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1. Introduction

The ability to detect and avoid obstacles is a prerequisite for the success of the Dem

Unmanned Ground Vehicles (UGV) program. The near term goals of the project are

able to drive the High Mobility Multipurpose Wheeled Vehicle (HMMWV

autonomously on cross-country roads with the ability to:

1. Drive autonomously at speeds up to 10 m.p.h., controlled as appropriate fo

terrain and vehicle dynamics.

2. Detect obstacles and rough terrain conditions in time to enable deceleration to

speed or the ability to steer around the problem condition.

3. Maintain a control station with an interface for limited mission planning and d

collection.

This paper discusses an obstacle detection algorithm developed at NIST in support

obstacle detection and rough terrain conditions. The algorithm is a hybrid of grid-b

and sensor-based obstacle detection and mapping techniques. The perception and o

detection/mapping module is part of the integrated 4D-Realtime Control System (R

system [1][2]. It consists of two sections: an obstacle detection section and a ma

section. The obstacle detection section processes range data read from a Ladar

The algorithm converts range data into Cartesian coordinates in the sensor coor

frame, and uses this information to detect obstacles. The second section, the ma

module, projects obstacle points onto a grid-based map. The map is used by the 4D

planner module [11] to generate a traversable path for the vehicle.We have demons

autonomous driving with obstacle detection and avoidance on the NIST grounds an

Nike site at speeds of up to 24 km/h.
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Section 2 describes the sensors used in the 4D-RCS autonomous driving system. S

3 describes in more detail the Ladar sensor’s characteristics. Section 4 describ

obstacle detection algorithm. Section 5 evaluates the algorithm performance on

artificial and natural obstacles. Section 6 briefly describes the obstacle mapping mo

In Section 7, we present our conclusions and plans for future work.

2. System Sensors

The sensors used in the system include a Dornier 1.2 Hz. Ladar Range Imaging C

(EBK); the Ashtech Z12, a Global Positioning System (GPS) sensor, and an Ine

Navigation System (INS) sensor [14]. The inertial sensor is the U.S. Army’s Mod

Azimuth and Positioning System (MAPS) which contains three ring laser gyros, t

accelerometers, and a rear axle odometer. All sensors are mounted on the HMM

shown in Figure 1. The vehicle is equipped with electric actuators added to the stee

brake, transmission, transfer case, and parking brake. Dashboard-type feedback pr

the controller with RPM, speed, temperature, fuel level, etc. Multiple navigation sen

are used. A Kalman filter [9] computes vehicle position and orientation using data

an inertial dead reckoning system and a carrier phase differential GPS unit,1

1. Certain commercial equipment, instruments, or materials are identified in this paper in order t
adequately specify the experimental procedure.  Such identification does not imply recommen
dation or endorsement by NIST, nor does it imply that the materials or equipment identified are
necessarily best for the purpose.
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3. The EBK Ladar sensor

We are using the EBK Ladar sensor as the primary obstacle detection senso

autonomous driving. Table 1 shows a summary of the characteristic paramete

Dornier’s 1.2 Hz Ladar camera. The vertical pixel spacing is mechanically fixed at

degrees by the spacing of the fiber optic array. This gives a vertical field of view of

degrees. The exact horizontal field of view and pixel spacing may vary slightly bec

the horizontal and vertical scans are not mechanically linked. However, they ca

calculated exactly from scan mirror position data encoded in the image. The nom

value for the horizontal field of view is 60 degrees. In addition, there may be local

variations of the horizontal angular position of the image pixels due to mechan

disturbances of the sensor, but these can be detected and accounted for in

computations. The range image is generated by scanning a laser beam over the fi

view. At each point in the scan, a pulse of laser light is emitted. This pulse is refle

back to the sensor from the object in its line of flight. The range of the object can

calculated from the light pulse’s time of flight. Because the measurement uses tim

flight rather than phase detection, the sensor produces an absolute value with no

ambiguity.  Due to the short duration of the laser pulse, the EBK is eye-safe.

Figure 1. NIST HMMWV
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The laser is scanned horizontally across the field of view by an oscillating mirror.

beam is scanned vertically by a nutating mirror which reflects the beam through a cir

fiber optic array. This fiber optic array converts the circular motion of the nutating mi

into a linear scan in the image plane. Additional technical information about the EBK

be found in [3][4].

