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Remarks on Hypo-Elasticity

C. Truesdell

(May 22, 1963)

The difference between elasticity and hypo-elasticity is illustrated by calculating explicitly the

acoustic tensor for principal waves in an arbitrary hypo-elastic material.

It is shown that all principal

hypo-elastic waves are necessarily either transverse or longitudinal, just as in an isotropic elastic
material, and in distinction to an anisotropic elastic material.

When 1 proposed?! the theory of hypo-elasticity, I
sought [1]? ““a new concept of elastic behavior, mu-
tually exclusive with the theory of finite [elastic]
strain except in the linearized case,” and I was sur-
prised, although indeed groundlessly, when Noll [2]
proved that every isotropic elastic material with inverti-
ble stress-strain relation is hypo-elastic. Misled, ap-
parently, by Noll’s theorem, Hill and Prager [3] have
asserted that every elastic material is hypo-elastic,
making hypo-elasticity appear to be a generalization of
the classical theory of finite elastic strain. This,
certainly, it is not. It embodies a different mathemati-
cal concept of the response that in common experience
is described as “elastic.”” Bernstein [4] has set the
matter straight by giving a tensorial identity which is a
necessary and sufficient condition on the stress field in
order that solutions of the equations of hypo-elasticity
be consistent with some stress-strain relation. As a
most illuminating example he has derived the form of
the hypo-elastic constitutive equation satisfied by a
perfect fluid and has shown that other solutions of that
equation are never compatible with the theory of finite
elastic strain. His analysis and example make it clear
that different assignments of initial stress for the same
hypo-elastic constitutive equation lead to solutions rep-
resenting behavior so diverse that we can scarcely
regard them appropriate to any one physical material.
Thus hypo-elasticity seems to offer a convenient sum-
mary of certain aspects of response common to many
materials, rather than a theory of any particular
material.

! Since wrong statements regarding the origin of hypn elasticity have been published, its
sources will be reviewed here. The basic concept is wrlually suggested by Cauc hys
theory of initially stressed elastic media (1829), but there is no reference to time rates in
his work, which seems to be directed mward infinitesimal static deformation: A.-L. Cauchy,
Sur I’ equlllbre et le mouvement intérieur des corps considérés comme des ma con-
tinues, Oeuvres 9, 243-269. Special theories of hypo-elastic type, employing invariant
time rates, were proposed by G. Jaumann in section IX of his Geschlossenes System
physikalischer und chemischer Differentialgesetze, Sitzber. Akad. Wiss. Wien (Ila)
120, 385-530 (1911), and in later papers by him and by E. Lohr. The general theory was
mentioned by E. Fromm, eq (53a) of his Stoffgesetze des isotropen Kontinuums, insbe-
sondere bei zéhplaslischen Verhalten, Ing.-Arch. 4, 432-466 (1933), as beig appropriate
“zur Darstellung gewisser Erscheinungen der Nachwirkung,” but he did not develop its
properties. A visco-elastic theory including a special case of hypo-elasticity had been
proposed earlier by S. Zaremba, Sur une forme perfectionnée de la théorie de la relaxation,
Bull. Int. Acad. Sci. Cracovie 1903, 534-614. However, Zaremba did not mention its
relevance for elastic response.

In the course of exposition of some results obtained by Murnaghan under uncertain and
dubious assumptions, I proposed a theory only slightly less general than hypo-elasticity in
section 56 of the corrections and additions to “The mechanical foundations of elasticity
and fluid dynamics,” J. Rational Mech. Anal. 2, 593-616 (1953); at that time I cited the work
of Cauchy and Zaremba, and I acknowledged help from Ericksen.

2 Figures in brackets indicate the literature references at the end of this paper.

In this note I wish to correct, by clarifying its origin,
the misunderstanding growing from the errors of Hill
and Prager and then to illustrate further the difference
between hypo-elasticity and elasticity by presenting
some new results on hypo-elastic waves.

