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The Structure of Higher Degree Symmetry Classes of
Tensors*
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The paper is concerned with symmetry classes of tensors which arise from a permutation group
G and irreducible character x of G. In case x is of degree 1, a well-known algorithm is available for
inducing a basis of the symmetry class from the underlying vector space. When the degree of y is
greater than 1, no comparable construction has been discovered. The difficulties are discussed and
results obtained in some special cases.
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1. Introduction

v . . ”
Let ¥ be a complex inner product space of dimension n. Let é)V denote the mth tensor power
of V, and let v,®. . .®v,, be the (pure or decomposable) tensor product of the indicated vectors. The

inner product in V' induces an inner product in &V which is completely determined by its action on
the set of decomposable tensors, namely

n

0, ... R, w®...Rw, = “ (Vewy). (1)
=1
By S,.,, we mean the full symmetric permutation group on {1, ..., m}. If o € S, there is a

(unique) linear operator P(o=") on &V which has the effect P(c™"w,® . . . @y = voy®@ . . . B0 oimy
for all vy, . . ., vy, € V. It follows that P(o) P(m) = P(om). Moreover, from (1), P(o)* = P(o™"). Let G
be a subgroup of S,,, and x an irreducible (complex) character of . Define

_ x(id) 3

TG.
CX =50 &

x(o) P(o),

where id = identity of G, and o(G) is the order of G. By the orthogonality relations for characters,
T(G, x) is an orthogonal projection onto its range Vx(G) (see, e.g., [5]' or [12]). The subspace Vx(6) is
called a symmetry class of tensors [8]. Several authors have exploited these symmetry classes to
obtain information about so called generalized matrix functions (see, e.g., [5], [8], [9], and [11]).

Until recently, however, most of the work has involved only linear characters. One reason for
this preference is the existence, in the case x(id) = 1, of a convenient basis for V'yG) which is
induced from a given basis of . In the case x(id) > 1, it is not easy to obtain such a basis. A more
precise idea of our interest must await further introductory material.

With T',,., we denote the set of functions from the first m positive integers to the first n. It is
convenient to think of I',, , as a set of integer sequences of length m. Thus
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Fmn={y=0D, .., ¥m): 1=yt)=<n, 1=t=nm}.

If e, ..., e, is an orthonormal basis of V/, it is well known (see, e.g., [8]) that {e§ =

eviy® . .. Qeym:y € 'pm} is an 0 n. basis of @V. It follows that {e% = T(G, Ye % : v € Imn}
must span V' 4G). (In general, write x, *. . * v, = TG, x)v,® . . . Qv,.) If a, B € 'y, observe that

(es, ef) = (T(G, el TG, x)eR)
(T(G, x) e%) (2)

(ld) m
= (C) G H (Eaottr» €81))-

=1

It follows from (2) that (e%, e%) = 0 unless there is a m € G such that 8 = am. We will say that a« =
B (mod G) if there exists a m € G such that B8 = am. Clearly, “= (mod G)” is an equivalence
relation.

If B = am, for some fixed 7 € G, then

X(ld - =
> H (€ at)> € amoty)

u
t=1

(e%. e

X(Ld) m

= oC) } x(7~17) I_Il (et €anty) (3)
D
= w0 2, X

where G, = {7 € G: ar=a} is the stabilizer subgroup of «. In particular, by taking 7 = id in (3)
one sees that e¥ # 0, if and only if

aeQ={yel, . 2 x(o) £ 0},

i.e., () consists of those sequences y which have the property that the restriction of x to G contains
the identically 1 character as a component. (Although not explicit in the notation, () depends on m,
n, G and x.) It follows that {e*: we()} spans V 4G).

Now, if @« = B (mod G), then G, is conjugate to Gs. Therefore, () is a union of equivalence
classes, i.e., if @ = B(mod G), then ¥ = 0 if and only if e = 0. Let A be a system of distinct
representatives for the equivalence classes in Q. (In practice, A is usually chosen to consist of those
elements of () which come first, in lexicographic order, in their equivalence classes.) Then

Q= U {ao: oeG} (4)
aelA

THEOREM A ([10)): Let e, . . ., e, be a basis of V. Then V{G) is the direct sum of the spaces
(e%,: o €G), as a ranges over A. (The angular brackets denote linear closure.)