3.1 Effects of Different Materials on Range Data

We have examined the sensor’s ability to measure different materials in order to dete

its sensitivity. In order for the sensor to receive a laser pulse reflection, the reflection

be diffuse, i.e., the reflected laser light must travel in all directions from the target, on

which is back to the sensor. A highly specular surface may produce a false range rea

3.1.1 Absorptive Materials

A false detection can occur when the surface of an object absorbs so much of the in

light that the returned light pulse does not have enough energy to trigger the rec

Examples of absorptive materials are black clothing, dark hair, painted black stripes

black baseboard along a wall, and very dark tar stains on asphalt. The sensor do

receive a reflected signal from these objects within the time of flight window, which is

for a 50 m maximum range. When no reflected light pulse is detected, the invalid tim

results in an invalid range value. Some black colored objects, however, do show

Automobile tires and black pavement return sufficient light to trigger the detector.

object’s visibility depends on its reflective properties at 910 nm. In practice, m

surfaces in natural and artificial scenes offer a return signal of sufficient intensit

calculate a range value.
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3.1.2 Specular Materials

Highly reflective objects give rise to specular reflections. A good example of this is a

which the sensor cannot detect. Wet pavement also does not register well with the s

When the Ladar scans a shiny cylindrical metallic object, only the surface of the cyli

whose normal vector is parallel with the sensor’s scanning vector produces a good

reading. All other laser pulses are reflected away from the scanner. However,

reflections may bounce off of other objects and eventually return to the se

Consequently, ranges to reflective surfaces may appear greater than their true value

Table 1 EBK operational parameters

EBK Characteristic Parameters

Laser Wavelength 910 nm

Optical peak power 10 W

Imaging Range 5m to  50 m (typical)

Range Resolution 0.06 m

Frame Rate 1 Hz

Field of View 31 degrees by 60 degrees

Beam Divergence 0.2 degrees

Beam Spacing 0.5 degrees

Eye safe class 1, IEC 825 and DIN VDE 0837

Scanning Vertical: fiber optics

Horizontal: oscillating mirror

Operating Voltage 24 VDC (18 V - 28 V)

Power Consumption 110 W

Data Interface RS422 serial, 10 MBit/sec

Weight 15  kg

Dimensions 30 cm x 28 cm x 27 cm

Operating Environment IP65,  C to  C10–
0

50
0

 6 6 6



ch as

these

value”

of the

Wet

of the

.

orted

his is

r its

ion

ing the

n of

rties.

effect

y the
In nature, the primary source of specular reflections is water. Free standing water, su

lakes and puddles, almost completely reflect the laser beam from the sensor. In

cases, no return from the water’s surface is detected. This appears as a “no return

in a range images The cause of this failure is either the sensor seeing a reflection

sky (out of range) or the water absorbing  the incident beam.

The signal returned from wet surfaces varies with distance and incident angle.

pavement tends to disappear at close range and far away where the incident angle

sensor beam is small.  However, a good signal is returned in the mid  range of 25 m

The EBK can measure range readings from ice and snow. However, Dornier has rep

that  partially thawed and refrozen snow produces a less favorable result.

3.1.3 Vegetation

Vegetation poses the greatest problem to obstacle detection using range data. T

because range data gives very little information about the solidity of an object o

traversability. This is especially a problem for off road driving. In addition, vegetat

can obscure other vehicle hazards, such as rocks or ditches hidden in tall grass, mak

hazards more difficult to detect.

3.1.4 Fog

The 910 nm wave length of the laser used by the EBK falls in the near infrared portio

the electromagnetic spectrum. It was chosen by Dornier for its good reflective prope

Being close to the visible spectrum, the laser is affected by fog. The back scattering

caused by heavy fog causes a range value of approximately 5 m to be returned b

sensor.
 7 7 7
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4.  Obstacle Detection Module

The purpose of the obstacle detection module is to extract areas which cannot or should

traversed by the HMMWV. Rocks, fences, trees, and steep slopes are examples of obstacle

Many approaches for extracting obstacles from range images have been proposed Th

common approach is to fit a plane surface to a patch of points [6][8][16] in a local

representation. For example, Hebert [6] and Kelly [10] have used the approach of fitting p

surfaces to a patch of points to detect obstacles. Their algorithms are simple and fast but

very robust: small sensor position errors result in false indications of obstacles. We pro

using differential depth and slope in sensor space in an improved, fast obstacle detecto

algorithm was inspired by Veatch and Davis [15] and Lux and Schaefer[12]. The details o

algorithm and an analysis of its robustness using actual outdoor data are given in the foll

subsections.

