JOURNAL OF RESEARCH of the National Bureau of Standards—B. Mathematical Sciences
Vol. 73B, No. 2, April—June 1969

Symmetry and the Crossing Number for Complete
Graphs*

Thomas L. Saaty**

(February 26, 1969)

This paper studies the minimum number of intersections of edges in a complete graph on n vertices
drawn in the plane. The proofs are first given for n < 10. A theorem on the maximum number of inter-
sections is also given. Geometric representations of these cases are included. Symmetry of the repre-
sentations is then discussed as it applies to extensions from small values of n to larger values maintain-
ing the minimality of the number of intersections. Based on a symmetry conjecture given in the paper,
a proof is given for the general case of the minimum intersection problem.
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1. Introduction

We are concerned with the conjecture that the minimum number of intersections [, of the
edges of a complete graph on n vertices drawn in the plane in which two edges intersect in at most
one point and two edges with a vertex in common have no intersections, is given by

_n(n—2)%2(n—4)
1;:——*—64 for n even

C1)2( —2)2
1,,:uu for n odd.

64

In a complete graph every vertex is connected to each other vertex by one edge. We shall use
C, to denote a complete graph on n vertices and call it minimal (maximal) if it has a minimum
(maximum) number of intersections. In reference [10]' a realization scheme to which we shall
make frequent reference is given. Based on that construction and on those of related problems,
the notion of symmetry for combinatorial problems is introduced and a conjecture in the form of
a principle is given.

2. Proof of Small Cases

Consider each vertex of the graph C, and its n— 1 connecting edges (its star) to the remain-
ing vertices. The removal of this vertex and its star, eliminates all intersections falling on these
edges. The result is a complete graph_on n=1 vertices. Any other vertex of the complete graph
on n vertices has the same or a different number of intersections on its star. In general, if x;,
i=1, . .., nis the number of intersections on the edges connecting the ith vertex then the

. . I : . . .
total number of intersections of C, 1512 x; since each intersection is counted exactly four times,
iz
once for each of the four vertices of the two edges defining the intersection. Thus we have:
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THEOREM 1: Ifx;,i=1, . . ., nisthe number of intersections falling on the star of the ith vertex

n
of a complete graph C,, then the total number of intersections in the graph is given byl 2 X;.
i=1
THEOREM 2: A necessary condition on the minimum number of intersections 1, of a complete

graph C,, is that it satisfy the relation

n
I|1211_4ln 1 n=5

1,=0 n =4
PRrROOF: The average number of intersections per vertex in [, is given by

al,

n

The removal of a vertex with at least an average number of intersections must leave a C,_; whose
intersection number is not less than [I,,_;. Thus

41"
In_T 2In—l
from which the relation follows.
Repetition of the above relation gives:
n(n—1)(n—2) . .. (n—k+1)
b = G=5)n=6) . . . m—k—3) "*

from which lower bounds on I, can be obtained if the minimal value of /,_x is known. Guy [2]

writes the above relation as:
n\l/n—4
= I,(t )/(t _4>,4 <t<n.

An inductive argument may be used to show that the conjectured formula for I,, holds for even
n given that it holds for the immediately preceeding odd case. This follows from

4
II.‘_zIk = I

ko k (k—=2)2(k—4)* k(k—2)2(k—4)
k—4 %' k—4 64 % 64 :

I, =

However, if k£ is odd we have

k [(k=1)(k=3)2(k=5)]_ (k—=1) (k—3)? [k(k—5)
I“‘/k—cp[' o4 ]_ 64 [\ i—a ]
=D =3, 4] (k—1)2(k=3)®  k—1(k—3)
=T 6 [(" EE 4]_ 6 R )

and induction does not work from the even to the odd case.
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THEOREM 3: I;=1.

Proor: (Kuratowski)[7].

THEOREM 4: 1= 3.

ProOF: Theorems 2 and 3 give I¢ = 3. However Is=3 is realizable.

