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In this paper a set of approximate equations is derived which is applicable to very nonadiabati c, 
nondissipative, buoyant flows of a perfect gas. The flows are assumed to be generated by a heat source in which 
the heat is added slowly. The study is motivated by the occurrence of such f] ows in fires. There, the time scale 
associated with the fire growth and resultant f]uid moti on is usually long compared with the transil lime of an 
acoustic signal (based on the temperature derived from the heat added) across the spatial extent of the fire. The 
appro' mate equations are characterized by a spatially uniform mean pressure appearing in both the energy 
equa vn and the equation of state with the spat iall y nonuniform portion of the pressure on ly appearing in Ihe 
momentum equation . Therefore, the pressure remains almost constant in space while significant density and 
te mperature variations, such as might occur in a fire, are allowed. The approximate equations are shown to reduce 
to Ihe Boussinesq equations when the heat add ition is mild. These equations are also shown in general to admit 
internal-wave motions while " filtering out" high-frequency, acoustic waves. ]n addition, they are shown to be 
express ible in conservation form, the pressure sati sfying an elliptic equation whose homogeneous terms are 
d e rivable from the wave equation by le tting the sound speed become infinite. An equation for the mean pressu re 
is also obtained. For the special case of a room heated al a unifonn rate with a small leak to the outside, an 
approximate solution for the mean pressure is determined expli citl y. 

Key words: Buoyanl flow ; fire research; gravity-driven flows; model equal ions; nonadiabatic flow. 

1. Introduction 

The motions considered in this paper are those which arise solely due to localized addition of heat to an 
otherwise qui escent fluid in the presence of gravity. The principal application of interest to the authors is the 
movement of smoke and hot gases caused by fires. However, the formali sm introduced will be appropriate to 
rederive equations previously used to describe rapid heating by a laser and equations which describe 
detonations, as well as those appropriate to fire research. 

The purpose of this paper is to obtain formally a set of equations of motion which permit description of large 
temperature and density variations due to volumetric heat addition without requiring a simultaneous 
description of acoustic oscillations arising because of the elastic properties of the fluid. Such model equations 
include the important features of buoyant flows without requiring excessive computer time necessary to 
determine high-frequency sound waves when numerically integrated. In this sense the equations "filter out" 
the sound waves while describing the lower frequency, organized motions due to buoyant effects such as 
internal waves. 

Such filtering is analogous to that employed previously to eliminate acoustic waves from the equations of 
motion in studies of atmospheric dynamics [1-4]. However, both the procedure used to implement the filtering 
and the final equations are quite different. Equations closely related to those derived in the present study 
have been used in attempts to describe both steady-state natural convection over a hot horizontal surface [5] 
and transient two-phase flow arising in nuclear reactor research [6, 7]. In each of these studies, large density 
variations due to temperature changes are admitted, but compressibility effects are suppressed. In the reactor­
related papers, the liquid-vapor mixture is modeled as a thermally expanding, homogeneous fluid, and the 
discussions are closely tied to computer code development. In neither case has the effect of a closed 
environment on the pressure been considered in detail (see sec. 5). To the authors' knowledge, moreover, no 
systematic derivation of these equations has been prestI1ted previously . 

This derivation is different than that used when considering most atmospheric studies. Although the 
atmosphere is indeed thermally driven, the sources of heat are sufficiently diffuse that direct heating is 
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normally neglected, its principal effect being to stratify the atmosphere. The induced motions are in fact 
usually assumed to be nearly adiabatic disturbances to a pre-stratified state of rest (see ref. 1, 8 and 9 for 
example). This stands in direct contrast to the nearly isobaric processes in any initially (nearly) unstratified 
environment of interest in fire research. 

Another difference is the role played by the Boussinesq equations. Considerable attention has been given 
in the geophysical and astrophysical literature to the conditions under which these equations may be used 
[10-12]. By contrast, their utility in fire research seems to the present authors to be rather limited, although 
many useful studies based on them have been performed. The equations derived below contain all the terms 
retained in the Boussinesq equations. However, the large variations in density caused by the local heat 
addition prevent the linearization of density about any nominal, unperturbed value. 