4.1 The Obstacle Detection Algorithm

The data acquisition time for a complete Ladar image is 0.82 seconds. The image consists

vertical scan lines, each containing 64 range values. The sensor geometry was descr

Section 3. Approximately half of the acquisition time is needed to read 8192 range values

remaining time is needed for the back-scan. We process range data as they are read, rath

waiting for a full image.  In this way, we can detect an obstacle as soon as the data are ava

As each scan line is read, a filter is applied to the data. The filter removes outlier points caus

specular reflections, e.g. water, or reflections within the sensor. After the data are filtere

Cartesian (x, y, z) location of each pixel in the scan line is computed in a coordinate sy

centered in the EBK sensor. Each pixel contains x, y, z and range(r) values which are u

compute depth derivatives and surface slopes.  The criteria used for detecting obstacles ar
 8 8 8
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1. A discontinuity in elevation exceeding some valueT

2. The surface slope exceeding some value,α2.

These conditions are expressed mathematically in the following way:

Let p(i, j), be the ith position pixel in the jth scan line of the EBK image.

Let  x(i), y(i), z(i) be the  Cartesian coordinates of this pixel.

Let  r(i)  be the range value at this pixel.

For  every p((k, j), x(k), y(k), z(k), and r(k)) where (i-n) <= k <= (i+n)

(n = 2 in our experiments)

p((k, j), x(k), y(k), z(k), r(k)) is voted an obstacle if:

To avoid frequent false positive detections, a local neighborhood of each pixel votes on whet

not a pixel is an obstacle. In practice, a neighborhood of five pixels is used. Each pixel in the

line can receive up to 2n votes where n is the neighborhood size. The higher a pixel’s vot

higher the confidence that the pixel is an obstacle. If the confidence is greater than some thr

value, the pixel is labelled as an obstacle. We empirically find a confidence threshold valu

for our experiments.

5. Analysis and Evaluation of the Obstacle Detection Algorithm

Two types of tests were performed to analyze and evaluate the obstacle detection algorithm

scenarios involved collecting sets of Ladar data which were analyzed at a later time. The fi

of tests was performed at the NIST Nike Test Site in Gaithersburg, Maryland. The obst

z i〈 〉 z k〈 〉– T≥

z i〈 〉 z k〈 〉–〈 〉2
x i〈 〉 x k〈 〉–〈 〉2

y i〈 〉 y k〈 〉–〈 〉2
z i〈 〉 z k〈 〉–〈 〉2

+ +[ ]⁄( ) α2≥

and
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tested were artificial, i.e., known size blocks of wood arranged in different groupings.

second set of tests was performed at the U. S. Army Aberdeen Proving Grounds (AP

Aberdeen, Maryland. This set of data was collected at a surveyed site that included

and ditches.

5.1 Artificial Obstacles

Our objective at the Nike site was to evaluate the algorithm’s ability to detect obstacl

known sizes and to determine the maximum range at which different size obstacles

be detected. The obstacles consisted of sections of 61 cm x 15 cm lumber pre-cut in

cm, 15 cm and 20 cm sections. These blocks were grouped together to form ob

groups of varying, but known, dimensions. The obstacles were placed on a road (F

2), and Ladar data were collected as the HMMWV approached them. Figures 3, 4

are sets of processed Ladar images showing the results of the obstacle det

algorithm on groups of different size blocks. The blocks in Figure 3 are 20 cm wide b

cm high. The blocks in Fig. 4 are 30 cm wide by 20 cm high. In Fig. 5, the blocks

25 cm wide by 15 cm high. The left image in each set is the farthest range at whic

Figure 2 Obstacle blocks at Nike site
 10 10 10
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obstacles were detected; the right image is the same set of obstacles at a closer range. In

only one block is detected at 17.5 m while all blocks are detected at 9.5 m. In Fig. 4, 2 block

detected at 22 m, and 4 blocks are detected at 13.2 m. In Figure 5, 3 blocks are detected a

and 4 blocks are detected at 15.7 m.

Because of the sensor design (see Section 3), the probability of the laser beam hitting a tar

function of both the size of the target and its range from the sensor. This relationship is sho

the graphs plotted in Figure 6. In each of the plots, the horizontal axis measures range in m

from the sensor. The vertical axis is the probability that the Ladar beam will hit the target

Figure 6a, the probability of the beam hitting the target increases to 100 % at a distance of 2

and remains at this level through the remaining valid data range. In Figure 6b, the proba

increases to 100 % at 36 m and remains at 100 % for ranges less than 36 m. The same is

Figure 6c for ranges between 5 m and 47.8 m. The target sizes in Fig. 6a, 6b,and 6c are 15

