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Efficient Methods of Extreme -Value Methodology

Julius Lieblein

This report presents the essentials of modem efficient

methods of estimating the two parameters of a Type I extreme-

value distribution. These methods are an essential phase of

the analysis of data that follow such a distribution and occur

in the study of high winds, earthquakes, traffic peaks, extreme

shocks and extreme quantities and phenomena generally. Methods

are given that are appropriate to the quantity of data availa-

ble—highly efficient methods for smaller samples and nearly as

efficient methods for large or very large samples. Necessary

tables are provided. The methods are illustrated by examples

and summarized as a ready guide for analysts and for computer

programming. The report outlines further work necessary to

cover other aspects of extreme- value analysis, including other

distribution types that occur in failure phenomena such as

consumer product failure, fatigue failure, etc.

Key words: Distribution of largest values; efficient estimators;

extreme values; linear unbiased estimators; statistics; Type I

distribution.

1. Introduction and Purpose

An increasing number of applications involve analysis of what have

come to be known as "extreme values". These follow a statistical distri-

bution that is quite different from that which governs ordinary data

considered to come from a normal or Gaussian distribution. Analysis of
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extreme -value data requires estimation of the parameters of the extreme-

value distribution that gives rise to such data.

It is the purpose of this report to present the most improved version

of the essentials of such methodology, and make it available to those

carrying-^ut extreme-value analysis or developing computer programs for

such purposes. Not all aspects of extreme-value analysis are presented

in this report, only those concerned with estimation of parameters

described in Section 2; neither is much theory given. More detailed

treatment and theoretical development may be found in the sources indicated

herein. Good general surveys that include extensive lists of references

and cover various approaches will be found in [3] and [9].

2. Best Linear Unbiased Estimator, Sample Size <_ 16

a. Type I Extreme-Value Distribution and Its Parameters

A set of data x-j^, x^,..., x^ is said to follow a Type I extreme-

value distribution" if the set is an independent random sample from a

population represented by the cumulative distribution function (c.d.f.)

-(x-u)/b

' Prob {X<_x} = e^ ^-c«<x<°°, - °°<u<°°, o<b<«' (1)

in which u represents the parameter of location and b the parameter of

scale.

The designation "extreme -value distribution" is based on the

following. If y^, y^,..., y^ are a random sample of data from, say, a

normal distribution, then the average value of such a sample also has a

normal distribution, whereas the extreme—the smallest or largest—has

quite a different distribution, which of course depends on the amount of

2



data, p. However, for increasing p, such distribution approaches one

of three types of limiting forms called "asymptotic distribution of

extreme values", or simply, "extreme-value distribution". The type

occurring most frequentiv in NBS applications appears to be Type I for

largest values, whose c.d.f. is given above, and to which attention will

be limited in this report. (See Addendum for discussion of amount of

basic data, p, and sample size, n)

.

b. Estimation of Parameters

Fitting an extreme-value distribution to a given set of data x^, x^,

x^, or what is the same thing, estimating the parameters of the

distribution, means performing calculations on these data to obtain a

numerical value (estimate) for u and for b. Many different types of

functions, called "estimators", have been utilized for this purpose, with

widely differing statistical properties.

It is generally agreed that an estimator function, f(x-|^,..., x^)

,

should have the following two desirable properties:

(1) Unbiased . On the average, the estimator function, f, which is

a random variable with its own distribution, should equal the

parameter being estimated, say u, and similarly for a function,

g, used to estimate b, i.e.,

E(f) = u, E(g) = b,

"E" denoting mathematical expection. Such estimators are said

to be "unbiased".

(2) Minimum variance . Generally, as more and more data are taken

from the extreme-value distribution, the values of the estimator

function tend to be more and more concentrated about a constant

value. If this constant value is the parameter being estimated,



then the estimates thus tend to become more and more accurate

with increasing sajirple size. This property of concentration

' or dispersion is represented by the variance of the estimator

function. For a fixed amount of data, n, different estimator

-functions will have different concentrations, and it is evidently

desirable to have an estimator with smallest variance among all

unbiased estimator.

