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The energy decay of particles moving through a moderating medium is discussed for the case
in which only elastic collisions occur between these incoming particles and the moderator atoms: the
random thermal motion of the moderator atoms is taken into account. It is shown that if the cross
section is independent of particle velocity the equation for the energy decay emerges in a rather simple
form involving the hyperbolic cotangent. Finally, the theoretical development is applied to estimating
the thermalization time of positronium in rare gas moderators, and is shown to agree with the limited

experimental results presently available.
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1. Introduction

In several areas of physics processes occur in
which energetic particles enter a moderating medium
and subsequently are brought to thermal equilibrium
with the atoms of this medium by means of collisions.
Examples are found in neutron age theory [1] ! and in
the literature of positron annihilation in matter [2].
Many previous theoretical treatments have included
the approximation that the thermal energy of the mod-
erator atoms can be neglected; obviously, this is not
valid if one is interested in the terminal portion of the
thermalization process. As will be shown below, it is
possible to carry out a simplified treatment of the
thermalization problem and yet to take the moderator
energy into account.

In the following, slowing of particles solely by means
of elastic collisions will be discussed: the thermal
motion of the moderating atoms will appear explicitly
in the treatment. The resulting representation of the
energy decay of the particles as a function of time will
involve an integral over the particle velocities: for the
special case in which the collision cross section is a
constant, the integration will be carried out in closed
form to yield a rather succinct equation for the ther-
malization process. It will be demonstrated in the last
section of the paper that results derived herein are
useful in considering positronium atoms in rare gas
moderators.
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2. Average Energy Loss

Particles of mass m, velocity v;, and momentum
p1=mv; enter a moderating medium and each collides
elastically with a moderator atom of mass my,, velocity
v, and momentum p,, = muvy. It is straichtforward to
show that the momentum of the incoming particle in
the center of mass system is related to these quantities
as follows:
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where p. is measured in center of mass coordinates,
v. is the velocity of the center of mass, and

pe=(m+ mu)ve= Mv,.

If, after the collision, an incoming particle scatters with
velocity and momentum v. and p. respectively, then it
is also true that

P2 =P~ Pe (1b)

Subtracting eq (la) from eq (1b) yields the result that
the momentum transfer is the same in both coordinate
systems:
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Using eq (1) one can obtain
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Squaring both sides of eq (2), and employing the fact
that momentum and energy conservation in the col-
lision imply that pi.= ps., yield the following expres-
sion for the change in momentum-squared of the
incoming particle:
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In order to derive an expression for the mean energy
loss per collision, oné must average eq (4) (which is
equivalent to an expression for the energy loss in any
given collision) over all possible angles of incidence
between p; and pu, over all scattering angles, and over
the distribution (Maxwellian or otherwise) of moderator
velocities. We shall carry out these averages under the
assumptions that (1) the moderator motion is com-
pletely random, and (2) the scattering is spherically
symmetric in the center of mass system. These
assumptions can be expressed mathematically as
follows:

) Pe * (D2 — Pic)- (4)

random moderator: (P1* Pm)moa= {P1° Pc)moa=0

isotropic scattering: (Pic " P2¢)scar=0.
Averaging eq (4) overall scattering angles according

to eq (5b) results in
ut
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Since p.=p:+ pn, then performing the averaging
of eq (6) over moderator velocities [eq (5a)| yields the
following expression for the fractional energy change:
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where (v3,) is the mean-squared moderator velocity.
Having obtained this expression for mean energy loss,
we will (for convenience) drop the average bracket
notation in all further work.

The effect of taking the thermal energy of the
moderator into account can be identified with the term
(vm/v1)>. As the velocity of the incoming particle is
reduced through elastic collisions to a magnitude
comparable to that of the moderator atoms, the energy
lost in successive collisions becomes smaller. Finally,
when the particle reaches thermal equilibrium, that
is, when
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then no further decrease in energy occurs.

3. Thermalization

Usually for the physical situations mentioned in
the introductory paragraphs the left hand member
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ot eq (7) is sufhciently small in magnitude so that one
may write

(v3 —v})/vi =d(n 1v?).