THEOREM 5: Every complete graph on six vertices with a minimum number of intersections
where its intersections are regarded as vertices, is isomorphic to the graph of the following figure:

v, M2

FIGURE |

PrOOF: Reference [9].

THEOREM 6: 1; =9, with unique representation for the corresponding C; to within stereo-
graphic projection.

PrROOF: Theorem 2 may be applied repeatedly to I;=3. 4. 5, 6 each time obtaining a vertex
with such a number of intersections defined by its star, that its removal together with its star leaves
a Cg behind with less than 3 intersections, contradicting Theorem 4.

£ > 4. Thus

X
7

there is at least one vertex with five intersections. Note that a vertex with 6 or more intersections

We now prove I; # 8 (the case I; # 7 is analogous). By Theorem 1 we have

| would contradict Theorem 4. The only possibility here is to take for example x;=5, i=1, . . .,
| 4 and x;=4, i=5, . . .. 7. In any case the removal of a vertex which defines 5 intersections
leaves a subgraph Cy which is minimal. Using the figure of Theorem 5, we find that the 7th vertex
may fall in any one of three different regions and connected to the rest of the graph. The other
regions are symmetric with these. The three regions are: inside the interior triangle vyv;v6 (outside
the exterior triangle vivovs is symmetric with this region by stereographic projection); in a triangle
such as vswvsp2; and finally in a triangle such as vpgp2. In all three cases the edges connecting
the seventh vertex to any of the remaining vertices must introduce at least six additional intersec-
tions, contradicting the fact that the vertex was assumed to introduce exactly five intersections.
Thus I; = 9. However I;=9 is realizable. Because C; with I;=9 contains a Cs with I4t=3 and
this has a unique representation, our construction of C; is unique using symmetry arguments.
See figure 5.

THEOREM 7: Is=18.
PROOF: From Theorems 2 and 6 we have I3 = 18. However Iy = 18 is realizable. There is more
than one representation.
THEOREM 8: Iy= 36.
18 x4 72 19 x4 76
=—=0 an :-8— >0 we have

8 8 8

for all three cases x=233, 34, and 35 that the corresponding Cy contains a minimal intersection C7.

Proor: By Theorem 2, Iy = 33. Let Iy=x. Since
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Because a minimal intersection C; contains a minimal intersection Cs; and a minimal intersection
C;, we have a contradiction to theorem 2 reference [10]. Since x = 36 is realizable, Iy=36. There is
more than one representation.

THEOREM 9: 1,0=060.

PrRoOF: By Theorems 2 and 8, [;o= 60. However [,0=60 is realizable. There is more than
one representation.

3. Algebraic Formulation

The intersection problem for C, may be algebraically formulated as follows:

Find nonegative integers x;,i=1, . . ., nsuch that (1) There is a geometric realization (drawing
in the plane) of C, with x; intersections associated with the ith vertex and (2) these x; yield a mini-
mum integer value to

n
o
i=1

N

such that this realizable minimum 7, satisfies the condition

]n = (nnfﬁl') In—l
given in Theorem 2.
We now prove that none of the components of the minimum solution vector x=(x1, . . ., x»)
is zero (n = 6). This is a corollary to:
THEOREM 10: The maximum number of intersections of C, is obtained by taking all its vertices
on a polygon and joining them with edges in the interior of the polygon.

PROOF: Since each intersection is determined by four vertices, ( ) is the maximum and the

4
edges interior to the polygon give exactly this number of intersections since the diagonals of every
quadrilateral intersect in the interior.

COROLLARY: In a C, n= 6 with a minimum number of intersections, the edges connecting any
vertex to the remaining n—1 vertices must generate at least one intersection.

PROOF: Otherwise all the vertices must be on a polygon and all their connecting lines must
all be either inside or outside the polygon. However this gives a graph on (n —1) vertices with a
=1l

4 ) intersections. But

maximum number of intersections i.e., with (

=],

(n—l) {n(n—2)2(n—4)/64 n even
4 (n—1)2(n—3)%/64 n odd

Thus at least one of the n—1 vertices must lie in a region defined by lines from the remaining
n— 2 vertices. In that case an edge from the nth vertex to the isolated vertex defines an intersection.
This completes the proof.