Best linear unbiased estimator (BLUE) .* The above two desired

properties of estimators may be incorjoorated in the statement that the

"best" estimator of a parameter is one which has minimum variance among

the class of unbiased estimators.

Generally, a lower (non-zero) bound exists, called the "Cramer-Rao

lower bound" (C.R.B.), for the variance of unbiased estimators of a parameter

based on a given sample size, n (see [1]). This lower bound could thus be

considered to be a standard against which to compare the variance of any

proposed unbiased estimator, f. Their ratio thus cannot exceed unity, and

is generally less.

This ratio,

(C.R. BO/ (variance of estimator f) = (Q/n)/V^^^ (f) = Eff(f) (2)

is designated the (Cramer -Rao) "efficiency" of the estimator f for

estimating the designated parameter, where Q is independent of n.

The concepts of variance and efficiency have important implications

for sample size. The variances of two (unbiased) estimators may be portrayed

as in the following sketch, showing the tendency of the variance to diminish

with increasing sample size, for two estimators of the same parameter.

*Plural is also "BLUE", not "BLUE's".
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Variance

- Estimator 2

-~ Estimator 1

—^ Sample Size
'^1 ''2

Estimator 2 is the less efficient estimator, having greater variance, at

any sample size, than Estimator 1. It is apparent that a given variance

V (or a given accuracy) requires a smaller sample size, n^, with

Estimator 1 than with Estimator 2, for which the sample size required is

n^ > n^. The corresponding situation for efficiency of the same two

estimators is indicated in the next sketch, showing its increasing

tendency with increasing sample size. Estimator 2 is less efficient

Efficiency
- ' Estimator 1

Estimator 2

Sample Size
^1 '^2

Estimator 1 at a given sample size, n, and requires an increase in sample

size from n^ to n^ in order to reach the same efficiency, E. Thus the

variance and its related efficiency have a bearing on sample size, and the

most economical estimator to use is the one v\rith smallest variance, or,

what is the same thing, with greatest efficiency.

In the case of sampling from the extreme-value distribution, an

optimally efficient estimator (i.e., E = 1) has not been found for either

n or b. However, recent investigations have shown how to obtain estimators

based on "order statistics", which have very high efficiencies.
5



Henceforth, the sample values will be assumed arranged in ascending

order

:

The x's are then called "order statistics". The desired estimators o£ the

extreme-value parameters then take the form of a linear function of the

order statistics: ; v v... n . n
u..= Sa.x., b.-.= Zb.x. (4)
(n)

^^-L
1 1' fn) .^^11

The BLUE are then obtained by finding numerical coefficients, a^, b^,

for which each of the two linear functions of the order statistics is an

unbiased estimator of u (or b) having minimum variance. These values,

presented in Table 1 for n 16, were obtained from [11]. Their effi-

ciencies are given in Table la based on [8] which shows that relatively

little improvement is obtainable by increasing sample size much beyond

10_, at which efficiency, for u, has reached 98"6, and for u is 851.

3. Good Linear Unbiased Estimator, Sample Size Exceeding 16

The list of coefficients for increasing sample size beyond 16 would

involve increasingly cumbersome tables to use. Instead, a method has been

developed in [6] that produces the coefficients of an estimator, for any

sample .^.ize, that is considered to be the best obtainable on the basis of

the knovm coefficients of a best estimator (BLUE) for a smaller sainple

size. This method is as follows.

Let the known coefficients for a sample of m < n observations be

denoted by a^ and b^, giving the following BLUE for estimating u and b

6



from a sample o£ size n:

m . m

Then coefficients a I and bl for good estimators ul . and bl- . to take11^ (m) (m)

the place of the a's and b's in (4) are given by (see [7]).

m
a: = S a • (t/i)p(n,m,i,t)

,
(6a)

^ t=l
^

i = 1,2,. ..,n

m
b! = E b • (t/i)p(n,m,i,t), (6b)
^ t=l

^

where

P(n,™,i.t) =
(\] (-j)/0

is the hypergeometric probability function tabulated in [5]

.

