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1. Introduction

Often a reference material is certified based on data
from more than one measurement method (or from
more than one laboratory). This situation occurs when
no single method can provide the necessary level of
accuracy and/or when there is no single method whose
sources of uncertainty are well understood and quanti-
fied. The intent of using multiple methods is to realize
systematic effects (biases) of individual methods as
variation across the multiple methods results. The multi-
ple methods should be chosen to avoid common sources
of biases, which would invalidate the use of the variation
in estimation of the uncertainty of the systematic effects.

If the biases are statistically independent and are cen-
tered around zero, then the certified value and the ex-
panded uncertainty can be based on a t -interval [1].

Suppose
–
X and s are the sample mean and sample stan-

dard deviation of the results of n methods. The interval
–
X � tn�1,95 s /�n is a 95 % confidence interval on the
population mean of the methods. Here tn�1,95 is the two-
sided 95 percentile point of a t -distribution with n � 1
degrees of freedom.

There are two problems with the use of the t -interval.
First, it rests on the assumptions that there is a popula-
tion of methods whose biases are centered around zero
and that the chosen methods are a random sample from
the population. Second, when the number of methods is
small, the factor tn�1,95 can be very large. For example,
if n = 2, then tn�1,95 = 12.7 and if n = 3, then tn�1,95 = 4.3.
For comparison, if n is large, the value is close to 2.
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To further explore the issues related to the certifica-
tion from multiple methods, we present an example.
Figure 1 summarizes the measurement results of two
analytes for a reference material. The analyte Cd was
analyzed by two methods. The mean and expanded un-
certainty interval (coverage factor k = 2) [2,3] of each
method are displayed on the top plot. Similarly, the
analyte Hg was analyzed by two laboratories and the
results are displayed in the bottom plot. In the Cd case,
there appears to be agreement between the two methods.
It may be reasonable to assume that there are no biases
between the two methods.

However, in the Hg case, there appears to be disagree-
ment between the two laboratories. In the certification
of this analyte, an uncertainty component for the sys-
tematic effects of the laboratories must be considered.
The two problems in using a t -interval for this uncer-
tainty component, discussed above, are present in the Hg
data.

It is the purpose of this paper to propose and justify
a solution to the problem of certifying reference materi-
als based on a small number of methods in which the
systematic effects are not completely understood. We
call this problem the two-method problem , although the
number of methods may be three or four and laborato-
ries may play the role of methods. Section 2 motivates a
set of desirable criteria for a solution and reviews some
of the existing solutions to the problem. Section 3 pre-
sents a solution, called BOB, based on a Type B model
[2,3] of the bias and discusses some implementation
issues and related concerns. Section 4 gives a detailed
worked example of BOB. Finally, Sec. 5 provides some
concluding remarks. Appendix A covers some degrees
of freedom issues. Appendix B presents a Bayesian jus-
tification of BOB based on a hierarchical model. For a
review of the context of the problem in chemical refer-
ence materials, see Ref. [4].

Fig. 1. Examples of measurement results. ICPMS means inductively coupled
plasma mass spectrometer and ID-ICPMS means isotope dilution inductively cou-
pled plasma mass spectrometry. The numbers in parenthesis are the number of
measurements on which the results are based. The uncertainty intervals indicate
expanded uncertainties with coverage factors k = 2.
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2. Criteria for a Solution

An important practical property for a solution to the
two-method problem is that it is flexible enough to han-
dle a wide variety of settings in a straightforward way.
The variety of settings includes the following: (1) the
existence and nonexistence of systematic effects in the
methods; (2) the availability of two to four methods or
laboratories and (3) the existence and nonexistence of a
valid uncertainty evaluation for each method (i.e.,
within-method uncertainty). The alternatives in setting
(1) are exemplified by the Cd and Hg results shown in
Fig. 1. The Hg results are also relevant to setting (3). In
this study, based on knowledge of the laboratories, there
is reason to believe that the expanded uncertainty for
Laboratory 2 is not valid.