General Considerations

h
Without the integer requirement on the value sz E x; or on its realizability, subject to the

. i=1
constraints we have:

.. .. . I
THEOREM 11: A necessary condition for a minimum (maximum) ofz 2 X; Ls that x;=x; (or are
i=1
as equal as possible in the sense of integer values) for all i and j.
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PROOF: Both minimum and maximum values are bounded above and below by positive quan-

tities and hence x=(xy, . . ., x») ranges over the lattice points of a bounded domain of E". The
n =

function x; has a minimum over this domain. If we denote this minimum value by G we have
1=1

Ll P l/n\ﬂnx_
i (H"> 12,

i=1

The right side which gives the intersection number attains its minimum when the equality holds.
Equality holds if and only if all the x; are equal. (See ref. [5] page 27.)

In the following relation:
nixi _ o, /4 1
4 n Xi

the right side attains a maximum, H, as x ranges over the lattice points. This gives
Xi <= i 4
1S Hew /43 =t

The left attains its maximum when equality holds i.e., if and only if x;=x; for all i and ; (loc. cit.
p. 26).

When x;=x;=x for all i and j two difficulties may occur. The first is that

may not be an integer. If it is an integer, it may not be possible to realize a complete graph such
that all its vertices have the same number of intersections.

. .. I £ . . .
REMARK: Since the same basic formula 1 2 x; holds for the number of intersections, this

technique of equalizing the intersections among the vertices to obtain the minimum number would
apply to any surface of genus p.

THEOREM 12: A complete graph with a maximum number of intersections has a realization with
x;=x; for all i and j.

PROOF: We have from the polygonal representation that

.:l<”>':]
Xi 2 \4 l h oo oo og i

We also have as a consequence of the results of the early part of the paper:

THEOREM 13: C, for 0 <n = 10,n+# 5, 7 with a minimum number of intersections has a realiza-
tion with x;=x; for all i and j. For n=1>5, 7, all but one vertex have the same number of intersections.
The odd vertex has a number of intersections which differs by unity from those of the other vertices.

PROOF: We only need to prove the assertion for the cases n=>5 and 7. The other cases follow
from the construction described in Theorem 1 reference [10]. The assertion for n=9 can be seen
to hold in the following figure in which each x;=16. The case n=>5 follows from I5=1 and the fact
that an intersection is determined by 4 vertices. The odd vertex has no intersections. Forn=7,
since I;=9 and 7 does not divide 36 not all x; are equal. Thus x;j=5i=1, . . ., 6 and x;=6 see
figure.

REMARK: In reference [1] a realization scheme which utilizes a Hamilton Circuit through
the vertices with no intersections on its edges is described. This differs from the two concentric
polygons scheme illustrated below (see figs. 6 and 8) and completely justified in reference [10].
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We also have:

THEOREM 14: C,, for n even, whose intersection number is given by the conjecture and whose
representation is given by the construction procedure of Theorem 1 reference[10] has a realization
with x;=x; for all i and j.

PROOF: It follows from Theorem 1 reference [10] that x;=x; for all i and j.

4. Combinatorial Symmetry

This section is intended to give general combinatorial form to the conjecture at the beginning
of the next section and. to some extent, to provide motivation for that conjecture. The reader may,
however, omit this section and proceed directly to section 5.

In geometry, symmetry is defined by means of isometries called symmetry operations (and their
groups of automorphisms) which leave a figure unchanged or invariant while permuting its parts
[1a. 11} The dimensions, translations and rotations, of the figure and its parts play an important
role in characterizing its symmetry.

Here we introduce symmetry in a slightly more general sense. This symmetry depends on
rules of construction applied to elements of a set appropriately partitioned into disjoint subsets
together with a semigroup of maps between the members of the partition and lead to a particular
combinatorial property that is preserved under the semigroup. Thus the symmetry operations leave
the combinatorial property unchanged while the members of the partition of the set are inter-
changed elementwise.