A small example, for n = 6, m = 4, will illustrate how these

calculations are made. A worksheet format is provided in Table 2, which

may serve as a guide for computer programming in the case of large samples.

Starting with the BLUE for sajnple size m = 4,

4 ^4
^4) = ^f^Vt' ^4) = ^^^Vt'

with the a^ and b^ shown in the first two columns of the worksheet, the

calculations represented in equations (6a) and (6b) are carried out

and produce the "good" estimators

6 . 6

(6) ^^-j^ 1 i' (6) i=i
1 1

\

with coefficients (rounded to 5D) as follows, compared to those of the

BLUE taken from Table 1 for n = 6:
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2

3

4
5--'

^6

0.34067
.24184

.17038

.11902

.08051

.04759

a.
1

(BLUE)

0.35545
.22549
.16562
.12105
.08352
.04887

-0.37241
- .11460

.04190

.12333

.15591

.16586

b.
1

(BLUE)

-0.45927
- .03599

.07320

.12672

.14953

.14581

The variances and efficiencies for these estimators are given by

Estimator

u (BLUE)

b (BLUE)

(Variance) /b"
= V

(from [7])

0.19123

.19117

.13417

.13196

(Cramer-Rao
Lower Bound) /b^

(see [6])

0.18478

.18478

• .10132

.10132

Efficiency
B/V

.96627

.96657

.75516

.76781

According to reference [7], p. 548, the variance of this "expected

value estimator" for samples of size n (with regard to either of the

parameters) will not exceed (m/n) times the variance of the BLUE for

samples of size m, where m is the size of subgroup . It follows that the

efficiency will not be less than that of the BLUE for samples of size m,

since (see [2]),

Eff - Q/n > Q/n
(n) V,^, - (m/n) \^

QAlL= Eff,
V.^_. (m)

(n) ^"""^ '(m) '(m)

Thus, the efficiency pertaining to subgroup size, m, might be taken as a

rough measure of the efficiency associated with this method. Table la,

which gives efficiencies for different sample sizes, then shows that

little improvement is to be gained by using subgroup sizes greater than

10, a fact already noted above with regard to total sample size, n.



4. Estimators for Very Large Samples

The preceding methods become less practical for very large samples,

say 50 or 100 or more. Fortunately, it has been found that it is not

necessary to use all the sample values in order to obtain good estimates.

In fact, as few as four suitably selected observations from a large

sample of observations can yield almost as efficient estimates as using

all n . Theoretical development and detailed accounts are presented in

[4]. Some results from this paper are summarized in Table 3.

The n sample values are first arranged in order of increasing size

The idea is to find a small number, k, of the sample values ("quantiles")

\' ''n,"--'^, (8)

v/hich "space" the full set of n values in a manner analagous to the way

a median spaces values corresponding to the fraction, A = .50, with half

. of the observations above the median and the same fraction below—the

median is then the "50-percent quantile" of the sample. The "optimum

spacing" sought will then yield fractions

o<A^ < < ... <X, <112 k

with the n^ in (8) being given by

n. = fnx.}

where the brackets denote the next larger integer, e.g., {4.3} = 5,

{16} = 17.

Xhe (for each k) for producing good estimates given in Table 3

were found in [4] by minimizing expressions for variances simultaneously
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for estimators of the parameters u and b by means of asymptotic normal

theory results in large samples, under the constraint of unbiasedness

.

This procedure also produced the other quantities in Table 3. The a| and

b| are the coefficients that give the good estimators for u and b based

on the k selected observations, k = 2, 3, 4:

u* = I a*x

:

' - "
i=i

'
'

. k
b* = z b*x

. , 1 n.
1=1 1

Asymptotic efficiency is the ratio of asymptotic variance to the Cramer-

Rao lower bound. This variance, while not obtained from the exact variances

calculated for the indicated order statistics of the sample of n (which

would require very extensive calculation) is based on normal theory which

becomes more and more exact as n increases indefinitely, and gives

surprisingly close results even for reasonable- size samples. Thus,

asymptotic efficiency is a usable measure of goodness to compare with

exact efficiency for those sample sizes where the latter is available.