ProoF: Choose the inner product on ¥ with respect to which e, . . ., e, is orthonormal. The
theorem follows from (4) and the definitions.

The result which makes the degree one case so fruitful is this:
THEOREM B (Marcus and Minc [9)): Let e, . . ., e, be a basis of V. Suppose x(id) = 1. Then
{e& «a € A}is a basis of VA(G).
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PRrOOF: It is routine to verify that P(0) commutes with T(G, x) for all o € G. Moreover, if x(id)
= 1, then P(o)TG, x) = x()TG, x). It follows that e¥, = x(o)e% if x(id) = 1. So, each

subspace in the direct sum of Theorem A is one dimensional.

That {e%: « € A} is not a basis of V() when x(id) > 1 is evident from the following result of
S. Pierce [12]:

THEOREM C: Let « € A be arbitrary. There is a o € G such that e* and e*., are linearly
independent if and only if x(id) > 1.

R. Freese [5] has improved Theorem C. Let s, = dim<e¥*,: o € G>. Freese’s result is this:
THEOREM D. If « e I, ,, then

Sq = X(ld) (Xv 1)(§m

i.e., sqis x(id) times the number of occurrences of the identically one character in the restriction of X
to Gg.

To conclude this section, we list a number of facts about s, which follow from our discussion
above.

() sq # 0, if and only if « € ().

(i1) :_ s = dimV (G)

Q€A
(i11) x(td) = sq4 < x(id)? for all « € ().
(iv) s = [G:G4), for all a. (In fact, it is clear from Freese’s proof of Theorem D that s, < [G:G4]
unless y is identically 1 and G = G.)

(v) led]l* = sa/[G:G d, if e;, ..., eyis an o.n. basis of V. (See (3).)

2. Results

Presently, the outstanding problem is to choose from {e%,: oeG} a basis of (¢,: oeG). In
this generality, the task seems quite difficult. We are able to supply an answer (Theorem 4 below)
only in a very special situation.

As a first step toward analyzing the dependence relations among the elements of
{e*o : 0 € G}, « € (, one is naturally led to consider

G* = {0 € G: there exists co(0) such that ef, = co(0)ed}.

(If x(id) = 1, then G* = G and ¢, = x. Moreover, G , C G* for all « € ().)

We first claim that G* does not depend on the basis ey, .. ., e,. Let vy, ..., v, be another
basis of V. Define a linear operator T on V' by T'(e;) = v;, 1 =i < n, and linear extension. It is
well known (see, e.g., [10]) that T induces a linear operator K(7') on V' (G) such that

K(T)(xl* L kX)) = (Txl)* . -*(Txm)s

for all x;, ..., xy € V. Since T is invertible, it follows that K(7) is invertible. Indeed, K(7)™! =
K(T7"). Applying K(T') to both sides of the equation e}, = c4(0) e%, one obtains v¥,= co(0) v¥.
THEOREM 1: For all « € ), G%is a group and c «is a linear character on it.
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Proor: If o, 7 € G, then

P(z™) eﬁo’

*
e(llTﬂ

colo) P(mr71) e}

= colo) et

colo) colm) ek.

Thus o 7 €G* and, since e% # 0,cqolom) = col0) cdm).
We remark (without proof since the result seems peripheral to the present undertaking) that the
restriction of x to G* contains c, as a component for all « € (), i.e.,

(x> Dgo > 0 implies (x, ca)ge > 0.

The converse fails.
COROLLARY 1: If a € (), then s, = [G: G]. (Indeed, if S* is a system of right coset
representatives for G* in G, then U ieﬁ”: 7 € S} spans Vx(G).)

(It follows from Corollary 1 and (iii) of section 1 that x(id) = [G: G*] for all « e ). This
inequality may be of some interest in itself because G is generally not normal in G [1, Theorem
(53.17)].)

ExXAMPLE 1: Let G = S3. Let x be the irreducible character of G of degree 2, and take o = (1,
1, 2). Then G4 = S,. If G4 were not all of G¢ then G* would be all of S3, implying that [G: G*] =
1 < sq = 2, contradicting Corollary 1. Therefore, G, = G% and [G: G®] = 3. In particular, it’s not
true in general that s, = [G: G*].