The fluid is taken to be an inviscid non-heat conducting perfect gas. The magnitude and the spatial and 
temporal variation of the heat source are taken as known. These approximations are justified because under 
conditions characterisitic of even a small room fire, the Grashof numbers (representing the ratio of the inertial 
to viscous forces for natural convection) are large enough for molecular transport phenomena to be important 
only in the highly convoluted flame sheets which constitute the region of intense heat addition. The study of 
the detailed flame structure of real fires is an extraordinarily complicated subject in its own right, and is 
bypassed here by specifying the heat source. Batchelor [16] gives a brief but relevant discussion of the 
applicability of the inviscid equations in the context of atmospheric motions. It should be noted that such 
simplifications do not preclude a description of turbulence; but no turbulence model is explicitly included in 
this study. Simple models of smoke and hot gas transport which neglect molecular transport phenomena have 
been reasonably successful in predicting global properties of flow fields [17]. The present work is intended as 
a first step towards more detailed studies along these lines. 

In the next section the model equations are derived using a dimensionless formulation based upon the 
characteristics of the (volumetric) heat source. In section 3 some of the properties of this system of equations 
are examined. Particularly, it is shown that internal waves will be described while acoustic waves are not 
permitted by this approximate set of equations. Also, the equations are rewritten in conservation form, a form 
often preferred for numerical computations, and the mixed hyperbolic, elliptic nature of the equations is 
noted. In the fourth section a discussion is given to show how the Boussinesq equations are obtained as a 
special case of these equations. In the final section, an equation for the mean pressure is obtained. This 
equation is novel and is a direct result of the filtering analysis performed in section 2. An approximate 
solution is obtained for the special case of an enclosure heated at a uniform rate with a small leak to the 
outside. 

2. Formulation 

The equations of motion for a perfect gas in the presence of an energy source of strength Q may be written 
in the form: 

ap a 
- + -Cpu;) = 0 
at ax; 

ap 
+ -- pgn; = 0 

ax; 

p = pRT 

(1) 

Q 

Here p is the density, p the pressure, T the temperature, and U; the velocity at any position x; and time t. 
Also, R is the gas constant, C p the constant-pressure specific heat, and nig is the gravitational acceleration. 

The fundamental assumption on which this paper is based is that the source strength may be usefully 
characterized in the form: 
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Eo - (Xi t) Q = - Q - ,-
to l to 

(2) 

Thus Eo is a dimensional constant which determines the strength of the source. The quantity Q is a fun ction 
of order unity which varies smoothly with respect to its arguments. The independent variables Xi and t are now 
made dimensionless with respect to l and to respectively, where l and to are the length and time scales 
describing the spatial extent and the temporal variation of the heat source. The dependent variables are 
scaled as follows: 

P = Po R( y;, T) 
Eo 

T = - O(Yi, T) 
PoCp 

( y - 1 Eo) 1/2 
Ui = -- - V;(y;, T) 

y Po 
y-l 

p = -- EcF (Yi, T) 
Y 

Xi = ly;, t = toT. 

(3) 

The temperature scaling used in eq (3) is chosen so that the time derivatives in the energy equation always 
are the same magn itude a the source te rm. The d ensity is normali zed with respec t to an am bient level Po 
which occurs in the absence of any heat add ition. The pressure scale then follows from the equation of state. 
The veloc ity is non-dimensionalized with respect to a thermal (sound) speed based on the temperature scale . 
The specific heat ratio is denoted by y. 

Substituting eqs (2) and (3) into eq (1); the dimensionless equations of moti on are: 

aR a - + 0- (RVi) = 0 
aT an 

{aVi ",[v a Vi] } ",ap. _ gt/ 1 1) R -+ u . - +U- - --ni-'l aT Jay; aYi l 0 
(4) 

{ ao ao} y - 1 {ap ap} -R - + OV; - - -- - + oV; - = Q(y;, T) 
~ a~ y ~ a~ 

p =RO 

The parameter 0 is defined by 

This parameter plays a fund amental role in what follows. Physically, it represents the distance, based on the 

characteristi c velocity ((y ~ 1) Eo/Po) t, a disturbance can travel during the time the source changes 

appreciably divided by the spatial extent of the source. The magnitude of 0 is directly related to the heating 
rate. The case 0 « 1 corresponds to rapid heat addition, realized in laser heating devices. The case 0 ~ 0 
(1), an intermediate case, describes detonation phenomena. Finally, the case 0 » 1, corresponding to slow 
heat addition, occurs in both controlled combustion and in fires. 