An example is given by the representation of the maximum number of intersections of C,.
Here the set is partitioned into its singletons (the trivial partition), each member being a vertex.
The representation is invariant to a transformation which carries a vertex and its star to another
vertex and its star maintaining the order of the edges as they appear in the star. In general we
can consider any partition.

We note in the following representation (fig. 2) of C, k=4.5.6, . . . with a maximum number
of intersections that the removal of any vertex and its star from C, leaves a C,_; with a maximum
number of intersections. Here each C, contains all lower order C;’s k=1,2,. . ., n, each of which

n 5
occurs <A ) times.

I

FIGURE 2

A Regeneration Principle of Combinatorial Symmetry

We find the following observation useful. It is that maximality is preserved when additional
vertices are inserted in the figure having smaller number of vertices. Thus when symmetry is re-
tained in the construction of a figure which is an extension of a combinatorially symmetric figure
on a smaller number of elements and having a special character of the combinatorial property
(e.g., maximality of intersections) then that special property is also preserved for the larger set.
The process of extension may also be regarded as a superposition of a figure for a larger set of
elements over the corresponding figure for a smaller set. In terms of the partition and the semi-
group of maps, the insertion of vertices is an extension of the original figure, its partition and the
semigroup of maps.
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Thus the larger figure is an extension of a smaller figure with preservation of symmetry. The
smaller one can then be obtained from the larger one by the removal of appropriate elements
and yet smaller figures may be derived from the latter and so on. In this manner we obtain a de-
scending sequence of figures each of which retains the relative combinatorial property. We refer
to the process of extension with symmetry and preservation of relative properties as regeneration.

The possibility of symmetric regeneration suggests:

CONJECTURE (REGENERATION PRINCIPLE): If a given combinatorial property is known to hold
for the smallest order symmetric construction applied to a partition of a set and also hold for an
appropriate subset of the family of its immediate ascendants (to insure that the rules of symmetric
construction permit continued ascendance with preservation of the property) then the property holds
Sfor an arbitrary ascendant.

Possibly the most essential criterion for developing symmetrization rules for minimal or
maximal C, is based on the following:

DEFINITION: A symmetric realization of a complete graph is a symmetric drawing in the plane

n
for which 2 (x; —x;)*=min.
SS=

Returning to the problem of minimal C,, suppose that n is even. Symmetrization from C,, _» to
C, by introducing a pair of vertices must conform to the symmetry criteria already used to construct
a symmetric C,, _». Geometrically C, is said to have the symmetric properties of C, , if its vertices
can be divided into disjoint pairs with preservation of mutual relationship between pairs.

The pairs are interchangeable according to (1) the number of intersections sustained on their
edges: (2) the rule or scheme according to which these edges are drawn. Thus a pair with its
connecting edges (a double star) to the remaining C,_» forms a configuration which is identical

. . . n . . : -
with that of any of the other 5 1 pairs. An edge in the double star of a pair has the same number
of intersections following the rules of the symmetric construction as the corresponding edge in
the double star of any other pair.

The removal of one vertex of any pair together with its star from C,, n even, must yield the
desired C,_, with the conjectured number of intersections. To obtain C,_. the other vertex of the
pair must be removed.

The construction of a symmetric C, for the conjectured value of I, and satisfying the pairing
requirement has been described in detail in the proof of Theorem 1 of reference [10]. The pairs
are identified as in figure 8. One vertex belongs to the outer polygon and its companion is the farthest
vertex (or one of the farthest if there is a tie) on the inner polygon.

The removal of any one of the pairs of C, naturally leaves a symmetric C,_». The addition of
pairs to a lower order C, must follow the rules of symmetry used to construct that C, from its
antecedent. If the Regeneration Principle holds then the graph is minimal. It can be shown to
satisfy the conjectured value of 7, in 4 ways. (1) Two ways are given each by one of the two theorems
of reference [10]: (2) since the pairs are chosen in the designated manner, it is trivial to note that all
their corresponding C,’s are minimal and hence the discussion on pages 574-575 of reference [10]
applies; (3) see section 5.