Elasticity is defined by a stress-strain relation of
the form

T :f kg, t98(C), (1)
R

where T is the ordinary Cauchy stress tensor; p and
pr are the densities in the actual configuration and
the reference configuration; x*, ,=adx*/0X,
(X, t) being the deformation; and t is a symmetrized
function of the components of the symmetric tensor
C, where Cus= gimx"*, ax™, g. In order that the elastic
material be isotropic it is necessary and sufficient?
that (1) reduce to a relation of the form

ok = xk

T=1£(B), (2)
where f is an isotropic function and where B has the
components  Bkm= goBxk  xm 5 Differentiating (1)
materially with respect to time, we easily show that [5]

T/\ m4 Tll m[)q =

'I\q,(m = ’[‘qul\" = ClrmqulHl’ (3)
where x is the velocity field, D is the stretching
tensor (Dygm = x4, m), and

otes
dCvs

ax'”, BX-I” qu, 5

Clmzpq: D) _‘;LR Xk, (4)

For a given elastic material, the components C*"»4 are
given functions of the finite strain and rotation.

# Sufficiency is classical; necessity was proved by F. D. Murnaghan, On the energy of
deformation of an elastic solid, Proc. Nat. Acad. Sci. USA 14, 889-891 (1928). Here may
lie the source of Prager’s error, since he takes (2) as the definition of an elastic material,
although in a later passage he obtains for hyperelastic materials a result inconsistent with
(2) unless the material is isotropic. The relevant passages occur in sections 1 and 2 of
chapter X of Prager’s book, cited in footnote 4. It should be noted that Prager’s use of the
terms “‘elastic” and “hyperelastic™ differs from that of Noll, who introduced them (op. cit.),
and of other writers on continuum mechanics. According to Prager’s definitions, it can be
proved that a hyperelastic material is elastic if and only if it is isotropic.  For other writers,
hyperelasticity is a special case of e! ldsh(‘lty, without exception.

\1urnaghan s proof of necessity is unnecessarily elaborate, for the result follows at a
glance: since both T and B are indifferent, under a rotation Q they become QTQ” and
QBQ". Hence, if (2) is to hold also in the rotating frame, it is necessary that

QTQ"=Qf(B)Q" = f(QBQN.

In other words, f must be an isotropic function.
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Hypo-elasticity is defined by an equation of the
form *

Tlcm _— Tl.'qu(l — T,"qu!l e Hkmqupq’ (5)

where W is the spin (Wym = Ak, m)) and where the com-
ponents H*"P4 are given functions of the stress. More-
over, in order that (5) satisfy the principle of material
indifference [6], it is necessary and sufficient that
HEmpal),, be an isotropic function of T and D: that is,
it we write H(T)[D] for the tensor whose components
are Hkmpaf), - then

HQTQH[QDQ"] =QHT)[D]Q, (6)
identically in the symmetric tensors T and D and the
orthogonal tensor Q.

Now both (5) and (3) may be written in the form
j"l\-m — DI.'zzzqul)‘ - (7)

but the functional dependence of D is different in the
two cases. In hypo-elasticity, D is a given function
of stress; in elasticity, D depends, in general, also on
the strain and rotation from a reference configuration.
Elasticity will be included in hypo-elasticity, then,
only when the dependence of D on strain and rotation
turns out to be merely apparent.”> For an isotropic
elastic material, by substituting (2) into (4) it is easy to
show that

] Tkm
B

Cl.'mpq — Tkmgpq = Tlfqgmp = qugkp —+ 2 Bq.\-: (8)

hence C is a function of B and T only. Therefore, if
(2) is invertible, C is equal to a function of T only, and
so is D. Thus Noll’s theorem follows. However, the
common domain is not exhausted by Noll’s theorem,
since an easy calculation shows that elastic fluids
with invertible pressure functions p(p) are always
hypo-elastic, although for them the stress-strain rela-
tions (2) are never invertible.

