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Disclaimer

The US Department of Commerce makes no warranty, expressed or implied, to users of the Fire Dy-
namics Simulator (FDS), and accepts no responsibility for its use. Users of FDS assume sole responsibility
under Federal law for determining the appropriateness of its use in any particular application; for any con-
clusions drawn from the results of its use; and for any actions taken or not taken as a result of analyses
performed using these tools.

Users are warned that FDS is intended for use only by those competent in the fields of fluid dynamics,
thermodynamics, combustion, and heat transfer, and is intended only to supplement the informed judgment
of the qualified user. The software package is a computer model that may or may not have predictive
capability when applied to a specific set of factual circumstances. Lack of accurate predictions by the model
could lead to erroneous conclusions with regard to fire safety. All results should be evaluated by an informed
user.

Throughout this document, the mention of computer hardware or commercial software does not con-
stitute endorsement by NIST, nor does it indicate that the products are necessarily those best suited for the
intended purpose.
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1 Introduction

The idea that the dynamics of a fire might be studied numerically dates back to the beginning of the com-
puter age. Indeed, the fundamental conservation equations governing fluid dynamics, heat transfer, and
combustion were first written down over a century ago. Despite this, practical mathematical models of fire
(as distinct from controlled combustion) are relatively recent due to the inherent complexity of the problem.
Indeed, in his brief history of the early days of fire research, Hoyt Hottel noted “A case can be made for fire
being, next to the life processes, the most complex of phenomena to understand” [1].

The difficulties revolve about three issues: First, there are an enormous humber of possible fire scenarios
to consider due to their accidental nature. Second, the physical insight and computing power necessary to
perform all the necessary calculations for most fire scenarios are limited. Any fundamentally based study
of fires must consider at least some aspects of bluff body aerodynamics, multi-phase flow, turbulent mixing
and combustion, radiative transport, and conjugate heat transfer; all of which are active research areas in
their own right. Finally, the “fuel” in most fires was never intended as such. Thus, the mathematical models
and the data needed to characterize the degradation of the condensed phase materials that supply the fuel
may not be available. Indeed, the mathematical modeling of the physical and chemical transformations of
real materials as they burn is still in its infancy.

In order to make progress, the questions that are asked have to be greatly simplified. To begin with,
instead of seeking a methodology that can be applied to all fire problems, we begin by looking at a few
scenarios that seem to be most amenable to analysis. Hopefully, the methods developed to study these “sim-
ple” problems can be generalized over time so that more complex scenarios can be analyzed. Second, we
must learn to live with idealized descriptions of fires and approximate solutions to our idealized equations.
Finally, the methods should be capable of systematic improvement. As our physical insight and computing
power grow more powerful, the methods of analysis can grow with them.

To date, three distinct approaches to the simulation of fires have emerged. Each of these treats the
fire as an inherently three dimensional process evolving in time. The first to reach maturity, the “zone”
models, describe compartment fires. Each compartment is divided into two spatially homogeneous volumes,
a hot upper layer and a cool lower layer. Mass and energy balances are enforced for each layer, with
additional models describing other physical processes appended as differential or algebraic equations as
appropriate. Examples of such phenomena include fire plumes, flows through doors, windows and other
vents, radiative and convective heat transfer, and solid fuel pyrolysis. An excellent description of the physical
and mathematical assumptions behind the zone modeling concept is given by Quintiere [2], who chronicles
developments through 1983. Model development since then has progressed to the point where documented
and supported software implementing these models are widely available [3].

The relative physical and computational simplicity of the zone models has led to their widespread use in
the analysis of fire scenarios. So long as detailed spatial distributions of physical properties are not required,
and the two layer description reasonably approximates reality, these models are quite reliable. However,
by their very nature, there is no way to systematically improve them. The rapid growth of computing
power and the corresponding maturing of computational fluid dynamics (CFD), has led to the development
of CFD based “field” models applied to fire research problems. Virtually all this work is based on the
conceptual framework provided by the Reynolds-averaged form of the governing equations, in particular
thek — € turbulence model pioneered by Patankar and Spalding [4]. The use of CFD models has allowed the
description of fires in complex geometries, and the incorporation of a wide variety of physical phenomena.
However, these models have a fundamental limitation for fire applications — the averaging procedure at
the root of the model equations. Tke- € model was developed as a time-averaged approximation to the
conservation equations of fluid dynamics. While the precise nature of the averaging time is not specified, it is
clearly long enough to require the introduction of large eddy transport coefficients to describe the unresolved
fluxes of mass, momentum and energy. This is the root cause of the smoothed appearance of the results of



even the most highly resolved fire simulations. The smallest resolvable length scales are determined by
the product of the local velocity and the averaging time, rather than the spatial resolution of the underlying
computational grid. This property of the— € model is typically exploited in numerical computations by
using implicit numerical techniques to take large time steps.