The mathematical task now reduces to displaying the d ependence of the reduced variables defined in eq (3) 
upon 0 in the three cases described above. The dominant terms in the expansions of these variables as 
fun ctions of 0 then satisfy equations which are subsets of eq (4). The expansions, and thus the resulting 
equations, are different for each case. They will now be treated in order. 
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(i) Fast heat addition (6 « 1). 
The dependent variables may be expanded in the form: 

P = pta) (Yi' T) + 0(6) 

R = R<o) (Yi , T) + 0(6) 

() = (}<o) (Yi ,T) + 0(6) 

Vi = 6{V\0)(Yh T) + 0(6)}. 

Substituting the expansion (5) into eqs (4), the equations of motion reduce to: 

(5) 

(6) 

Equations (6) are a slight generalization of those used by Rehm [11] to study the laser bleaching wave. Note 
that once the heat addition model for Q is specified in terms of the thermodynamic variables and their 
gradients, the momentum equations are decoupled from the remaining three of eqs (6). Moreover, the density 
remains constant. This situation arises because the gas has not moved appreciably during the short interval in 
which the heat is added. The quantity Po gl/E ° is usually quite small in laser applications. 

(ii) Intermediate heat addition (6 ~ 0(1)). 
When 6 is 0(1), no terms of eq (4) (except possibly those due to gravitation) can be ignored. In this case, it 

is easier to put 6 = 1. This is equivalent to replacing the length scale l by to(Y - 1 Eo) t. This is a 
Y Po 

mathematical statement of the fact that the ratio of the length scale to the time scale is determined by the 
wave speed in a detonation [14]. The speed of such a front is of the same order as the thermal speed 

( Y-1Eo)t. 
Y Po 

(iii) Slow heat addition (6 » 1). 
Since 6 is large, an expansion in negative powers of 8 is anticipated. Inspection of the energy equation 

shows that the spatial convection terms are too large by a factor 6 to be driven by the source term. If the 
velocity is reduced by a factor 6- 1 , the momentum balance requires the pressure gradients be reduced by a 
factor 6- 2 • The expansion then becomes: 

Vi = 6-1 {Wi + 0(6-2)} 

P = P<O)(T) + 6-2P(1) 
() = (f0) + O( 6-2) 

R = R<o) + 0(6-2). 

(7) 

The suppressed arguments of all dependent variables except P<o)(T) are both Yi and T. Substitution of the 
forms (7) into eqs (4) yields: 
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(8) 

{
a(J<O) a(J<o)} y - 1 dP(o) _ 

R(o) -- + V}0) - - - --- -- = Q 
aT ayj y dT 

R(O)(J(O) = P(O)(T) . 

Note that the expansion (7) implies that the spatial variations In pressure are extremely small. The 
reference pressure level P<O)( T) can be determined from the boundary conditions. For example, the pressure 
variation in an enclosed volume W subject to heating is given by (see sect. 5 for a more detailed derivation): 

1 dp<o) f -
- W - = Qd3y . 
Y dT W 

(9) 

If the domain is open to the atmosphere, a point can be found at which the pressure is specified as P <'" say. 
Then: 

P<O) = - y- P "'. 
Y - 1 Eo 

This reference pressure point can be taken as the origin of the verti cal coordinate yjnj without loss of 
generality. 

If the quantity gf;, / l « 1, then the gravitational force may be neglected . This situation arises frequently in 
studies of nearly isobaric combustion processes [13]. However, in fire research there are many problems for 
which a == gf;,/ l is 0(1). It is then convenient to redefine the time scale to such that a = 1. The velocities are 
then O((gl)t) in magnitude, while the spatial pressure perturbation is O(pgl ) and the tem perature is 

o {p~~p} 
In dimensional form, the approximate equations of motion (eqs (8)) are: 

( aUi aUi) a(p - Po) p - + Uj - + ---- - pn;g = 0 
at aXj aXi 

(11) 

( aT aT) dpo pCp - + Uj - - - = Q 
at aXj dt 

PO(t) = pRT. 