The comparison is made in Table 3 with BLUE for sample size 16,* where

the ratio is obtained to the exact values given in Table la. The relative

efficiency of the optimum- spaced estimators thus obtained for k = 4

selected observations, is more than 90 percent as good for the estimator

u*, and almost 85 percent as good for the estimator b*, as the efficiency

of the best linear unbiased estimator obtainable for n = 16. These high

ratios justify calling these starred values good estimators, although not

best for the sample size n. What is very useful about them is that, for a

given value of k, both the same spacings, K, and the same coefficients, a*^

*The largest size shown in Table 1.
-^q



and b^, can be used for any (large) n, and do not have to be recalculated

for each different n. Thus, a very compact table such as Table 3 can

serve for niany cases. As an example of the use of Table 3 in forming

estimators, suppose n = 100. Then, for the k = 4 selected ordered

observations, x , n , x , x , the spacing, using the X., is that
ri^ i

given by n^ =
f. 03 (100)}= 4, n^ = {.25(100)}= 26, n^ = {.63(100)}= 64, and

n^ = i 90 (100)}= 91 (the cut brackets denoting the next larger integer),

so that the estimators are

u* = .1893 X, + .4566 x_, + .2772 x,, + .0768 x„,
4 26 64 91

b* =-.3127 X, - .1123 x^, + .2607 x., + .1643 x^.,
4 26 64 91

These four selected observations thus yield estimators that are almost

as good as the best available from a sample of 16 observations, namely

(from Table 3) 911 as efficient as the BLUE for u, and 84% as efficient

as the BLUE for b.

5. Examples

The first example illustrates calculation of a BLUE using, as data,

artificial random numbers from a known extreme-value distribution.

The second example applies the procedure for large samples to maximum wind

data to illustrate the calculation of good linear unbiased estimators.

Ex. 1

.

The simulated data, representing a sample of n = 8 observa-

tions from the extreme-value distribution with u = 4, b = 1, are as follows:
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i Unordered Ordered, x. Coefficients to Obtain BLUE
^ a. b.

1 1

1 5.41 3.62 0.273535 -0.394187
2 3.70 3.62 .189428 - .075767
5 3.97 3.70 .150200 .011124
4 4.39 3.82 .121174 .058928

5 4.66 3.97 .097142 .087162
6 ~ 3.62 4.39 .075904 .102728
7 3.82 4.66 .056132 .108074
8 3.62 5.41 .036485 .101936

Check Sum 33.19 33.19 1.000000 - .000002

The coefficients a. and b. are taken from Table 1 for n = 8. Before
1 1

calculating the estimates there are a few useful points to be noted.

Check sums should be obtained for every column of values. The first two

colijmns should give the same simi because reordering does not change the

total. The coefficients a^ should add as closely as possible to unity

and the coefficients b^ should add to zero. It is shown by theory that

these are the conditions for the estimator to be unbiased. These checks

are satisfied above. IVhen they are not, one should look for an error in

transcription or some other arithmetical or "human" cause.

The resulting numerical estimates of the parameters u and b are,

respectively,
8 .8

u = Z a.x- = 3.8724, b = E b.x. = 0.4171.
i=l ^ ^ i=l ^ '

If small calculations such as these are done on the modem hand-held or

desk calculators that give sums of multipliers simultaneously with the

sums of products then the above check sums will be found a very useful

protection against error. As a result of this procedure it is estimated

that the sample of 8 values comes from the statistical distribution or

model (eq. (1))

-(x-3. 8724)/. 4171

Prob {X ^ x} = e"®

12



From this one can estimate the probability that a given value of x will

not be exceeded, or, conversely, find what x -value will be exceeded a

small fraction, such as 1 percent, of the time. Detailed treatment of

such matters, including variability of resulting estimates, involve aspects

beyond the scope of the present report.

Ex. 2 . The second exanple uses a set of maxiinum annual wind speeds

from Chattanooga, Tenn. , for the 21-year period 1944 through 1964. This

example illustrates the simplified procedure for "very large" samples given

previously in Section 4. Although the sample size n = 21 may not be

considered "very large", it is adequate for illustrative purposes.