15 cm, 20 cm x 20 cm, and 25 cm x 25 cm respectively. In addition to the blocks of wood, g

and trees along the side of the road are also detected as obstacle pixels.
 11 11 11
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Figure 3   Target Size: 15 cm x 20 cm(width x height)

Obstacle detection at 17.5 m Obstacle detection at 9.5 m

Obstacle detection at 22 m

Figure 4  Target Size 30 cm  x 20 cm

Obstacle detection at 13.2 m

Obstacle detection  at 19 m Obstacle detection at 15.7 m

Figure 5  Target Size: 25 cm  x 15 cm
 12 12 12
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5.2 Natural Obstacles

In this section, we describe our analysis of natural obstacles. Our objective was to determi

farthest range at which pixels representing depressions could be detected. The data co

site was the Perryman site, located in the U. S. Army Aberdeen Proving Grounds in Aber

Maryland. In addition to the Ladar data, sets of images from 3 pairs of stereo cameras

also collected.2 The stereo data were analyzed by scientists at NASA’s Jet Propul

Laboratory (JPL) using algorithms designed for stereo inputs [13]. This report discusses

2. A complete description of the data collection can be found at:
http://isd.cme.nist.gov/staff/coombs/proj/mobility/apg-data/doc/datanotes.html.

Figure 6:  Probability plots of ladar beam hitting target.

(a) Target size 15 cm  x 15 cm  (b) Target size 20 cm x 20 cm   (c) Target size 25 cm  x 25 cm

(a)

(b)

(c) .
 13 13 13
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the results of the Ladar obstacle detection algorithm.

Figure 7 is a map of the sections of Perryman in which negative obstacle (ditch) data

collected. The ditches were dug by a back hoe. Ditch 1 is 0.61 m wide; Ditch 2 is 1.2

wide, Ditch 3 is 1.83 m wide, and Ditch 4 is 2.44 m wide. The lengths of all the ditches

the same. This data was used to evaluate the effectiveness of the algorithm in det

negative obstacles (depressions in the ground plane). Figure 8 is a black and white i

digitized from video tape, showing the site referred to in the ditch survey map.

viewing direction in Figure 8 is along the direction of the approach vector in Figure

Data were collected at different times of day under varying weather conditions.

decrease in daylight did not affect the Ladar data which performed at the same

Figure 7 Ditch Survey Site

t 1.83 m 2.44 m

Figure 8Ditches at Perryman

1.22 m
 14 14 14
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during dawn, daylight, and evening hours. For each of the ditches, the HMMWV

driven at speeds of 8 kilometers per hour (km/h), 16 km/h, and 24 km/h The vehi

approach to the ditches also varied: some runs were perpendicular to the ditches;

were oblique. The output of the obstacle detection algorithm was qualitatively evalu

Grouping of obstacle pixels into objects is planned at a future time and was not a fac

this evaluation. Figure 9 is a set of images showing the unprocessed Ladar data (F

9a) and the processed data (Figure 9b) of a sample image taken from the “ditch 1

set.The raw data is encoded as grey scale values such that darker grey values re

ranges farther from the sensor. White pixels in the processed image represent

labelled as obstacle points. Although it is very difficult to recognize the ditch in the

image, the ditch pixels are detected in the processed image The ditch is 10 m fro

vehicle in Figure 9.

Figure 10 is another example of negative obstacle detection. This image set show

and processed data from the “ditch 4" data sequence. Again, the pixels associated w

ditches are extracted.  In this figure, the ditch is 15 m from the vehicle.

Table 2 shows the results of the obstacle detection algorithm on the ditch data a

vehicle approached the ditches in the normal direction. The distances, measur

meters, represent the farthest distance at which the algorithm extracted pixels repres

Figure 9  Ditch 1: Raw and processed ladar data

(a) (b)
 15 15 15
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ditch data. The pixels associated with the ditch are qualitatively recognizable to a tra

eye.

As an aid to understanding these values, it is helpful to understand that the mini

stopping distance required for a vehicle travelling at 5 m.p.h. (assuming a relatively

ground surface) is approximately 10 meters. At 10 m.p.h., the stopping distance

meters, and at 15 m.p.h., it is 30 meters.