Since Po is necessarily indepe ndent of position, it follows from the equation of state that the ambient 
atmosphere in the absence of heating must be taken as having a constant density. This limitation is ultimately 
traceable to the assumption stated earlier that the vertical extent of the source is much less than the scale 
height of the atmosphere. It is often convenient to replace the variable P - Po by a reduced pressure p* , 
defined by: 

p* = p - Po - pogx;n;. (12) 
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Equations (11) are then altered in that p must be replaced by p - Po in the gravitational force term and 
P - Po replaced' by p* in the pressure gradient term. With this transformation, eqs (11) appear more similar 
to the Boussinesq equations. 

3. Properties of the Derived Equations 

In this section two properties of eqs (11) will be examined. First, it will be demonstrated that these 
equations contain buoyant effects without including the elastic effects of the medium. This is demonstrated by 
examining small-amplitude waves and showing that internal waves (buoyant effects) are allowed in this 
description while acoustic waves (elastic effects) are excluded. Second, the conservation form of eqs (11) are 
examined and the mixed hyperbolic and elliptic nature of these equations is noted explicitly. 

To demonstrate the first property, we assume that the flow has evolved to point where, in eqs (11), the 
mean thermodynamic variables are stratified so that, p = Poo(z) and T = Too(z) while P = Po = constant. (For 
convenience, the spatial coordinates will be denoted by x, y and z.) All the flow variables are perturbed ,about 
these quantities. For simplicity, the heat source is taken to be zero. Also, we will take the buoyancy frequency 

N 2 == - g dpoo / Poo to be constant (so that the density is stratified exponentially). The type of waves described 
dz 

by eqs (11) is not changed by these simplifications. The equations (with variable N2(z)) would describe the 
fluctuations produced in a closed room following a fire which had stably stratified the environment outside the 
buoyant plume and then gone out after consuming the available oxygen supply. 

The perturbed dependent variables are substituted into eqs (11), and the equations are linearized in the 
perturbation quantities. The temperature perturbation can be eliminated from the resulting equations. 

From the momentum equations and the continuity equation, the velocities can then be eliminated to give an 
equation coupling the density and pressure perturbations. 

From the energy equation and z-component of the momentum equation, the vertical velocity can be 
eliminated to give a second equation coupling the density and pressure perturbations. These two coupled 
equations can then be used to obtain a single equation for the perturbation pressure ji: 

(13) 

The dispersion relation is obtained by assuming waves of the form 

p = A exp [ - : z + i{xkx + yky + zkz - wt)] . (14) 

Then 

l (N2)2] N2 - w 2 

- kz 2 + 2g + w2 (k~ + k~) = 0. (15) 

This dispersion relation is the one which describes internal gravity waves. For the two-dimensional case 
(i.e. when there is no dependence of the motion in the y-direction), the equation was derived and the waves 
discussed, for example, by Lamb [18], by Mowbray and Rarity [19] and by Whitham [21]. The equations do 
not permit acoustic waves, as claimed earlier. In the derivations referenced above, the starting equations are 
taken to be those appropriate for an incompressible fluid . The dispersion relations and properties of more 
general acoustic-gravity waves in a compressible, stratified medium are discussed in books by Eckart [8], and 
by Yih [20] and by Dutton [9] for example. 

It is important to note that the model equations contain only internal waves and not acoustic waves. 
Apparently some confusion has existed in the past concerning what assumptions are necessary to assure this 
filtering. For example, in the paper by Gough [4], where the "anelastic approximation" is derived and 
discussed, the continuity equation is replaced by V . (pu) = 0, and it is stated that this approximation is 
necessary in order to remove the acoustic modes of oscillation. As seen above, the time derivative of the 
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density in the continuity equation need not be eliminated, however. Rather, acoustic modes are removed 
when the pressure in the momentum equation is decoupled from density and temperature fluctuations arising 
through the equation of state. 

Many numerical methods for solving fluid mechanics problems are based on finite difference schemes 
obtained from conservation forms of the equations of motion. The appropriate forms of the continuity and 
momentum equations are given by: 

ap a 
- + - (pUi) = 0 
at aXi 

(16) 
a a ap 
- (PUi) + - (PUiUj) + - - pgi = o. 
at aXj aXi 

Equation (16) may be thought of as allowing the computation of p and Ui at a time t + & given information 
about all quantities at t. In order to comple te the hypothe ti cal computation of the flow variables at t + &, 
equations for the pressure must be determined. Thi s determination consists of two parts; an equation for the 
reference level Po(t), and an equation for the spatial distribution of the overpressure P(X i, t). The eq uation for 
Po(t) is derived and discussed in section 5. A solution for this reference level pressure is also presented . 