A property often considered desirable for a solution is
that it should produce an expanded uncertainty interval
that contains the measurement result of each of the
methods. The justification for this property is that any of
the methods may be the “correct” one since the biases
are unknown. From a statistical point of view, this prop-
erty is not necessary. Statistically, one requires that the
expanded uncertainty interval is believed to include the
unknown value of the quantity being measured (i.e.,
measurand [5]) with a stated level of confidence. Under
the assumptions described in Sec. 1, the t -interval has
the correct level of confidence. However, as stated
above, if the number of methods is small, the interval
may be impractically large.

The solution should possess certain continuity and
scaling properties. For example, if the solution has been
applied in the two-method case and a third method
becomes available, then the result should not change by
a large amount. Related to the setting (1) described
above, the result should not change abruptly as the sys-
tematic effect goes to zero.

In the interest of consistency with current interna-
tional practice, the solution should not be at odds with
the ISO uncertainty guidelines (ISO GUM) [2,3].
Briefly, the ISO guidelines involve expressing the mea-
surement result as a function of quantities whose uncer-
tainties can be evaluated. The uncertainties of these
quantities are expressed as standard uncertainties, which
are propagated to derive the standard uncertainty of the
measurement result. The notation u (X ) is used for the
standard uncertainty of the quantity X . Along with the
standard uncertainties are associated degrees of free-
dom, which are propagated by the Welch-Satterthwaite
formula [2,3]. From the degrees of freedom, a coverage
factor k is determined based on the t -distribution. The
expanded uncertainty is equal to the product of the
standard uncertainty and the coverage factor, resulting
in an interval with a given level of confidence. Often the

degrees of freedom are large enough simply to use a
coverage factor of k = 2.

Finally, the solution should be based on a rigorous
statistical model. A statistical model grounds the solu-
tion on a strong base. The formulation of such a model
clarifies the assumptions of the solution. It also makes
available a large literature of properties and results. Ap-
pendix B addresses this issue.

Before moving on to the proposed solution, we review
currently available procedures. The t -interval approach
has already been discussed. It has most of the above
properties. However, as mentioned above, it depends on
assumptions that may not be valid and may produce
impractically large intervals when there are a small
number of methods. Any similar procedure that esti-
mates the uncertainties associated with the systematic
effects of the methods based solely on the observed data
will suffer from the same problems. This constraint was
one of the guiding principles in the derivation of the
proposed solution.

The Schiller-Eberhardt procedure [6] has been used
for some time with acceptable results. It is motivated by
the desire for the expanded uncertainty interval to con-
tain each of the individual method means. It does not fit
into the ISO guidelines and is not based on a rigorous
statistical model. It has an undesirable scaling property
in that the uncertainty can only increase as the number
of methods increases.

Paule-Mandel [7] was developed as an ad hoc proce-
dure to produce a summary value of results from meth-
ods with differing biases and precisions. Recently, it has
been given a firmer statistical foundation [8]. However,
there are unresolved issues related to the uncertainty of
the estimate. Additionally, it emphasizes methods with
high precision. High precision does not imply low bias.

One final “solution” is to not combine the results if
there is an indication of systematic effects that are not
understood.

3. Type B Model of Bias

In this section, we present a framework for a solution
to the two-method problem. The framework is ex-
pressed in terms of the language of the ISO guidelines.
The model has two components. The first component is
the estimate of the population mean of the multiple
methods. The second component is the deviation of this
population mean from the unknown value of the mea-
surand, i.e., the unknown bias of the population mean.
The possible bias is modeled via a Type B distribution
[2,3]. (The name BOB comes from Type B On Bias).
Type B distributions present a means of incorporating
the available information on the problem. Because they
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are distributions, they can account for uncertainty in the
information. Distributional forms should be chosen that
capture the information in an effective and straightfor-
ward way. These aspects will become more apparent in
the specifics that follow.