Unfortunately, the evolution of large eddy structures characteristic of most fire plumes is lost with
such an approach, as is the prediction of local transient events. It is sometimes argued that the averaging
process used to define the equations is an “ensemble average” over many replicates of the same experiment
or postulated scenario. However, this is a moot point in fire research since neither experiments nor real
scenarios are replicated in the sense required by that interpretation of the equations. The application of
“Large Eddy Simulation” (LES) techniques to fire is aimed at extracting greater temporal and spatial fidelity
from simulations of fire performed on the more finely meshed grids allowed by ever faster computers. The
phrase LES refers to the description of turbulent mixing of the gaseous fuel and combustion products with
the local atmosphere surrounding the fire. This process, which determines the burning rate in most fires and
controls the spread of smoke and hot gases, is extremely difficult to predict accurately. This is true not only
in fire research but in almost all phenomena involving turbulent fluid motion. The basic idea behind the
LES technique is that the eddies that account for most of the mixing are large enough to be calculated with
reasonable accuracy from the equations of fluid dynamics. The hope (which must ultimately be justified by
appeal to experiments) is that small-scale eddy motion can either be crudely accounted for or ignored.

The equations describing the transport of mass, momentum, and energy by the fire induced flows must
be simplified so that they can be efficiently solved for the fire scenarios of interest. The general equations of
fluid dynamics describe a rich variety of physical processes, many of which have nothing to do with fires.
Retaining this generality would lead to an enormously complex computational task that would shed very
little additional insight on fire dynamics. The simplified equations, developed by Rehm and Baum [5], have
been widely adopted by the larger combustion research community, where they are referred to as the “low
Mach number” combustion equations. They describe the low speed motion of a gas driven by chemical heat
release and buoyancy forces.

The low Mach number equations are solved numerically by dividing the physical space where the fire
is to be simulated into a large number of rectangular cells. Within each cell the gas velocity, temperature,
etc, are assumed to be uniform; changing only with time. The accuracy with which the fire dynamics can
be simulated depends on the number of cells that can be incorporated into the simulation. This number
is ultimately limited by the computing power available. Present day desktop computers limit the number
of such cells to at most a few million. This means that the ratio of largest to smallest eddy length scales
that can be resolved by the computation (the “dynamic range” of the simulation) is roughhky 200.
Unfortunately, the range of length scales that need to be accounted for if all relevant fire processes are to be
simulated is roughly 10~ 10° because combustion processes take place at length scales of 1 mm or less,
while the length scales associated with building fires are of the order of meters or tens of meters. The form
of the numerical equations discussed below depends on which end of the spectrum one wants to capture
directly, and which end is to be ignored or approximated.



2 Hydrodynamic Model

An approximate form of the Navier-Stokes equations appropriate for low Mach number applications is
used in the model. The approximation involves the filtering out of acoustic waves while allowing for large
variations in temperature and density [5]. This gives the equations an elliptic character, consistent with
low speed, thermal convective processes. The computation can either be treated as a Direct Numerical
Simulation (DNS), in which the dissipative terms are computed directly, or as a Large Eddy Simulation
(LES), in which the large-scale eddies are computed directly and the sub-grid scale dissipative processes
are modeled. The choice of DNS vs. LES depends on the objective of the calculation and the resolution
of the computational grid. If, for example, the problem is to simulate the flow of smoke through a large,
multi-room enclosure, it is not possible to resolve the combustion and transport processes directly. However,
for small-scale combustion experiments, it is possible to compute the transport directly and the combustion
processes to some extent.

2.1 Conservation Equations

First, consider the conservation equations of mass, momentum and energy for a thermally-expandable,
multi-component mixture of ideal gases [5]:

Conservation of Mass

0
P +Dpu=0 o)
Conservation of Species
0 :
5¢ (PYD) +0-pYiu = 0-pDi0Y; + rif” ()
Conservation of Momentum
ou
p a—t+(u-D)u +0p=pg+f+0-1T 3
Conservation of Energy
0 Dp
a(ph)JrD-phu:E—D-qrJrD-kDTJrZD~h|pD|DY| 4)

Note that the external force on the fluid, represented by theftémrq. (3), consists of the drag exerted by
water droplets emanating from sprinklers plus other external forces. Thétpfidt = op/ot+u-Opis a
material derivative. All other symbols are listed in the Nomenclature (Sgdtion 9).