Subsequent developments will make clearer the relationship between G, and G* We now make
another definition. Let G be a subgroup of S,,. Let x be an irreducible character of G. Define

Gy ={oeG: |xlo)| = xtid)}.

It is easy to see that Gy is a normal subgroup of G and A = x/x(id) is a linear character on it [4, p.
35], [11]. In fact, Gy consists of those o which are represented by scalars in any representation
which affords x.

THEOREM 2: For a € ), GXCG®, and the restriction of cqto Gy is A.

Proor: Let o € Gy. Then

@) «=
P = f)((l((,)) N x(mP(mo) eq
7)) meG

id) <~
= xt — N (7o) P(7) eq
0((1' 7;&

id |
_ Xt ‘) No) Y x(mP(7) e
O(()) n‘:G

= No) ef.

COROLLARY 2: For all o € ), GGy CG~
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EXAMPLE 2: It is tempting to conjecture that G,Gx = G* Unfortunately, this is not always the
case. Let G = Ss. Suppose x arises from the frame (3, 2). Let « = (1,1,1,2,3) and let o be the
transposition (45). Then ao = (1,1,1,3,2), and a brute force computation shows that e} = e%,. In
particular, since Gy = {id} and G, = Ss, it follows that (45) € G* \G G .

It was proved in [11] that x(id)> = [G: Gx], so the inequality s = [G: Gx] which arises from
Theorem 2 is not very interesting. However, one might be tempted to conjecture that x(d)*? =
[G: G Gx] for all a € ). A counterexample follows.

EXAMPLE 3. Let G be the subgroup of S; generated by {(14)(23), (1234)}. Then G is the dihedral
group D4 of order 8. Let x be the irreducible character of G of degree 2. Then x(d) = 2 =
—x((13)(24)), and x is zero on the rest of G. Thus, Gx = {id, (13)24)}. If « = (1,1,2,2), then G, =
{id, (12)(34)}, and «a € A. Moreover, GoGx = {id, (12)(34), (13)24), (14)(23)} and [G: G Gx] = 2,
which is less than x(id)? = 4.

It is worth pointing out some other features of Example 3: Since

1 <sa=[G: G=[G: Gu6Gx] =2,

it follows that s, = [G:  GG«], and hence G* = G G x. Moreover, x(id)> = [G: Gy]. In a moment,
we shall see that these observations are connected. First, however, it should be mentioned that the
case of equality in x(id)* = [G: Gy] is related to some recent work of F. DeMeyer, S. M. Gagola,
G. Janusz, K. M. Timmer, and J. Yellen ([2], [3], [6], [13], and [14]) in which the case of equality in
x(d)? = [G: Z(G)] is studied. In particular, since Z(G) C Gy, [G: Z(G)] = x(id)* implies
[G: Gy = xGd)*

THEOREM 3: If x(id)* = [G: Gx], then s = [G: G Gx] (and therefore G* = G Gy) for all
a e ()

Proor: If [G: Gx] = x(id)% then x(o) # 0, if and only if o € Gy [11]. It follows from Theorem
D that

x(id)

5. = AT A
e o(G o) 0eGy xa)
)2 i
= 5_(_1_{_) N o),

“( (’ u) U'E(:ﬁ Gy

where N = x/x(id). Since s, # 0, and since \ is a linear character, it must be that A(o) = 1 for all
geGyM Gy Thus

So = X(@d)? o(G o M Gy)o(G o)
= 0(G) oGy N G)o(Gy) o(G o)
= [G: GoGy]
from elementary group theory (see, e.g., [7, p. 45]).
THEOREM 4: Let ey, . . ., e, be an o.n. basis of V. Let my, . . ., m be right coset representatives
for Gy in G. Suppose x(id)? = [G: Gx]. If a€Q is such that G, C Gy, then {e¥;: 1 =i=<

[G: G l} is an orthogonal basis of (e¥s: 0 € G).
Proor. Let AN(o) = x(0)/xiid), o € Gx. Since a € (), it follows that \ is identically 1 on G
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Now,

* * - *
(eame eom')-) - (e(h e:xkﬂj‘mfl>

= Xid) N X(Tr,-rr,-"r), from (3)

x(id) x (77,»77]-‘1)/[(): Gal.

The result follows because x(mm;7") #0 if and only if i = j (again appealing to [11]).
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