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T he e ne r gy d eca y of parti cles mov ing throu gh a mode ra tin .,: medium is di sc ussed for the case 
in whic h on ly elas ti c co ll is io ns occ ur between these in co min g partic les and the mode rator a toms; the 
ra ndom the rma l motion of t he mod erato r atom s is tak en into acco unt. It is s hown that if the c ross 
sec tion is ind e pe nde nt of partic le ve loc it y the equation for the e ne rgy d ecay e me rges in a rat he r s imp le 
fo r m involv in g the h yperbolic co tangent. Fina ll y, the th eo reti ca l de ve lop me nt is a ppl ied to es tim a t ing 
the therma liza tion tim e 'of pos itro nium in ra re gas mode ra tors, a nd is s ho wn to agree with the limited 
ex peri me ntal resu lts present ly a vail a bl e. 
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1. Introduction 

In se veral areas of phys ics processes occur in 
which e ne rge ti c particles enter a mod erating medium 
and s ubsequently are brought to thermal equilibrium 
with the atoms of this medium by means of collisions. 
Examples are fo und in ne utron age theory [lJ I and in 
the lite ra ture of positron ann ihilation in matter [21. 
Many pre vious theore ti cal treatm ents have included 
the approx imation that the thermal e nergy of the mod­
erator a tom s can be neglec ted; obviously , thi s is not 
valid if one is interested in the terminal portion of the 
thermaliza tion process. As will be shown below, it is 
possible to carry ou t a simplified treatment of the 
thermalization problem and yet to take th e moderator 
e ne rgy into account. 

In the following, slowing of particl es solely by means 

2 . Average Energy Loss 

Partic les of mass m, veloc ity VI, and mome ntu m 
PI = mVI e nter a moderating medium a nd each collides 
elas ti call y with a mod erator a to m of mass Inll/, velocity 
V II/, and momentum P II/ = mll/vlI/ . It is s traightforward to 
show th at the mom entum of the inco min g particle in 
the center of mass sys te m is related to these qu a ntiti es 
as fo llows: 

_ mil/PI - mplII _ In (I a) 
Pi C - M - PI - M Pc 

where Pi C is measured in ce nter of mass coordinates, 
Vc is the velocity of the center of mass, and 

p c=(m + 1n/l,)vc= Mvc. 

r of elastic collisions will be discussed; the therm al 
motion of the moderating atoms will appear ex plicitly 
in the treatme nt. The resulting re presentation of the 
e nergy decay of the particles as a function of time will 
invo lve an integral over the particle velociti es; for the 
special case in which the collision cross sec tion is a 
constant, the integration will be carried out in closed 

If, after the colli sion , an in co ming particle scatters with 
velocity and mom entum V2 and P2 res pec tively, then it 
is also true that 

m 
P2C= P2 - M p c· (Ib) 

, 
C' I 

form to yield a ra ther succinct equation for the ther­
malization process. It will be demonstrated in the last 
sec tio n of the paper th at results derived herein are 
useful in considering posi tronium atoms in rare gas 
moderators. 
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S ubtracting eq (la) from eq (Ib) yields the result that 
the momentum transfer is the same in bo th coordinate 
systems: 

P2 - P I = P2C - PI C, (2) 

Using eq (1) one can obtain 

m In - • ( ) ( )') 

P I' P 2= PIC' P-lC + M Pc ' (PIC + P2C) + M P c· (3) 



I 

Squ aring both sides of eq (2), and employing the fact 
th at momentum and energy conservation in the col­
li sion imply that /lIe = P2C, yield the followin g expres­
sion for the change in momentum-squared of the 
incoming particle: 

In order to derive an expression for the mean energy 
loss per collision, one must average eq (4) (which is 
e quivalent to an expression for the energy loss in any 
givt;n collision) over all possible angles of incidence 
between P I and pm, over all scattering angles, and over 
the distribution (Maxwellian or otherwise) of moderator 
velociti es_ We shall carry out these averages under the 
assum ptions that (1) the moderator motion is com­
ple tely random, and (2) the scattering is spherically 
symmetric in the center of mass system_ These 
assumptions can be expressed mathematically as 
follows : 

random moderator: 

(Sa) 
isotropic scatterin g: ( P IC - P-2c) scat = 0_ (5b) 

Averaging eq (4) overall scattering angles according 
to eq (5b) res ults in 

( p Dscat- PT=-2 (~) pc - PIC- (6) 

S ince Pc = P I + Pili, then performing the averaging 
of eq (6) over moderator velocities [eq (Sa) I yields the 
following expression for the fractional energy change: 

- 2(1 + m/ m lll ) - 2 { (.!!!.-) _ (v;~) } 
mill VI 

(7) 

where (VYII) is the mean-squared moderator velocity_ 
Having obtained this expression for mean energy loss, 
we will (for convenience) drop the average bracket 
notation in all further work_ 

T he effect of taking the thermal energy of the 
moderator into account can be identified with the term 
(VII,/VI)2_ As the velocity of the incoming particle is 
reduced through elastic collisions to a magnitude 
comparable to that of the moderator atoms, the energy 
los t in successive collisions becomes smaller. Finally, 
when the particle reaches thermal equilibrium, that 
is, when 

(8) 

then no further decrease in energy occurs_ 

3. Thermalization 

Usuall y for the physical situations mentioned in 
the introductory paragraphs the left hand member 

I~_-
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ot eq (7) is sufficiently small in magnitude so that one 
may write 

(v~-v1)/v1 = d(!n v2 )_ 

Thus eq (7) can be written in differential form, 

d(ln v)=-(1+m/mll/) - 2 {(~~J-(v~,'Y} (9) 

which describes a continuous process rather than the 
discreet process indicated in (7)_ 

We now take from kinetic theory [3] the result that 
the mean collision rate of the incoming particles with 
the moderator is 

v= PIIUV (10) 

where U = the elastic collision cross section and 
PII = the number of moderator atoms per cm 3_ Com­
bining (9) and (10) leads to the differential eq uation 
governing the thermalization process: 

(11) 

where 

R II,= In/ mlll _ 

Separation of variables leads to the following integral: 

Jv dv 

"0 u(v)[R lllv2 - VTIIJ (1 + RI/I)2 
(12) 

where Vo is the initial velocity of the incoming particle 
as it enters the moderating medium. 