2.2 State, Mass and Energy Equations

The conservation equations are supplemented by an equation of state relating the thermodynamic quantities.
An approximation to the ideal gas law is made by decomposing the pressure into a “background” component,
a hydrostatic component, and a flow-induced perturbation

P = Po—P=gZ+ P (5)

For most applicationgyg is constant and the other two components are relatively small. Adjustments to this
assumption can be made in the case when the pressure rises due to a fire in a tightly sealed enclosure, or
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when the height of the domain is on the order of a kilometer@nchan no longer be assumed constant and
must be considered a function of the altitude [6].

The purpose of decomposing the pressure is that for low-Mach number flows, it can be assumed that the
temperature and density are inversely proportional, and thus the equation of state can be approximated [5]

Po=PTR Y (Yi/Mi) =pTR/M (6)

The pressurg in the state and energy equations is replaced by the background presdorélter out

sound waves that travel at speeds that are much faster than typical flow speeds expected in fire applications.
The low Mach number assumption serves two purposes. First, the filtering of acoustic waves means that the
time step in the numerical algorithm is bound only by the flow speed as opposed to the speed of sound, and
second, the modified state equation leads to a reduction in the number of dependent variables in the system
of equations by one. The energy equatign (4) is never explicitly solved, but its source terms are included in
the expression for the flow divergence, an important quantity in the analysis to follow.

The divergence of the flow is obtained by taking the material derivative of the equation of state, and
then substituting terms from the mass and energy conservation equations. First, define the constant-pressure
specific heat of the mixturec, = 3 cp Y| wherecy) is the temperature-dependent specific heat of species
|. Next, define the enthaldy= ¥, h'Y{ where

-
N(T) =K+ [ e (T)dT’ )
T
andhl0 is the heat of formation of speciesNow the divergence can be written

1

0.u — oo, T (D-kDT—i—D-Z[CdeTleDYI—D'Qr)+

M 1

1 M h ) o ( 1 1> dpo

— _ - + —— | =5 8
pZ<M| cpT m pcpT  po/ dt (8)

This expression can be simplified by making some approximations. First, assumjecghdd ~ ¢, T.
Further, assume the specific heat can be expressed in terms of the number of internal degrees o¥freedom

active in the molecule. 5 g 2
B TVi\ R Vi kY
Cp’|_< 2 >'V'| _(Vl—1> M ©)

If the ratio of specific heatg for each species is assumed to be constant, the second line ff Eq. (8) disap-
pears, and the only term left from the production term in line 3 is

1 M h| ) - 1 0 1

= 1 = _ h 10

53 (W —ar ) W= e 21N (10
which can be regarded as the energy due to the reaction. From here on, the reaction energy release rate per
unit volume will be writteng” = — 3, h° ry”.

The approximate form of the divergence used in the calculation is

- - ) : . 1
O U—pCpT <[| kOT +0O Zpr7|dTpD|DY| O-gr+9 >_|_<

1 1 dpo
pcpT  po/ dt



Notice that the assumption of a temperature-independent specific heat was made only to eliminate minor
terms in the divergence expression, and thereby reduce the cost of the calculation. In general, it is not
assumed that the specific heat is independent of temperature. The pressure rise term on the right hand side
of the divergence expression is non-zero only if it assumed that the enclosure is tightly sealed, in which case
the background pressupgy can no longer be assumed constant due to the increase (or decrease) in mass
and thermal energy within the enclosure. The evolution equation for the pressure is found by integrating
Eq. (I1) over the entire domain

ddﬁoz[/Qpclp_r(D-kDT+...>dV—/aQu-dS}//Q<plo—pclp_r> dv (12)

2.3 The Momentum Equation

The momentum equation is simplified by subtracting off the hydrostatic pressure gradient from the momen-
tum equation[(3), and then dividing by the density to offfain

du

15, 1 . 1
p u><oo+§Dyu\+5Dp—5((p—pm)g+f+D-r) (13)

To simplify this equation further, a substitution is made
1 1
Dy{zém|u|2+am|5 (14)

The basis for this approximation is seen in the evolution equation for the circulation, obtained by integrating
Eq. (I3) over a closed loop moving with the fluid (in the absence of any external force)

= f < (04 (p—pu)g+ D-1)-0x (15)
dt p
There are three sources of vorticity: the baroclinic torque due to the non-alignment of the density and
pressure gradients, buoyancy due to horizontal density gradients, and viscosity. Buoyancy is the dominant
source of vorticity, and the approximation above is equivalent to neglecting the baroclinicﬁbrque.