The measurement model is given by

� = � + � , (1)

where � is the unknown value of the measurand, � is the
equally weighted mean of the population means of the
methods, and � is the possible bias of � as an estimate
of � . We define � as an equally weighted mean, because
in the majority of reference material applications, it is
difficult to quantify the relative biases of the the meth-
ods. (Greek symbols are used here to emphasize that the
quantities are unobserved and unknown.) Both � and �
require estimates and uncertainties of these estimates.
The natural estimate of � is the sample mean of the set
of method results. Standard statistical theory gives the
uncertainty of this quantity (see example of Sec. 4). For
� it is most often the case in the present setting to
assume that the best estimate is zero. However, it is
recognized that there is uncertainty in the estimate. If
the best estimate were not zero, then according to the
ISO guidelines the measurement result should be ad-
justed by the nonzero amount.

What is required is a procedure to produce the uncer-
tainty estimate of � . To do this, the analyst places a
probability distribution on the value � that best summa-
rizes the available information. The top plot in Fig. 2
displays a simple and useful distribution for this pur-
pose, called the rectangular (also called uniform) distri-
bution. The distribution models the bias as (1) centered
at zero; (2) bounded between �a ; and (3) equally likely
to be anywhere between �a . Under this assumption, the
standard uncertainty of the bias estimate is equal to
a /�3.

The bottom plot in Fig. 2 in conjunction with the top
plot justifies a reasonable choice of a . Here the X1, X2,
and

–
X represent, respectively, the results of the two

methods and the mean of the two results. Thus, a is
equal to (X2 � X1)/2. Under the measurement model of
Eq. (1), this choice of a is equivalent to saying that the
unknown value of the measurand is believed to be (1)
centered at the mean of the two method results; (2)
bounded between the two method results; and (3)
equally likely to be anywhere between the two method
results.

There are other useful Type B distributions that can
be placed on the bias. Another simple distribution is the
normal distribution (see Fig. 3). The normal distribution
places higher probability on values near the center of the
distribution than values far from the center. It is also

Fig. 2. The rectangular (or uniform) distribution.

unbounded meaning that unlike the rectangular distribu-
tion any value is possible. These qualities are repre-
sented by the shape of the distribution. There are several
ways of employing the normal distribution. If the analyst
believes that there is a 95 % chance that the bias is
bounded between �a , then the standard uncertainty of
the bias is a /2. As described above, a reasonable value
for a is equal to (X2 � X1)/2. Note that although the
normal distribution is unbounded, the use of it described
above results in a smaller uncertainty for the bias than
the rectangular assumption described above. It is impor-
tant to note that in the ISO uncertainty procedure only
the standard uncertainty matters and not the actual form
of the distribution.

Fig. 3. The normal distribution.
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3.1 Implementation Issues

The previous section described the general frame-
work of the proposed solution to the two-method prob-
lem. This section discusses some specific details and
implementation issues that will arise in application. We
emphasize that although the use of the rectangular dis-
tribution was highlighted in the last section as a model
for the possible bias, other distributions may be used in
the general framework of BOB. The particular distribu-
tion is best determined by the experimenter based on the
knowledge of the measurement process, previous exam-
ples, or assistance from a statistician experienced in the
area.

Often when there are multiple methods used, the
methods are related. The top plot of Fig. 4 illustrates
such a situation. There are four methods, but three of the
four are related to each other. In this example, three of
the methods are gas chromatography (GC) analyses and
the forth method is neutron activation (INAA). It is
likely that the three GC analyses are more related to
each other than to the INAA analysis. The naive use of
the t -interval approach would be misleading because
these are not four independent methods. One procedure
for handling this case is to combine the three GC results

Fig. 4. Multimethod examples. GC1, GC2, and GC3 represent gas
chromatography using three different columns. INAA means instru-
mental neutron activation analysis. The uncertainty intervals indicate
expanded uncertainties with coverage factors k = 2.

into a single GC result with an associated uncertainty.
Using the combined GC result and the INAA result, the
analyst can apply the Type B modeling described in this
paper.