The equation for the overpressure P is obtained by dividing the momentum eq (11) by p and taking the 
divergence of the resulting expression. Then , using the continuity equation: 

1 d ( 1 dPO) a (y - 1 Q) - ~ it ;;; J; + ~ - Y- Po (17) 

Note that the terms not involving P in eq (17) are all known at time t + &. Since the density p is also known 
at l + &, P satisfies a linear self adjoint elliptic equation at each instant of time. The appropriate boundary 
conditions are a spec ifi cation of the normal derivative ofp obtained from evaluation of the momentum eq uation 
at the boundary. Such a specification ensures that the consis tency condition for the existence of a solution to 
eq (17) is satisfied automatically. This eq uation is the generalization of Poisson's equation appropriate to an 
inhomogeneous fluid. It remains an elliptic equation, despite the density variations, because the sound waves 
which would lead to a finite propagation speed (and hence to a hyperbolic system of equations) have been 
eliminated. 

This can be seen quite readily if the steps leading to eq (17) are performed on the full equations (eqs (1)) 
rather than the reduced set (eqs (11)). The result is: 

- ~~~( Ui aPJ ] 
P at axJ 

[ 1 ( op) 2 y - 1 a (Q) a ( aUi) 1 
yp2 ~ + - y--a; ;; + aXi Uj aXj . (18) 

The quantity C2 in eq (18) is the square of the local sound speed. Equation (18) is the wave equation for the 
pressure, a hyperbolic equation generalizing eq (17). The terms in the second brackets on the right hand side 

1 a2p 
above, together with the term - 2 -2 ' also appear on the right hand side of eq (17). 

pC at 
Equation (18) can be reduced formally to eq (17) by nondimensionalization and expansion of the dependent 

variables (retaining only terms 0(1) and neglecting 0(0- 1)) as in section 2. When this is done, terms linear in 
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pressure gradients and quadratic in velocities must be retained. Products of pressure gradients and velocities 
are of higher order and may be ignored. Then eq (18) reduces to eq (17). 

The overall system of equations is neither elliptic nor hyperbolic. The mixed character of the equations 
may be seen by noting that the energy equation (eq (11)) is a hyperbolic equation for T. Indeed, the overall 
system may be either elliptic or hyperbolic (or neither) depending on the problem under consideration. 

The variable density coefficient in the pressure equation complicates the task of numerical solution. 
However, relatively efficient schemes for handling equations of this type have been developed [22]. Thus, 
practical finite difference computational schemes based on eqs (16), (17) and an equation for the mean 

pressure (discussed in sect. 5) are feasible. 

4. The Boussinesq Equations 

The derivation presented in section 2 is based on two assumptions. First, the length scale, time scale and 
the temperature scale associated with the volumetric heat source are such that the heat addition is slow. This 
assumption implies that the pressure over a large region surrounding the source is almost uniform in space 
(while it may vary with time) during heating. However, it does not imply any restriction upon the magnitude 
of the density (or temperature) variation during heating. The second assumption is that the flow velocities are 
induced by buoyant effects. This assumption relates the magnitude of the temperature variation, the density 
variation and the flow velocities induced by the heat source. 

Batchelor, in obtaining conditions for which atmospheric motions are determined only by an overall 
Richardson number (the ratio of buoyancy to inertia forces), has discussed the possibility of atmospheric 
motions where the pressure varies only slightly from hydrostatic, while the density and temperature deviate 
significantly from hydrostatic values [16]. Batchelor was concerned explicitly with adiabatic flows. However, 
for nonadiabatic motions the same possibility exists when heat is released slowly, as shown by the derivation 

in section 2. 
The Boussinesq equations arise when two additional assumptions are made. The first assumption is that the 

scale height associated with the static density variation (the density variation in the absence of motions) is 
much larger than the vertical length scales of interest. Then the static density variation from its mean value is 
small. The second assumption is that the density variations produced by the heat source are small. These are 
the assumptions made by Speigel and Veron is [10] in their derivation of the Boussinesq equations. 