This conjecture supports a counting method used below. A Cjy is the smallest complete sub-
graph of a C, in which all three types of intersections which can arise between pairs occur. These
are intersections (a) between two pairs, (b) between three pairs i.e., the intersecting edges have
their end points among the three pairs and (c) between four pairs (each of the four end points be-
longs to a different pair).
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5. Conjecture

.. . . . . n .
If C, has a minimal intersection representation from which one may choose r= [—] pairs

2

Py, . . ., P, of vertices of C, such that: If Csgis the full subgraph of C, determined by P, U
UPs(1<=s<r—1), then Cs is minimal. Moreover, if n is odd with verticesv U P, U . . . U P,
then any C; determined by vertices v U P; U P; U Py, i # j # k, is minimal.

REMARK: Note that the Regeneration Principle implies the Conjecture.

THEOREM 15: If the above Conjecture is true (and hence if the Regeneration Principle is true),
then 1, has the value conjectured.

PROOF BY INDUCTION ON n: We assume that I,, has the conjectured value for m<n+2 and assert
that /,,;» does also. If n is even then n+1 is odd so I, 4 has the conjectured value and by the remark
after theorem 2, I,,, has the conjectured value. Therefore we suppose that n is odd say n=2k+1.

l.et C,» be arbitrary and use the conjecture to choose pairs Py, . . . , Pryq of vertices with one
vertex v left over. By induction C,41 - Cyi — v has at least [,4; intersections. Since [nio — Iy

= : S k+1
—/.'( 9 ) we must show that adding the vertex v to this €, introduces at least k < 9 ) new

intersections. Now by the conjecture the C,_; determined by P,U . . . UP) is minimal so the
X

2) intersections. Thus, we need only

addition of v to this C,_; must introduce at least M‘*l)(
show that

k+1 (/r k
: — k=) (2)=3(5) +&
'y ) (5)=3(;)
new intersections are introduced by the addition of » to the C,,, determined by P,U . . . UPj,
- but not merely by the addition of v to the C,_; determined by PyU . . . UP,.

To see that we can do this, consider any pair of pairs P;, P;, 1 <i# j =< k. By the conjecture
vUP;UP;UPy; determine a minimal C; with nine intersections. It follows from theorem 6 that
J

A‘
exactly three of these intersections involve v and all three of the pairs P;, Pj, Py11. Thus we obtain 3(2

new intersections as {i, j} ranges over {1, ..., k}. We obtain at least k more intersections by taking
all C5’s of the form PP 0. This completes the proof.

6. Generalization

The minimum intersection problem for C, is a special case of the following general problem.
Consider a connected graph G with n vertices joined by edges in the plane as follows: each vertex
is joined to k other vertices (2<k=<n—1) in such a way that a maximum number of vertices
has degree k. If any two edges can cross at most once at a point other than a vertex, determine the
minimum number of intersections 1,(k) of the edges of G.

The solution of this problem should follow from our previous discussion of symmetric realiza-
tion. Our existing realization may be used to remove the necessary number of edges.

It is clear for example that the removal of the edges joining the prescribed pairs in the even
case deletes the largest number of intersections. In the odd case one vertex must have no edge re-
moved otherwise another vertex would have (n-2) edges removed. The operation of removing an
edge per vertex is continued. This gives

n(n—2)(n—4)(n—6)

n n even
I(n—2)=
_ V2 (g —
(n—1)(n (;34) (n—35) n odd
185
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n(n—4)(n—6)2

n even
In(ﬂ_g): &
(n—3)%*(n—>5)? n odd
64
1,(3)=0
1,(2)=0
1,(1)=0
1,(0) =0.

Induction on £ may be useful to go from the lower cases to higher ones.
REMARK: If the regeneration principle holds, then the proof of Zarankiewicz’s problem for the
“minimum intersection number of edges joining every vertex of one set to every vertex of another
set in a bipartite graph would follow from his symmetric construction.

I am indebted to I. Heller, and Paul Kainen for helpful comments and suggestions.
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