Equation (12) cannot be integrated unless the explicit 
dependence of the cross section upon velocity is known. 
For the case in which u is a constant the results are 
particularly concise. If the quantities a and f3 are 
defined as follows: 

(13) 

~Eo ,B=coth - I -

EIII 
(14) 

where Eo and E,,, are the kinetic energies correspond­
ing to Vo and Vm, respectively, then the integration of 
eq (12) for (J constant yields 

E /EI/I=coth2 (,B+at) (15) 

where E is the kinetic energy of the incoming parti cle. 
Note that a can be related to the collision frequency of 
the incoming particle at thermal equilibrium by 
employing eq (8): 

mmm mm", 
a= 2 PIIUVT = .,VT 

(m+ milt) (m+.m lll )-
(16) 



wh ere 11'/' and VI' are the velocity and the collision 
frequ ency of the ther malized particle , respectively. 

The form of th e thermalizatio n equation, eq (15) , 
is de mons trated in fi gure 1 in whi~h is plotted the 
[un c tion coth t (a t ). One can see from eq (15) that (3 
indi cates the point of the curve a t which the therm aliza· 
ti on process is initiated. No te that when (3 is s ma ll , for 
a]] intents and purposes therm al eq uilibrium is 
es tabli shed aft er the charac teristi c time in te rval a - I. 

10·r--------------------------------, 

10' y = C oth2at 

10 

I 

o 2 3 

t in units of a-I 

FI GU RE 1. The energy decay fllllction fo r velocity·independent 
cross section. 

4 . Thermalization of Positronium 

W he n positro ns enter matte r , pos it ronium atom s 
a re fo rm ed only aft er the kin e ti c e nergy of the pos i· 
tro ns has fa ll e n to a value lyi ng in the so-ca lled Ore 
gap [4]; thi s region lies below the ionization po te ntia l 
of th e modera tor a toms, and typica lly is several elec­
tron volts wide; there fore the Ore gap occ upies the 
region 1- 20 eV. If the moderator is composed of rare 
gas a toms, then th e elas tic colli sion is th e only e nergy 
loss mec hani s m avai lab le to the positron ium. Massey 
and Mohr [5] indica te that the e la stic coll ision cross 
sec ti on fo r positronium in the Ore gap is of the orde r 
of magnitude of the geome trical cross sec tio n, a nd 
tha t furth ermore, thi s cross secti on increases at lowe r 
ene rgies . 
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Equation (15) of the preceeding sec tion i s uitabl e 
for making conservative es tim ates of the e nergy of 
pos itronium at the time of its annihila ti on if one use 
for (J the geometrical c ross sec tion, whi ch, as sta ted 
above , is a lower limit for the true elas ti c colli sion 
cross section. S uch es timates are of interes t sin ce the 
energy of the annihilating positronium atom is related 
to the width of the an gular di stribution of the photon s 
emitted in the an nihilation process . 

Consider the thermalization of positronium in argon 
gas a t 300 OK and 2 atm pressure. Using for the radius 
of the argon atom a value of 1.5 A in order to determin e 
the geometrical cross section, a nd making use of the 
fac t that argon under the stated conditions be haves 
a pproximately as an ideal gas , we have computed 
the value of a to be 

0'= 3.9 X 106 sec- I (P s in argon). 

Thu s the es tim a ted the rm aliza tion tim e fo r P s in argon 
is a - I = 2.6 X 10- 7 sec. S ince the Ore gap for argon 
lies be twee n 9.0 a nd 11.6 e V, the n the ra tio Eo/ EII/ 
is approximately 100. 

The onl y exis ting meas ureme nts of angul a r di s­
tributions in a ra re gas that a re of sufficient accurac y 
to tes t thi s res ult we re perfor med by Heinberg a nd 
Page [6]. In th a t experime nt , argon a t room te mpera­
ture a nd 2 a tm pressure was e mployed as a modera tin g 
medium ; the ex pe rim e ntal sensitivity was suc h th at 
the a uthors were a ble only to s ta te tha t the Lim e re­
quired for the pos itronium ki ne ti c e nergy to fall to 
0.5 e V is grea te r than 9 X 1O-~) sec. 

Using the valu es of a a nd Eo/EII/ de te rmined above , 
eq (15) indica tes that the t ime fo r the P s e ne rgy to 
reach 0.5 eV is 5 X lO- H sec, whic h agrees nicely with 
the ex pe riment a l result s. 

I tha nk R. D. Desla ttes of the National Bureau of 
Standards for many helpful disc ussions during th e time 
that the above results we re be ing de ri ved . I a m par­
ti c ularly gra teful to R . C. Case lla of the National 
Bureau of S tandard s for the derivati on of th e e ne rgy 
loss equ ation [eq. (7)] in te rms of expressions in mo­
me ntum space; thi s is fa r more elegant th an the 
geo metri cal derivation that had been do ne ori gin all y. 
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