The Cd results of Fig. 1 display another important
case. In this case, there does not appear to be a between-
method effect. The question arises when to apply the
procedures described in this paper and when one can
assume that there is not a between-method effect. One
way of answering this question is to perform a t -test (or
an F -test if the number of methods is greater than 2) on
the difference between the two results [1]. The t -test, as
typically employed with an � -level of 0.05, may favor
the conclusion that there does not exist a between-
method effect. This conclusion may result in underesti-
mating the uncertainty. We recommend that if the t -test
is used, that the analyst use an � -level of 0.5. Alterna-
tively, the use of BOB with the rectangular distribution,
as described above, may be effective. If there is not a
between-method effect, then the results of the multiple
methods should tend to be close to each other. In such
a case the width of the distribution on the bias (and its
uncertainty) will be small. Thus, there will be little
penalty for including the effect when it is small.

The last case we consider is displayed in the bottom
plot of Fig. 4. Here the result of Method 1 (represented
by the dot) has the lowest value among the four methods.
However, the expanded uncertainty interval of Method 2
extends below the intervals of the other three methods.
In this case it may make more sense to define the Type
B distribution of the bias based on the limits of the
expanded uncertainties. In Appendix A, the presence of
large within-method uncertainties is addressed with de-
grees of freedom considerations.

4. Example

This section presents a worked example that displays
the details of the BOB procedure using the rectangular
distribution. The example is based on the Hg data dis-
cussed in the body of the paper.

Before starting the example, we review some neces-
sary statistical results. Suppose W1, W2, ��� , Wn are n
independent measurements. Let

–
W and s(W ) denote the

sample mean and sample standard deviation, respec-
tively. The standard uncertainty of a sample mean, from
the random variation in the measurements, is equal to

s(W )/�n . (2)

The associated degrees of freedom for this uncertainty
is n � 1. In addition to the uncertainty from the random
variation, there may exist uncertainty from systematic
effects.
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We will make multiple uses of the linear measure-
ment equation given by

Y = aW + bZ , (3)

where a and b are fixed constants with no uncertainty
and W and Z are quantities with uncertainty. Let the
standard uncertainties of W and Z be u (W ) and u (Z ) and
the associated degrees of freedom �W and �Z . In all that
follows, assume that W and Z are independent. From
propagation of uncertainties [2,3], the standard uncer-
tainty of Y is equal to

u (Y ) = �a 2u 2(W ) + b 2u 2(Z ) . (4)

The associated degrees of freedom derived from the
Welch-Satterthwaite formula [2,3], is

�Y =
u 4(Y )

a 4u 4(W )/�W + b 4u 4(Z )/�Z
. (5)

Returning to the example, Table 1 gives the relevant
summary statistics for the results from the two laborato-
ries. For notation, let

–
X1, s1(X ), and n1 be the summary

statistics for Laboratory 1 and likewise,
–
X2, s2(X ), and n2

be the summary statistics for Laboratory 2. In order to
make certain relationships explicit, we use the notation
X1 and X2 to refer to the two laboratory results including
all corrections.

Table 1. Summary statistics for Hg results

Lab 1 2

–
Xi 0.368 mg/kg 0.310 mg/kg
si (X ) 0.011 mg/kg 0.0086 mg/kg
n 4 20
u (Si ) 0.006 mg/kg

Laboratory 1, in addition to the measurement varia-
tion, has a possible systematic effect. The uncertainty of
the effect is quantified as a Type B source of uncer-
tainty, referred to as u (S1). We assume that this uncer-
tainty has infinite degrees of freedom. If it were possi-
ble to identify all the systematic effects in each
laboratory’s measurement process and quantify the re-
spective uncertainties then there would be no need to
use the BOB procedure.

Note in the following calculations, many more digits
are maintained in the intermediate steps than are shown.
This will lead to apparent discrepancies in the equations
that follow, in which only a small number of digits are
displayed.