Figure 11 is a map of the area of Perryman containing the rock obstacles. The rocks

placed both on-road and off-road. The rocks labelled “rock 1” and “rock 2”

approximately 15 cm high and 25 cm wide. Rocks 3 and 4 are approximately 30 cm

and 30 cm wide. Rock 5 is approximately 45 cm high and 30 cm wide. The rock clust

(a) (b)
Figure 10 Ditch 4: Raw and processed ladar data

Table 2 NEGATIVE OBSTACLE DETECTION- NORMAL
APPROACH

Ditch 1 Ditch 2 Ditch 3 Ditch 4

       5 mph.      10.0 m       19.0 m       17.0 m      23.0 m

     10 mph.      10.0 m       14.0 m       20.0 m      20.7 m

    15 mph.        9.5 m       15.0 m       20.5 m      21.2 m
 16 16 16



approximately 45 cm high and 100 cm wide.

Figure 11 Perryman Survey of
Rock Obstacles

Direction of approach

East(m)
 17 17 17



cted in
  Figure 12 is a video image showing rocks 1, 2, 3 and 4.

Figure 13  is a magnified video image showing the rock cluster.

Figure 14a shows a Ladar scene of rocks 1 and 2 and Figure 14b the obstacles dete

this image.  Rocks 1 and  2 are highlighted by white boxes in the right image.

Figure 12 Rocks 1, 2, 3 and 4

Time stamp encoded bar

Figure 13  Rock Cluster at Perryman

Figure 14  (a) Raw ladar image of rocks 1 and 2

(a)Raw ladar data (b) Rock 1 at a distance of 11.5 m
      Rock 2 at a distance of 19.2 m
 18 18 18
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Figure 15 shows raw (Fig. 15a) and processed (Fig. 15b) Ladar image data for rocks

4 with boxes highlighting the rocks.

Figure 16a is a Ladar scene of the rock cluster. Figure 16b shows the extracted ob

points. The direction of approach for Figs. 14, 15, and 16 is from Northeast to South

in Fig. 11. Table 3 is a summary of the results of applying the obstacle detec

algorithm to the data sets collected at different times of day. The variability of detectio

a result of the following factors:

(1)   Data acquisition rate (1 image per second).

(2) Relationship between vehicle velocity and the time an image is acquired. I

vehicle is moving quickly, the scanning Ladar beam may miss the obstacle comple

(3)   Difficulty in identifying the targeted obstacle when it is hidden in tall grass.

(a) Raw ladar data (b) Obstacle points
Figure 15 Rocks 3 and 4

(a)Raw ladar data (b) Rock 3 at a distance of 18.4  m
      Rock 4 at a distance of  25.0 m

Figure 16 Rock Cluster

(a) Raw ladar data (b) Rock cluster at a distance of 25 m
 19 19 19
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The need for recognizing and classifying obstacles is clear from the outputs show

these figures. In addition to the rocks and/or rock cluster, the algorithm has flagge

grass, bushes, and background trees as obstacles. Our future work includes pl

fuse Ladar images with video images to generate windows of interest in the video im

Classification of obstacles will be based on the information in the video windows.

6. Obstacle Map and List Module

We have adapted Kelly’s [10] grid obstacle map for representing obstacles for

planning and vehicle control. The map representation contains terrain surface s

uncertainty measures, average depth information, and a list of obstacles for every g

the map. The path planning algorithm currently implemented in the 4D-RCS system

uses only a subset of the information contained in the map. It generates traversa

paths from the map by using a binary flag indicating whether or not the grid is an obst

a timestamp indicating when an obstacle was last updated, and an obstacle confi

value.

7. Conclusion

We have described an algorithm designed to detect obstacles in Ladar imagery.

Table 3 Detection of Positive Obstacles

Rock1 Rock2 Rock3 Rock4 Rock5
Rock

Clump

5 mph 13.9 m 20.2 m 18.6 m 25.0 m 12.8 m 31.8 m

10 mph 13.2 m 20.5 m 22.3 m 24.1 m 17.0 m 26.0 m

15 mph 15.0 m 23.2 m 22.2 m 26.6 m 13.7 m 30.6 m
 20 20 20
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algorithm is one of a suite of algorithms being tested in order to evaluate different se

that might be used for obstacle detection in the UGV program. We have characterize

Ladar sensor being used, and described its performance on different types of surfac

In order to evaluate the obstacle detection algorithm, we collected extensive sets of

data. These data were used as input for the obstacle detection algorithm. The algo

was able to detect both positive (rocks) and negative (ditches) obstacles. Detectabilit

determined to be a function of both the range to the obstacle and the size of the obs

The results of the evaluation tests are reported.

The obstacle detection algorithm was also tested in a real-time demonstration as p

the 4D-RCS control system. In conjunction with the planner module and beha

generation modules [1], we were able to detect obstacles on both the NIST ground

the NIKE test site while driving.
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