Thus eq (7) can be written in differential form,

d(nv)=—01+m/my,)2 { <i> = (@y} (9)
an v

which describes a continuous process rather than the
discreet process indicated in (7).

We now take from kinetic theory [3] the result that
the mean collision rate of the incoming particles with
the moderator is

V= puov (10)
where o =the elastic collision cross section and
pn=the number of moderator atoms per cm3. Com-
bining (9) and (10) leads to the differential equation
governing the thermalization process:
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where

Separation of variables leads to the following integral:
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where v is the initial velocity of the incoming particle
as it enters the moderating medium.

Equation (12) cannot be integrated unless the explicit
dependence of the cross section upon velocity is known.
For the case in which o is a constant the results are
particularly concise. If the quantities a and B are
defined as follows:

v

(12)

rl:{Z,DuO'Um
T (I+R.? 2
B=coth~! \/EE,,” (14)

yvhere Ey and E,, are the kinetic energies correspond-
ing to vy and vy, respectively, then the integration of
eq (12) for o constant yields

E/E,,= coth? (B+ at) (15)
where E is the kinetic energy of the incoming particle.
Note that a can be related to the collision frequency of
the incoming particle at thermal equilibrium by
employing eq (8):
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where vy and vy are the velocity and the collision
frequency of the thermalized particle, respectively.

The form of the thermalization equation, eq (15),
is demonstrated in figure 1 in which is plotted the
function coth? (at). One can see from eq (15) that 8
indicates the point of the curve at which the thermaliza-
tion process is initiated. Note that when 3 is small, for
all intents and purposes thermal equilibrium is
established after the characteristic time interval o',
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FIGURE 1. The energy decay function for velocity-independent
cross section.

4. Thermalization of Positronium

When positrons enter matter, positronium atoms
are formed only after the kinetic energy of the posi-
trons has fallen to a value lying in the so-called Ore
gap [4]; this region lies below the ionization potential
of the moderator atoms, and typically is several elec-
tron volts wide; therefore the Ore gap occupies the
region 1-20 eV. If the moderator is composed of rare
gas atoms, then the elastic collision is the only energy
loss mechanism available to the positronium. Massey
and Mohr [5] indicate that the elastic collision cross
section for positronium in the Ore gap is of the order
of magnitude of the geometrical cross section, and
that furthermore, this cross section increases at lower
energies.
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Equation (15) of the preceeding section is suitable
for making conservative estimates of the energy of
positronium at the time of its annihilation if one uses
for o the geometrical cross section, which, as stated
above, is a lower limit for the true elastic collision
cross section. Such estimates are of interest since the
energy of the annihilating positronium atom is related
to the width of the angular distribution of the photons
emitted in the annihilation process.

Consider the thermalization of positronium in argon
gas at 300 °K and 2 atm pressure. Using for the radius
of the argon atom a value of 1.5 A in order to determine
the geometrical cross section, and making use of the
fact that argon under the stated conditions behaves
approximately as an ideal gas, we have computed
the value of « to be

a=3.9X10% sec! (Ps in argon).

Thus the estimated thermalization time for Ps in argon
is a7 '=2.6 X107 sec. Since the Ore gap for argon
lies between 9.0 and 11.6 eV, then the ratio E/E,
is approximately 100.

The only existing measurements of angular dis-
tributions in a rare gas that are of sufficient accuracy
to test this result were performed by Heinberg and
Page [6]. In that experiment, argon at room tempera-
ture and 2 atm pressure was employed as a moderating
medium; the experimental sensitivity was such that
the authors were able only to state that the time re-
quired for the positronium kinetic energy to fall to
0.5 eV is greater than 9 X 10 sec.

Using the values of @ and Ey/E,, determined above,
eq (15) indicates that the time for the Ps energy to
reach 0.5 eV is 5X 107% sec, which agrees nicely with
the experimental results.

I thank R. D. Deslattes of the National Bureau of
Standards for many helpful discussions during the time
that the above results were being derived. I am par-
ticularly grateful to R. C. Casella of the National
Bureau of Standards for the derivation of the energy
loss equation [eq. (7)] in terms of expressions in mo-
mentum space; this is far more elegant than the
geometrical derivation that had been done originally.
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