Step 0: The Measurement Equation
The measurement equation model is given by Eq. (1),

repeated below:

� = � + � , (6)

where � is the unknown value of the concentration, � is
the equally weighted mean of the population means of
the methods, and � is the bias of � as an estimate of � .
Each quantity in the model must be estimated. (We use
Latin letters to distinguish the estimates, which are ob-
servable, from the unobservable unknown values. Un-
certainties will be associated with the estimates, as op-
posed to the unknown values.) The measurement
equation relating the estimates is

Y = X + B , (7)

where Y is the final measurement result, X is the sample
mean of X1 and X2, and B is equal to zero. The final
measurement result is

Y = X + B =
1
2

(X1 + X2)

+ 0 =
1
2

(0.368 + 0.310) mg/kg = 0.339 mg/kg. (8)

We point out here that although the number of measure-
ments for the two methods are not the same, we weight
the results equally because there is no reason to believe
one result is more accurate than the other. The next
steps are the calculation of the uncertainties of X and B
and their combination to obtain the uncertainty of Y .

Step 1: Within-Method Uncertainty
For each laboratory result, calculate the standard

uncertainty. For Laboratory 2, the laboratory result is
X2 =

–
X2. The standard uncertainty u (X2) is given by the

result for the sample mean [see Eq. (2)]. It is equal to

u (X2) = u (
–
X2) = s2(X )/�n2 =

0.0086

�20
mg/kg

= 0.0019 mg/kg. (9)

and the degrees of freedom is equal to �X 2 = 20 � 1
= 19.

For Laboratory 1, the Type B uncertainty associated
with the systematic effect must be included in the un-
certainty. The systematic effect is assumed to be an
additive effect. The resulting measurement equation is

X1 =
–
X1 + S1, (10)
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where S1 is a correction that accounts for the possible
systematic effect. The uncertainty of

–
X1 is equal to

u (
–
X1) = s1(X )/�n1 = 0.011 mg/kg/�4 = 0.0055 mg/kg

and has � –
X 1 = 4 � 1 = 3 degrees of freedom. Although

u (S1) is non-zero, the best estimate of S1 is zero. Using
the results of Eqs. (3)-(5), with a = b = 1 and W =

–
X1

and Z = S1, the standard uncertainty of the Laboratory 1
result is

u (X1) = �u 2(
–
X1) + u 2(S1) = �0.00552 + 0.0062 mg/kg

= 0.0081 mg/kg, (11)

with associated degrees of freedom

�X 1 =
u 4(X1)

u 4(
–
X1)/� –

X 1 + u 4(S1)/�S 1

=
0.00814

0.00554/3 + 0.0064/	

= 14.4. (12)

Note that the term 0.0064/	 is equal to zero. Table 2
summarizes the within-laboratory uncertainties and de-
grees of freedom.

Table 2. Within-method uncertainties

Lab 1 2

u (Xi ) 0.0081 mg/kg 0.0019 mg/kg
�Xi 14.4 19

Step 2: Between-Method Uncertainty
In the BOB procedure, a Type B distribution is used

to account for the possible bias B in the average of the
results of the methods. In this example, we use the
rectangular distribution bounded by the two laboratory
results for B , as described in Sec. 3, for this purpose.
The standard uncertainty based on this distribution is
equal to

u (B ) =
|X1 � X2|

2�3
=

|0.368 � 0.310|

3�3
mg/kg

= 0.0167 mg/kg. (13)

Using Eq. 20 of Appendix A, the degrees of freedom for
this quantity is

�B = �1
2� (X2 � X1)2

u 2(X1) + u 2(X2)
= �1

2� (0.368 � 0.310)2

0.00812 + 0.00192

= 24.0. (14)

Step 3: Combining Uncertainties
First, we calculate u (X ). Recall X = 1

2(X1 + X2) = 1
2 X1

+ 1
2 X2.
Using Eqs. (3)-(5), with a = b = 1/2,

u (X ) = ��1
2�

2

u 2(X1) + �1
2�

2

u 2(X2)