The 21 unordered values are (miles/hour)

:

53 62 49 59

40 45 50 45
49 63 57 45
53 63 57 42

41 67 52 41

54

Check sum = TW
Placed in ascending order they are the quantities x^, x^,..., x^^; respectively:

40 45 52 57

41 45 53 59

41 49 53 62
42 49 54 63

45 50 57 63

67

Check sum = VWT

Table 3 allows us to make good estimates by using only 2, 3, or 4 selected

values out of the 21. Thus, for 2 values, the fractional distances to

go in the ordered set of 21 is = .09, = .73, giving n-j^ ={.09(21^ =

{1.89}= 2; and = {.73(21)}= {15.3^= 16. Similarly, for k = 4 selected

values, we would have n^ = {.03(21)}= 1; n^ = {.25(21)}= 6; n^ = {.63(21)}= 14;

and n. = {.90(21)}= 19. The calculations, based on the values from Table 3,



=41 0.5673 -0.4837

x^^ = 5^ ^ .4327 ' .4857

Ck. sum 98 1.0000 0.0000

I a.*x = 47.9232 b* = Z b.*x = 7.7392
i=l ^ i=l ^ ^

k = 4

^1
-- 40

^6
== 45

^4
== 54

^19 _^
sum 202

a.* b.*
1 1

0.1893 -0.3127

.4566 - .1123

.2772 .2607

.0768 .1643

.9999 0.0000

4 . 4

Z a.*x = 47.9262 b* = Z b.*x = 6.8672in, -

i=l -
'^i

6. Summary of Instructions for Fitting a Type I Extreme-Value Distribution

If we have a set of n maximum values that follow the "double exponential'

distribution, eq. (1), then the procedure for fitting the distribution,

i.e., estimating the parameters u, b, is to first arrange the n values in

ascending order

Xj <X2l... ix^.

and then proceed as follows, according to the magnitude of sanple size n:

14



a. n _< 16

Form the product sums

n . n
u = T. a.x. , b = Z b-x.

,

i=l ^ ^ i=l ^ ^

using the coefficients in Table 1. These give the numerical values of

the best linear unbiased estimators (BLUE) of the parameters u, b.

Further details were given in Section 2b.

b. 16 < n < about 50

For this range of n, take subgroup size m = 10 and proceed as follows

(1) Compute the coefficients

n

. a.' = Z [a . (t/i)p(n,m,i,t)]
1 t=l

^

i = 1,2,. .. ,n,

n
= Mb. - Ct/i)p(n,m,i,t)]

^ t=l
^

where the a^'s and b^'s (m in number) are the coefficients of

the BLUE for sample size m, given in Table 1, and

rn-i-

p(n,m,i,t) = -

is the hypergeometric probability function tabulated in [5]

.

(2) From the above coefficients, compute the estimators

n . n
u> V = Z a. 'x. , bl . = E b. 'x.

.

(n) .^^1 i» (n) .^^ 1 1

These give the linear unbiased estimators that are the best available on

the basis of the known BLUE coefficients for samples of size m. Further

details were discussed in Section 3.

15



c. n > about 50

This is the range of large to very large sample sizes. The

estimators are obtained by using only a small number, k, of selected

values out of the n, and the procedure is as follows:

(1) Take k = 4 and obtain X. and coefficients a.* and b.* from
.

1 XI
Table 3, i = 1, 2,. .

.
, k.

(2) Compute n^, n^, n^, n^ with n^ = [nX^], the next larger integer

to nX .

.

1

(3) Compute the large- sample estimators

. k . k

u* = z a.*x , b* = z b.*x .

. 1 1 n. . , 1 n.
1=1 1 1=1 1

These estimators are unbiased and have remarkably high efficiency

considering that only a very small portion of the observations are used.

Further details were discussed in Section 4.

7. Further Work
,

This report has presented a preliminary brief account of irodem

developments in extreme-value methodology that can yield optimum or good

estimators of the parameters of the frequently occurring Type I distribution

of largest values.