However, no material that has a natural state and
ts anisotropically elastic in small deformation from
it is hypo-elastic. As remarked to me by Noll, this
fact is most easily seen by putting T=0 in (5). From
(6) it follows that H(0)[D] is an isotropic linear function

4 We use the flux introduced by Zaremba in 1903, op. cit. footnote 2, and explained by
Noll, section 7 of op. cit. footnote 3 and T. Y. Thomas, Kinematically preferred co-ordinate
systems, Proc. Nat. Acad. Sci. USA 41, 762-770 (1955). A different motivation for use of
this flux was given by G. Jaumann, Elektromagnetische Vorginge in bewegten Medien,
Sitzber. Adad. Wiss. Wien (Ila) 15, 337-390 (1906); see sec. IV. As in my own first work,
we could equally well use Cauchy’s flux, which stands on the left-hand side of (3). In some
recent literature these two fluxes have come to be named, for no good reason, after Jaumann
and me, respectively. Any properly formulated rate theory is invariant under change of
time flux. It is difficult to discern the objective of the recent literature on the merits and
demerits of various time fluxes.

5 Here may be the point where the argument of Hill,«ited in reference 3, went astray.
Hill employed convected coordinates, which confuse the constant metric of space with
the changing metric it induces in the body in the course of deformation. The role of the
rotation becomes obscure when time rates are calculated in such a system. Apparently
Hill concluded that if the relationt =1t (C) is invertible, the coefficient-tensor D in (7)
becomes a function of T alone. From the explicit formula (4), valid in any coordinate sys-
tem, we see that this is not so: Even if C is determined uniquely by t (C), the elasticity C
still depends on both strain and rotation, for anisotropic materials. It is of course impos-
sible that the strain and rotation can determine a unique stress T except when T is in fact
independent of the rotation, for a rotation-dependent stress must certainly vanish for all
rotations if it vanishes for one particular one. More generally and precisely, the principle
of material indifferences forces the stress to depend on the rotation in the specific, explicit
way implied by (1).

Confusion has been caused by my failure, in my original paper (cited in [1], to see that
(6) must be imposed. However, even with my first and teo broad definition, the theorem
claimed by Hill and Prager could not be saved, since it reduces to an assertion about the
functional dependence D in (7) for elasticity, irrespective of the invariance properties of
H in hypo-elasticity.

of D.  Therefore, every hypo-elastic material responds
to infinitesimal strain from an unstressed state like
an isotropic elastic material.

The domain common to elasticity and hypo-elasticity
has thus been nearly delimited. For materials having
a natural state, it is no larger than that of isotropic
elasticity, at least for small strains; it is no smaller
than that of isotropic elasticity with invertible stress-
relation; elastic fluids (which of course have neither
a natural state nor an invertible stress-strain relation)
are included if their pressure functions are invertible.

Bernstein [7] has shown that acceleration waves in
a hypo-elastic material, provided the stress be assumed
continuous across them, must satisfy a propagation
condition of exactly the same form as the elastic one:

Q(n)a=pl?a; 9)

where a is the amplitude and U is the local speed of
propagation, and where

ka)z(n) = Dl\'pmqnpnq' (10)
Let us examine the nature of the acoustical tensor
Q). Since H(T)D] is an isotropic function of T
and D as well as a linear function of D, the fourth-
order tensor H has a representation of the form [8]
H<mpg = ghm ( Dlgpq + 0.7+ n;;TI"'T?.)
+70m(Bygra+ B 1ra+ Bor79)
+ 17 (Brgra+ Byrra+ QyTrrT9)
=7 nlog""l's/"’”’
_f_% D” (gkamq+ gr)lpTA'q+gL-qT1np + gnquI.*p)
1
-+ E DIZ (gln'])Tml‘T:]‘+gm[)TkI‘T?_+_ gl\'qurTg + gqukrTe)‘
(1)

The coefficients Dr, scalar functions of T, are not
uniquely defined, since at most six symmetric second-
order tensors can be linearly independent; however,
it is not generally justifiable to set any particular dy
equal to zero. Since, by (5),

kapq :% (qugpm — Tkmgpq+ qugl.'m o Tpmgkq) -+ HI\'pmq’