= �1
4

0.00812 +
1
4

0.00192 mg/kg = 0.0042 mg/kg (15)

and the degrees of freedom of u (X ) is equal to

�X =
u 4(X )

(1
2)

4 u 4(X1)/�X 1 + (1
2)

4 u 4(X2)/�X 2

=
0.00424

(1
2)

4 0.00814/14.4 + (1
2)

4 0.00194/19
= 16.0. (16)

Finally, from the measurement equation, Eq. (7),

u (Y ) = �u 2(X ) + u 2(B ) = �0.00422 + 0.01672 mg/kg

= 0.017 mg/kg (17)

and the corresponding degrees of freedom is equal to

�Y =
u 4(Y )

u 4(X )/�X + u 4(B )/�B

=
0.0174

0.00424/16.0 + 0.01674/24.0
= 27.0. (18)

The final summary value and its standard uncertainty
for the results of the two-laboratory study are 0.339
mg/kg and 0.017 mg/kg. The degrees of freedom is 27.
The multiplier for a 95 % level of confidence interval is
2.1, which is based on a t -multiplier with 27 degrees of
freedom (see Table B.1 of Ref. [3]). The expanded un-
certainty is equal to (2.1)(0.017) mg/kg = 0.036 mg/kg.

5. Conclusion

It was stated in Sec. 2 that a guiding principle in the
derivation of BOB was the constraint that solutions that
are based solely on the observed results will produce
intervals whose widths are comparable to the t -interval
with one degree of freedom, i.e., very large. In other
words, two disparate methods give you effectively only
two observations of information. BOB does not pull any
more information out of the data. BOB overcomes the
limitation by bringing in outside information about the
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measurement processes and quantifying this information
in terms of a Type B distribution. The particular distri-
bution is best determined by the experimenter based on
the knowledge of the measurement process, previous
examples, or assistance from a statistician experienced
in the area. In any given application, a reviewer of the
uncertainty may disagree with the result. However, in
BOB, the outside information appears explicitly and
concretely and is open to evaluation. We believe this
explicitness, which Bayesian approaches share, is a ma-
jor strength of BOB.

BOB also possesses many of the desirable criteria
discussed in Sec. 2. In particular, it fits in the ISO
framework, it is simple to implement, and it is related to
a rigorous statistical model (see Appendix B).

6. Appendix A. Degrees of Freedom

The lower plot of Fig. 4 displays an example in which
one of the within-method uncertainties is very large. In
the basic use of the rectangular distribution presented,
the values of the multiple method results are the input
into the uncertainty evaluation, that is, u (B ) = |X2 � X1|/
�12. If these method results have large uncertainties,
the uncertainty evaluation of the possible bias may not
be reliable. Degrees of freedom may be used to over-
come this problem. Degrees of freedom can be thought
of as the uncertainty in the uncertainty. Low degrees of
freedom correspond to high uncertainty in the uncer-
tainty. Formula G.3 of Ref. [2] provides an approxima-
tion to the degrees of freedom of an estimated standard
uncertainty. Using this formula for u (B ) = |X2 � X1|/
�12, the degrees of freedom is

�1
2� (X2 � X1)2

u 2(|X1 � X2|)
. (19)

We suggest the use of the approximation u 2(|X2 � X1|)
≈ u 2(X1) + u 2(X2). Using this approximation, the degrees
of freedom is equal to

�1
2� (X2 � X1)2

u 2(X1) + u 2(X2)
. (20)

The approximation is good when |X2 � X1| is large
relative to u (X1) and u (X2). Under this condition,
|X2 � X1| is equal to X2 � X1 with high probability or
equal to X1 � X2 with high probability. If the condition
is not true the approximation may be poor. Also, when
the condition is not met, the use of the approximation
will result inappropriately in very small degrees of free-
dom. We recommend that the degrees of freedom for the
bias be at least 3. A value of 3 is equivalent to a 42 %

uncertainty in the uncertainty of the bias term. If X1 and
X2 are normal, an exact formula for u 2(|X2 � X1|) is
possible based on the folded normal distribution [9].