The height scale associated with hydrostatic variations in the thermodynamic variables was already 
assumed to be much larger than the vertical length of interest in section 2. Therefore, the spatial variations in 
temperature and density (as well as in pressure) in the absence of motion were taken as small, satisfying the 
first assumption stated by Speigel and Veronis. (In cases of practical interest in fire research, the hydrostatic 
variations of these quantities are negligible compared with variations induced by the heat source.) The second 
assumption, that motion-related temperature and density variations are small, implies that the temperature-

E E 
variation scale _0_ is small compared with the nominal ambient temperature To: hence we assume __ 0_ == 

PoCp PoCpTo 
E <ii 1. 

With these additional assumptions (and a change in the time scale discussed below), the Boussinesq 
equations can be derived formally from eqs (8) by expanding the dimensionless dependent variables in a 
series of powers of E. (This second expansion implies that the Boussinesq equations are obtained by a two­
parameter expansion of dependent variables in terms of parameters I/f) and E. ) However, rather than 
performing this second expansion, which is very formal and notationally cumbersome, we demonstrate how 
the Boussinesq equations are obtained from the dimensional equations, (11), in a more physically meaningful 
way. 

As suggested in section 2, we introduce the reduced pressure p* defined in eq (12). We also define a 
reduced density p* and a reduced temperature T* as follows: 

p* = p - Po 
(19) 

For simplicity we assume that Po is constant. Introduction of definitions (12) and (19) into Eqs (11) yields 
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( au; au;) ap* 
(P* + Po) - + u; - + - - p*n;g = 0 

at ax; ax; 
(20) 

( aT* aT*) (p* + Po) - + u; - = Q 
at ax; 

Po = (Po + p*)(To + T*)R. 
, 

The assumption that motion-related temperature and density variations are small implies that the reduced 
density, temperature and pressure must be proportional to E. Since the buoya nt effects drive the flow, the 
acceleration term in the second of eqs (20) must also be proportional to E. This implies that the time scal e for 

motion is t~ = tol Et = (E~) t, and that the velocity scale is proportional to E t. Finally, s ince Q ex Eol to, the 

heat source is proportional to E+, Therefore, with the formal substitutions 

p* = EP 
p* = EP 
T*=d 

U = EiU 

t = t' 1 Et 
Q = EQ. 

Equations (20) become, to lowest order in E, 

wherepo = RpJo· 

(
aU; _ aUi) ap _ 

Po - , + U j - + - - pn;g = 0 
at ax; ax; 

( aT _ aT) -
Po ---; + U; - = Q at ax; 

p T 
- + - =0 
Po To 

(21) 

(22) 

These are the equations, in the absence of dissipative effects, usually d escribed as the Boussinesq equations: 
the density is considered to be constant except where the density difference produces a buoyant force [10]. 

S. The Mean Pressure 

The variable mean pressure level Po(t) is determined from the approximate system of eqs (11) by a 
consistency argument. The continuity equation (the first of eqs (11)) may be multiplied by CpT and added to 
the energy equation (the third of eqs (11)) to obtain: 

y aUk 1 dpo 
--Po(t) - + ---- = Q. 
y - 1 aXk Y - 1 dt 

(23) 
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As mentioned earlier if the domain under consideration is open to the ambient atmosphere, then Po is constant 
and need not be considered further. Now let the domain be a "closed" volume V (the meaning of "closed" will 
be made clear) bounded by a surface A. Integration of eq (23) over V yields: 

{ Y J } V dpo f -- Uini dA Po(t) + -- - = Q dV. 
y-l y-ldt v 

(24) 

Equation (24) is a differential equation for Po(t) whose coefficients are determined by the geometry of the 
enclosure and boundary conditions specifying the normal component of the velocity on the bo.undary. Thus, 
Po(t) is determined by the requirement that the net efflux of fluid from the enclosure be consistent with the net 
rate of heat addition. Note that if the room were truly closed, in the sense that U;T!i = 0 at each point on the 
boundary, the mean pressure would rise linearly for a constant heating rate. This would very quickly lead to 
pressures sufficiently high to cause structural collapse. Most rooms in buildings are not closed in this sense, 
even with doors and windows shut. A more realistic geometry will be discussed below. 

Consider a room of volume V whose general shape is like that illustrated in the insert in figure 1. The room 
