain
folding. The method of derivation, which is merely
outlined below, is that used by Turnbull and Fisher
[8]. The reader is referred to that paper for details.

A nucleus of » step elements of length, I, can gain
or lose a step element by an elementary process.
This nucleus may be specified by I and » where »
may possess the values

V,,,,V,,,+ 1 W TL :-)v
v, 1s the minimum number of step elements in a

nucleus. The number of nuclei per unit volume
with » segments and a length between 1 and 1+4dl is

7(v,1)dl 'I‘hv free energy of a primary embryo or
nuclvus is
A¢,(v)=(Coya)yr—[laAf—20,]Jav. (A-1)
This function has a maximum value at
. (Cail)? o
~ialal 2o, S
The value of Ag, when expanded about »* is
a’(1af—2¢,)3 (v—r%)?
A¢p A¢p o ((/y;_sl)z + S
(A-3)
where
. (Cal)?
A =1 dal—20,) =)

A nucleus of length 1 can only become stable by
addition of step elements. I cannot vary without
dissolution of the minimum size nucleus. The free
energy diagram for nuclei of v and v+ 1 step elements
with some fixed length I is shown in figure 11. The
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Ficure 11. Cross section of free energy surface for the most

probable 1eaction path between embryos of V step elements o
length 1 and embryos of (w-1) step elements of length 1.

The energy minima at (A) and (B) represent the free energy difference from
the liquid state of the two different embryos, respectively.

rate that nuclei with » step elements become nuclei
with v+ 1 step elements is

n(w,1)dl (1%) exp {——%—}y

whereas the rate of the backward reaction is

swa(T)es {1}

Then the net rate of nucleation 7(1)dl is

l)(ll——(k[> I: (v,1)dl exp { '['}

—n(v+1,1)dl exp {—%}] (A-5)

AF:TL %[A¢p(V‘+‘ 1 ;l) —A9, (V,l)]

Now
W,—
(A-6)
W,=AF;—

%[A¢/»(V+ 1;1) — Ad’p(”yl)];

where AF} is the free energy barrier associated with

addition or subtraction of a segment from the
nuclei. The value of AF} will be independent of

v and probably independent of 1.



Now if » is a large number we are justified in
treating » as a continuous variable. With this
approximation eqs (A-5) and (A—6) become

k] dl 7] a(A¢p —AF*/kT
7 + }e AFy/
(;\—l)

1()dl=—

where higher derivatives with respect to » have been
neglected. This equation is easily integrated from
y=s to Using the boundary condition
n( 1)=0 for the equilibrium case we have

Y — R

kT [n;e290® /T

()= h B T —
f d vehBp ) AT

e-—AFp/kT

(A-8)

s

The right hand side of eq (A-8) may be evaluated
if s is chosen so v,<<s<<»'. We find then by
use of eq (A-3) that

@ 2 _y 37-1/2
It = A
(A-9)

which is a good approximation when A¢}/kT >">1.
We may evaluate n(s 1) if s is sufficiently small that a
Maxwellian distribution holds. Then
7 (s,1) dl=Adl e=28p /KT (A-10)
If s 1s sufficiently small we may assume that only the
surface energy terms are important. Then
Ad,~A¢,—(Colya)\v+20,arv. (A-11)
Since the sum over all states s1 must equal the
number of polymer molecules per unit volume we

may evaluate A. Treating s and 1 as continuous
variables running from zero to infinity

acn{ [ [T}
J O 0

Substitution of eq (A-11) into (A-12) gives us

(A-12)

. Co.a+ 20, 5
n (8; l) ¢ABp () MT:[:\%/;(IC}’) ;2] ng (A*lﬁ)

Then substituting (A-13) and (A-9) into (A-8) we
have the desired expression

e a \/%e(lAf_2ae)3/2] nekT' ¢ AFS /KT OB KT
(TH2 h

(A--14)

We may calculate the total nucleation rate by
integrating eq (A-14) over all 1. The number of

stable nuclei formed per unit volume of solution
per unit time is
=K "~ nﬂkT —AFp/kT —Aqs /KT (A-15)
where
. 2("%¢%e, ’
Ag = (Af)? (A-16)
26.)3/2 (Af) a2
Bl UL (A-17)
VrCay(kT)3"*

Throughout this appendix it has been assumed
that each nucleus is composed of step elements of
uniform length. This assumption has simplified
the derivation of eq (A-15) and has led to an explicit
expression for the distribution of the lengths of the
step elements in stable nuclei in eq (A-14). It is,
of course, possible that an embryo or nucleus could
be composed of step elements of different lengths.
The remainder of this appendix is devoted to dis-
cussing this more general case. This discussion will
support the validity of the above results.