7. Appendix B. Bayesian Model

This appendix presents a Bayesian justification for the
BOB procedure. It is more technical than the rest of the
paper and uses standard notation for Bayesian statistics.
See Ref. [10] for an introduction to Bayesian statistics
and the notation used in this section.

Let [x̄1, s1(x ), n1] and [x̄2, s2(x ), n2) be the summary
statistics for the two methods. Let �1 and �2 be the
population means of the two methods. These latter
quantities represent the sample means of a conceptually
infinite number of measurements. Let � be the unknown
value of ultimate interest.

One natural approach would be to build a hierarchical
model around the conditional distribution of �1, �2|� .
We do not follow that path here, because the resulting
uncertainty in � would reflect the one degree of free-
dom problem we are trying to escape. Instead, we re-
verse the situation and build a model around the distri-
bution � |�1, �2. What this model will imply is that if one
knew �1 and �2, then there is no more information on �
in the observed data. In other words, [x̄1, s1(x ), n1] and
[x̄2, s2(x ), n2) only provide information on �1 and �2,
which in turn provide information on � .

It is up to the scientists to answer the question: If you
knew the results of an infinite number of measurements,
i.e., �1 and �2, what is the distribution that reflects the
uncertainty in � , the value of interest? In this appendix,
we model p (� |�1, �2) as a uniform distribution centered
on (�1 + �2)/2 and with full width |�1 � �2|.

We use the conjugate normal model with reference
priors for the parameters as the models for the results of
the two methods. The basic result of the conjugate nor-
mal model is p [�1| x̄1, s1(x )] is the distribution of the
quantity x̄1 + [s1(x )/�n1]tn 1�1, where tn 1�1 has a t -distri-
bution with n1 � 1 degrees of freedom. A similar result
holds for p [�2| x̄2, s2(x )].

With p [�1| x̄1, s1(x )], p [�2| x̄2, s2(x )], and p (� |�1, �2)
given, the posterior distribution p [� | x̄1, s1(x ), x̄2, s2(x )]
is completely specified. Since all the components are
basic distributions, standard statistical software can be
used to simulate from this posterior distribution. Figure
5 shows the resulting posterior distribution for the Hg
data of the paper based on a simulation of 105 values.
The sample mean and standard deviation from the simu-
lation are 0.339 mg/kg and 0.018 mg/kg, respectively,
compared with 0.339 mg/kg and 0.017 mg/kg from the
results for the BOB procedure in Sec. 4.
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Fig. 5. Simulated posterior distribution from Hg data.

An exact comparison of the mean and uncertainty for
the BOB procedure and the Bayesian model is possible.
In the following derivations, we suppress the depen-
dence on the observed quantities.

E(� ) = E[E(� |�1, �2)] = E��1 + �2

2 � =
x̄1 + x̄2

2
(21)

Var(� ) = E[Var(� |�1, �2)] + Var[E(� |�1, �2)] (22)

= E�(�1 � �2)2

12 � + Var��1 + �2

2 � (23)

=
1
12

[E2(�1��2) + Var(�1��2)] +
1
4

Var(�1+�2) (24)

=
1
12

E2(�1 � �2) +
1
3

Var(�1 + �2) (25)

=
(x̄1 � x̄2)2

12
+

1
3 �n1 � 1

n1 � 3
s 2

1 (x )
n1

+
n2 � 1
n2 � 3

s 2
2 (x )
n2

�. (26)

The mean from the BOB procedure is identical to that
of Bayes model. The variance from BOB is

(x̄1 � x̄2)2

12
+

1
4 �s 2

1 (x )
n1

+
s 2

2 (x )
n2

�, (27)

which differs from the Bayes model in the second term.
Future work will explore the Bayes model and general-
izations of it.
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