Current methodology concerns many additional aspects of extreme-

value analysis which would be useful to the applied scientist. The

possibilities for further work include the following:

a. Selection of extreme-value model. There are three types of

extreme-value distributions, including the Type I considered

in this report. Modem methodology includes

16



(1) quick graphical aids for selecting the most appropriate

type; there are a variety of such methods that apply in

different situations;

(2) conputer methods for handling many sets of data. One

study involved analysis of 38 sets of data on maximum wind

speed with sample size varying from 15 to 53. Over half of

the sets were found to follow the Type I distribution.

Further work will compare these methods and determine the

best ones to be recommended.

b. Fitting the selected distribution. The work of this report can

be extended to include the other two types. They each involve

a third parameter and require more elaborate methods of estimation.

It will be essential to develop computer programming for comparing

the various methods and testing their sensitivity to simplified

approaches. For example, there is a whole class of estimators,

called best linear invariant estimators (BLIE) , which are biased,

but have efficiencies exceeding those of the optimum unbiased

estimators discussed in this report. Such estimators have found

widespread use in reliability studies of many kinds [10]. This

work will involve largest-value data but will be modified to

include smallest -value data treatment in order to accommodate

the Type III, or Weibull, distribution of smallest values that is also

extremely useful in failure phenomena and reliability studies.

c. Statistical inference from fitted distribution. Specification of

the distribution complete with the fitted parameters implies

considerable information on future events, provided the model

17



continues to hold (and the parameters do not change) . Thus the

probability of exceeding any given large value is determinable,

which is of importance in study of high intensity winds, earth-

quakes, floods, and natural catastrophes. Other applications

^re extreme phenomena or peaks in general such as traffic peaks,

as well as breaking strength and fatigue failure of materials,

consumer product failure, etc. Conversely, values can be

determined which will be surpassed with given probability, or

risk, which is of evident value in these fields.

18



Table 1. Coefficients of Best Linear Unbiased Estimators (BLUE) for
Type I Extreme-Value Distribution

n i a^

2 1 0.916 373

2 .083 627

7
J 1 . OoD

2 .255 lU
3 .087 966

4 1 .510 998

2 .263 943
XJ DoU
4 .071 380

5 1 .418 934

2 .246 282

3 .167 609

4 .108 824
qJ . Udo odu

6 1 .355 450
2 .225 488

3 .165 620
4 .121 054

5 .083 522

6 .048 867

7 1 .309 008

2 .206 260

3 .158 590
4 .123 223
5 .093 747

6 .067 331
7 .041 841

8 1 .273 535

2 .189 428
3 .150 200
4 .121 174

5 .097 142
6 .075 904
7 .056 132

8 .036 485
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1

1

1
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/I4

- .423 700 c
J

-
. UOU oyo 6
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nQ7

. Uo /
77Qooy Q0

11/1
. ii4 000 Qy
1 7 c oby iU
1 7n 1/11 1

1

11

. jy4 1 87 1 7iZ 1
- .075 767 9z

.011 124 7

.058 928 4

.087 162 5

.102 728 6

.108 074 7

.101 936 8

9

10

11

12

0.245 539 -0.369 242
1 7/1.1/4 887ooZ 08 707ZU J

.141 789 - .006 486

.117 357 .037 977

.097 218 .065 574

.079 569 .082 654
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Table 1, Coefficients of Best Linear Unbiased Estimators (BLUE) for

Type I Extreme-Value Distribution (continued)
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Table la. Efficiency of BLUE Listed in Table 1

n Cramer- Rao Efficiency for Estimators of
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Consideration of Sample Size

As pointed out in Section 2a above, there may be two sample sizes

involved in an "extreme -value" situation, namely, (i) the amount of data,

p, from which an extreme is taken; and fii) the number of such extreme

values, n, each extreme value in a sense representing a different set of

data from the same population. It was also indicated that extreme -value

analysis in theory depends upon an as>Tnptotic situation, one where each

amount of data, p, is "large". It would be useful to have some guide

lines as to how much is large.