is open to the ambient atmosphere at pressure poo only through a crack of length l and height d. The aspect 
ratio lid and the Reynolds number of the crack are assumed to be sufficiently large for the flow in the crack to 
be effectively two dimensional and inviscid. The crack is taken to be near the floor but away from the fire. 
The density of the gas exiting through the opening will then be the ambient value poo until the hot ceiling layer 
formed by the fire plume descends to the floor. Under these circumstances, the efflux is given by the usual 
orifice formula [23] 

(25) 

2000 

400 FORCE ON 2 METER SQ. 
OFFICE WINDOW 

1500 

300 
DOOR CRACK 

en 
z: 

V> 
C> 

1000 ..... 
e ~ z: r .... => 200 z: C> .... 

100 KILOWATT fiRE 500 
100 

0.5 1.0 1.5 2.0 2.5 
TIME, SECONDS 

FIGURE 1. The force on a two square meter window caused by the mean pressure rise in a room during a fire. The fire sizes correspond 
to a small and a large waste-container fire while the room dimensions are those of a typical N .B .S. office. The room is assumed to be closed 
except for a crack of dimensions 75cm by 2.5cm. 

The total rate of heat release for various burning materials is a frequently measured parameter in fire 
research. A useful compilation is given in ref. 17 and the references therein. For the present calculation this 
quantity will be characterized as follows: 

J Q dV = Q 
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The quantity 12 will be taken as the total rate of heat release due to the fire. The losses due to heat transfer to 
the boundaries are unimportant on the time scale associated with the pressure buildup, although ultimately 
they are a substantial fraction of Q. 

It is convenient to introduce non dimensional variables for Po and t. 

(27) 

t = (7T + 2)2(')' -l)QV T. 
7Tl dCoo ,),poo 

The quantity Coo in eq (27) is the sound speed based on the ambient pressure and density. The parameter ~ 
determines the maximum steady state pressure rise attainable for a given fire size and enclosure geometry. 
For most realistic scenarios, ~ ~ 1. Substitution of eqs (25)-(27) into eq (24) and ignoring terms O(c) leads to 
the evolution equation for peT) 

The solution is readily obtained in the form 

dP 

dT 
1 - JP. 

T = log (1 - Jp)-I - JP. 

(28) 

(29) 

Note that P = 1 corresponds to the steady state, so that the final fractional pressure rise measured in 
atmospheres is equal to c. Thus, the pressure rise is directly proportional to 122 and inversely proportional to 
the square of the opening area. Although eq (29) can be plotted as a single curve, it is more instructive to pick 
a specific geometry and display the results in physical units as in figure 1. The fire sizes chosen correspond 
to a small and a large waste container fire [17], while the room dimensions are those of a typical NBS office. 
The crack dimensions are taken to be 75 cm by 2.5 cm. The quantity C is approximately 0.01 for the larger 
fire and the Reynolds number based on crack height is 0(104 ) for the smaller fire. 

At a time t = 2.5 s only a few percent of the original room air has left through the crack, so the hot ceiling 
layer is unlikely to be very deep. Thus, the assumptions underlying the calculation are amply fulfilled. It 
seems that even a rather unspectacular fire can rapidly generate a considerable unbalanced force on a 
structure, which can rupture a relatively weak component like a window. This may be at least a partial 
explanation of the fact, commonly observed, that windows often break in fires. 

In summary, the equations derived in section 2 are ones which we feel are important in fire research and 
may be important in other applications as well. The flows considered are highly nonadiabatic and buoyancy 
effects are dominant, yet the pressure remains almost uniform spatially as the flow evolves. This implies that 
the time scale associated with the heat source, which is assumed to be comparable with the time scale for 
buoyancy effects, is much larger than that time scale required for acoustic signals to equilibrate the pressure 
over the region of interest. The former time is the one of interest for such flows, and therefore, it is desirable 
to remove the acoustic waves so that the time step size for numerical integration of the appropriate equations 
is not limited by the time scale associated with these waves. The equations derived in section 2 accomplish 
this filtering, as shown in section 3. Furthermore, the equations can be written in conservation form, a form 
often preferred for numerical computations. 
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