In the general case an embryo or nucleus will have
v step elements which have lengths: 1, L, . . . L.
The principal difficulty in treating this case is in ob-
taining and handling appropriate expressions for the
free energy of such nuclei. Fortunately for the pur-
poses of this paper the problem is considerably
simplified. When the edge energy, €, needed to form
a monomolecular layer is large, the free energy
gained by packing the loops in a flat surface is appre-
ciable. Hence embryos or nuclei with different step
heights 1;, L, . . . L, are energetically improbable
compared to nuclei whose step elements have the
same step height. Then in this case it is clearly
justified to treat nuclei which may be characterized
by a single step height. But it is only when € is a
lalgo quantity that the distribution of step heights
in primary critical nuclei need to be considered, for
it 1s only then that the step height of the mystal will
be determined by the step height of the ecritical
primary nucleus, so that the distribution in step
heights of the primary nuclei control the distribution
in step heights of the erystals. If eis a smaller quan-
tity the distribution of the step heights of the crystals
will be independent of that of the primary nuclei,
and only the total nucleation rate is of interest.
The total nucleation rate is given by eq (A-15) in
any case.

5.2. Equilibrium Rate of Formation of Mono-
molecular Nuclei on a Crystal Face

We wish to calculate the equilibrium nucleation
rate of monomolecular nuclei on a crystal face.
This problem is similar to the one treated in the
previous appendix, except that the free energy sur-
face is different. In particular, the activated nucleus
is reached in a single elementary process from the
supercooled liquid. It will be assumed that the
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nucleus can contain » step elements where v can
possess the values

0,18, .77, (B-1)
The free energy required to form a nucleus of » step
elements is
Ap;=0 v=0

(B-2)
Ap,—A¢ ' — (v—1) L, =1l
Then the activated state is at v=1, where A¢;—Ag¢’*.
The same method of derivation will be used as in
appendix 5.1. Then the rate at which nuclei with »
step elements become nuclei with (v+4-1) step ele-
ments 1s

Ar[ ,—AF*/kT A¢v+l A¢ ] ‘
m(‘ ) exp o y (B-3)

-

whereas the rate of the backward reaction is

kT S
Ny+1 ( L ) e~ AFYAT axp l:—i—

Here n, is the number of nuclei per unit volume
with » step elements.  The net rate of nucleation per
unit volume, r, is

(7Y v 3, exp [ 4051 a0)
”( A dss 2T
— i (\p[ A"’”;A‘—IA"’”]}. (B-5)

If the rate is an equilibrium rate, r does not depend

(A¢;+1—A¢:J-

kT L)

on v. Combining (B-2) with (B-5)
r:ﬂ —AF*/kT | (1, oF ’A7'“7’ : e~ EI2kT)
h v+1 S
=1l o o o
and (B-6)

r=<l";£> p—AF*/A-T{nﬂe—Agz;"/?kT_m(,Ag)'f/m-T}, (B47)
From eq (B-6)
[evERT 1]

BT __ o U\ ARtk [Cm— _
= r(w g o ik E/ZH} (B5)

Since we are concerned with the equilibrium rate,
7, must be bounded as »—>«. In order that this is

satisfied
VI v o E ) «
1 ( f > e~ AF*/ET ginh (ZIc—T) (B-9)

Combining eq (B-7) and (B-9) we may solve for r:

kT Gt e
r=m, ( = o~ AP KT o= AQ'H/KT

2sinh (E2kT) (B-10)
126284 /%7 sinh (E/2kT)

This then is the desired equilibrium rate of forma-
tion of these nuclei.

Three points in this derivation are worthy of com-
ment. First the derivation in this appendix differs
from that in appendix 5.1 in that the activated state
is attained by a single elementary process. Then
the expression obtained in eq (B—10) must be applied
with due caution since more detailed knowledge of
the nucleation process is assumed than in the previ-
ous appendix. The second point is that by solving
for n, from eqs (B-8), (B-9), and (B-10) it is found
that

nn(4~A¢'i/k7'

"1 2 exp {—A¢ 2k T} sinh (E/2kT)"

(B-11)

Thus 7, is independent of », and does not vanish as
v becomes infinitely large. This raises the question
of whether a very large time is required before the
equilibrium rate is achieved so that the transient rate
cannot be neglected. This question can be answered
by a solution of the time dependent problem. It
can be shown for the case treated here that the
equilibrium rate is closely approached after the num-
ber of nuclei with a few step elements have nearly
reached the value found in eq (B-11). Thus the
equilibrium rate derived in eq (B—]()) is applicable
to the « 1\(‘ at hand. Thirdly in both appendixes
5.1. dll(l 5.2. it has been assumed tacitly that nuclei
an be mllml(‘d at only one point in the polymer
chain. If this assumption is taken into account in
an appropriate manner, a numerical factor will be
introduced into the nucleation rates obtained. This
factor will almost certainly be less than 10

Equation (B-10) is first used in section 3.2. to
describe the formation of a primary crystallite
through monomolecular accretion from a ecritical-
sized loop-type nucleus. It is later used to describe
the growth of a crystallite in section 3.3.; ie.,
A¢'*—A¢,. Since in sections 3.2. and 3.3. the
quantity rdl is taken as the rate of formation of
nuclei with step heights between 1 and 14-dl, the
quantity n, will contain a normalization constant C,
which arises because the rates of more than one
competing process are considered.
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