This has always been recognized to be one of the most difficult

questions by workers in the field, from the pioneering efforts of

Professor E. J. Gumbel [b] to the present day, and the question is still

largely open.

As an illustration of how p and n may be considered, take Example 2

of the text above, dealing with maximum annual wind speeds. Records of

wind speed are obtained by means of continuous -recording instruments

throughout the year. Maximum values for five-minute periods are read and

the largest of these is taken as the single maximum for the year. Thus

the amount of data "in back of" the year's maximum is represented not by

the 365 daily maxima, but by the much larger number of five-minute

periods. Thus, p is at least several thousand, and there is little

argument that this is a large enough amount of data. In the example,

sample size n = 21, and this is the distinction between p and n. What may

be considered additionally is whether the maxima of all the five-minute

periods are from the same population, as this is a basis for the

A-1



theoretical derivation of the extreme -value distribution. Here, discus-

sion must be heuristic, in the absence of definitive studies. Long

experience has made it seem likely that considerable departure from such

a "stationarity" assumption can be tolerated without being detrimental to

the application of extreme-value methods. It is as though the limiting

process implicit in use of the extreme-value distribution operates to

"smooth" out irregularities in the fundamental data, which may not even

be accessible, and is not essential to application of the methods. At

any rate, it is true that in the cited example, and in many other such

cases analyzed by Simiu and Filliben [f] of the National Bureau of

Standards, the maxima appear to follow the extreme-value distribution.

A large number of other successful applications will be found in

Professor Gumbel's definitive book [b] , substantial portions of which

have been updated by Mann, Schafer, and Singpurwalla [d]

.

It was stated above that the basic data behind the maxima may not

even be available, yet this need not impair the application of extreme-

value methods. Many successful applications where "basic data" are not

available occur in the fields of reliability and in failure phenomena of

materials, products, structures, and systems in general.

This can be illustrated by the simplest case, tensile strength of

materials. It is epitomized by the saying "A chain is no stronger than

its weakest link", characterized as the "weakest link" hypothesis. The

idea is that a bar of, e.g., steel is made up of many hypothetical small

segments, xvlth tensile strengths represented by a probability distribution.

When the bar is subjected to tensile stress, its failure stress is

determined by the strength of the weakest of its "segments", which acts



as a "weakest link". This idea is widely attributed to Griffith, in his

theory of flaws enunciated in 1920 [a] ; and the first statistical treat-

ment based on this, to Pierce in 1926 [e] .—

A practical problem involving tensile strength is, knowing the

strenght of a bar of given length, can we predict the strength of a bar,

say, twice as long? The answer is generally Yes, by considering the

larger bar as though it were made up of twice as many "small segments"

as the half-size bar, i.e., the "amount of data, p" is twice as much, even

though the value of p remains unknoi\'n and hypothetical.

Thus, many practical problems are successfully tractable without

ioiowing the amount of "basic data, p". This may be a reason that little

attention has been given to this aspect of the methodology.

The methodology presented in this report is primarily intended for

workers who are already applying extreme -value methods to their problems

and may be using methods of estimation that may not be the most efficient

and best available in the present state-of-the-art. These workers have

found, through other methods, outside the scope of the present preliminary

report, that the extreme-value distribution appears applicable to their

problems. This would imply, again on a heuristic basis, that the amount

of basic data, p, known or hypothetical, is adequate.

At present, only the most general guide lines can be given as to

how mall a value of p would be adequate. Thus, if it is known that the

— However, the writer of the present report has found evidence to justify
earlier priority, namely, to Chaplin in 1880 (see Lieblein [c]).



basic data (in amount p) come from a simple exponential distribution

(a failure model used in roany reliability studies [d]), then p can be as

small as 5 or even less. However, for some other distributions of basic

data, such as the normal (Gaussian), it is known that such small values

of p are inadequate. On the other hand, it is felt that generally a

value of p of several hundred is probably sufficient, while for much

smaller values the situation is doubtful. But, as already indicated,

this is a matter of conjecture and requires considerable further research.

In any case, if the user of extreme-value methods finds such methods

applicable in a given case, he generally need not be concerned about the

value of p.
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