(12)
(10) is equivalent to
Oknz(n) :% (gkapqnpnq S Tl.'m + T};qnqnm

S qunqnlc) —+ H“”"‘In,,n,,. (13)

Substitution of (11) into (13) yields an explicit if com-
plicated formula for the acoustical tensor for a general
direction of propagation, n, in a general hypo-elastic’
material.
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In the theory of finite strain of isotropic elastic ma-
terials, | have defined principal waves as those propa-
gating in the direction of a principal axis of stress
[9], and this definition may be adopted also in hypo-
elasticity. A theorem | proved for isotropic elastic
materials may now be extended to all hypo-elastic
materials: Every principal wave in a hypo-elastic
material is either longitudinal or transverse; indeed,
the acoustic axes for principal waves are the principal
axes of stress. To prove this, let n; be a unit vector
parallel to the axis corresponding to the principal stress
t1, so that 7% n'=t,n%.  Then from (13) and (11) we see
that

QFm(ny) = [ul —|—% Dm—i— (Dz+ D4+ Dn)tr

+(D3+ D')"‘ D7+ nlg)[:lz
+@6+ Ds)f:f+ Dsaff}n’,“n',”

+% [Dm+ (D1|+ ])[1+Dlzfﬂgl""'

| 1
+5 (@u=nr+ S Qurery. (4

The principal axes of this symmetric tensor are the
principal axes of stress. The squared speeds of propa-
gation of the corresponding waves may be written
down by inspection:

pU3, = Q" (ni) njn},,
=0+ B+ (8, + 0,+28,0):
+(, 0.+ 0. 20
+(Bs+ By 22+ Dot

: : 39
pUL, = Q™" () nins,

1 1 S
:%([1_t2)+% DI()+§ DHUI +12)+§ Dl:(f}+1§).
(15)

These results may be compared with the formulae
for the squared speeds of principal waves in isotropic
elastic materials [13]. Beyond the identity of the
acoustic axes in the two theories, the similarity does
not continue. In order to be possible in an isotropic
elastic material, the nine squared speeds of propaga-
tion, U?,, regarded as functions of the principal
stretches, must satisfy numerous conditions of
compatibility; if they do satisfy them, they determine
the form of the stress-strain relation uniquely. The
only conditions of compatibility to be satisfied by the
hypo-elastic speeds (15), regarded as functions of the
principal stresses, are three identities of the form

p( ?Z—Ugl):tl‘tﬂ!"'v (16)
in addition, of course, to identities expressing invari-
ance under renumbering of axes. The reciprocal

theorem (16), stating that the difference of the speeds
of transverse waves when amplitude and wave normal
are permuted is twice the corresponding principal
shear stress divided by the density, is the only property
of elastic principal-wave speeds that carries over, in
general, to hypo-elastic materials. One cannot even
prove that longitudinal waves travel faster than trans-
verse waves in a state of hydrostatic stress. In the
theory of elasticity, knowledge of Q(n,) for the three
principal directions n, determines Q(n) for all n and
hence determines also the form of the stress-strain
relations. In hypo-elasticity, there is no indication
that the three tensors Qn,) determine the infinitely
many tensors Q(n). Certainly, by (15), knowledge of
the nine quantities U2, as functions of ¢, t,, t3 does
not determine the twelve coefficients k- as functions
of these same variables, but the question is obscured
by the indeterminacy of the br, already remarked.

These results illuminate the nature of hypo-elasticity.
It is totally inappropriate for materials regarded
physically as “anisotropic.” It gives to the physical
notion of “elastic isotropy” a mathematical form that
is less restrictive than the one embodied in the classi-
cal theory of finitely elastic, isotropic materials. In
heuristic terms, hypo-elasticity retains the directioal
aspects of elastic isotropy while relaxing the relations
among magnitudes carried along by the notion of iso-
tropy in the theory of finite strain. It is possible that
hypo-elasticity may be appropriate to physical ma-
terials that show no sign of preferred states, preferred
directions, or fading memory.
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