Neglecting the baroclinic torque simplifies the elliptic partial differential equation obtained by taking
the divergence of the momentum equation

d(0-u)

2 e
079 = ot

-0-F ; F:—uxw—;((p—pm)g+f+D-T) (16)

The linear algebraic system arising from the discretization of[Eq. (16) has constant coefficients and can be
solved to machine accuracy by a fast, dirée. (hon-iterative) method that utilizes fast Fourier transforms.
No-flux or forced-flow boundary conditions are specified by asserting that
0H ou
- _F n

e a7)

INote the use of the vector identity - 0)u = 30Ju[2 —u x w.
2 An option exists in the code to restore the baroclinic torque by decomposing the pressure term

op 0Op 1 1\ .

22 3-3)e
p p p P

and evaluating the second term on the right hand side at the previous time step. The expresaivaverage density, equal to

2pminPmax/ (Pmin + Pmax). For most large-scale applications, the baroclinic torque is relatively small compared to buoyancy.
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whereF, is the normal component &f at the vent or solid wall, anduy, /ot is the prescribed rate of change
in the normal component of velocity at a forced vent. Initially, the velocity is zero everywhere. At open
external boundaries the pressure-like tekfrs prescribed, depending on whether the flow is outgoing or
incoming

H =|u|?/2 outgoing

H=0 incoming (18)

The outgoing boundary condition assumes that the pressure perturpagiaerd at an outgoing boundary
and that# is constant along streamlines. The incoming boundary condition assumesithaéro infinitely
far away.

2.4 Diffusive Terms (LES)

The viscous stress tensor in the momentum equation is given by

2
T:u<2defu—3(D-u)l> (19)
wherel is the identity matrix and the deformation tensor is defined
2 1(ou_ o 1(ou_ o
) 2 33+ 3(e+y
defu=j [Dur@f] = | 3(5+5)  §  H(EF (20
1(ow @ 1(ow @ d
d(Eeh) 1(508) %

In the numerical model, there are two options for treating the dynamic viscasityor a Large Eddy
Simulation (LES) where the grid resolution is not fine enough to capture the mixing processes at all relevant
scales, a sub-grid scale model for the viscosity is applied. Following the analysis of Smagarinsky [7], the
viscosity can be modeled as

hes =P (Cot)? (2detu) - (defu) - 5(0-u?) (21)

whereCs is an empirical constansy is a length on the order of the size of a grid cell, and the deformation
term is related to the Dissipation Function

® = 1-0u = u(Z(defu)-(defu)—;(D'u)2> (22)
ou\ 2 v\ 2 ow\ 2
aiij@ 2+ aivijaiv 2+ @JFGLV ng @+ﬂ/+alv ’ (24)
ox oy dy 0z 0z  0x 3\0x ody o0z

The dissipation function is the rate at which kinetic energy is transferred to thermal energy. It is a source
term in the energy conservation equation that is usually neglected because it is small — an approximation
consistent with the low Mach number equations.

In an LES calculation, the thermal conductivity and material diffusivity are related to the turbulent
viscosity by
HiesCp

Pr ; (PD)1es = Hees (25)

kLES = Sc




The Prandtl number Pr and the Schmidt number Sc are assumed to be constant for a given scenario.

There have been numerous refinements of the original Smagorinsky madel [8, 9, 10], but it is difficult to
assess the improvements offered by these newer schemes. There are two reasons for this. First, the structure
of the fire plume is so dominated by the large-scale resolvable eddies that even a constant eddy viscosity
gives results almost identical to those obtained using the Smagorinsky model [11]. Second, the lack of
precision in most large-scale fire test data makes it difficult to assess the relative accuracy of each model.
The Smagorinsky model with consta@i produces satisfactory results for most large-scale applications
where boundary layers are not well resolved.

2.5 Diffusive Terms (DNS)

For a Direct Numerical Simulation (DNS), the viscosity, thermal conductivity and material diffusivity are
approximated from kinetic theory. The viscosity of e species is given by

M__2669x10JUWfD% kg

26
02Q, ms (26)

whereg is the Lennard-Jones hard-sphere diameft@a(]dQv is the collision integral, an empirical func-
tion of the temperatur@. The thermal conductivity of thih species is given by

_ M Cp,| W
Pr m K

ki (27)

where the Prandtl number Pris 0.7. The viscosity and thermal conductivity of a gas mixture are given by
“DNS:ZY|M ; kDNS:ZY|k| (28)

The binary diffusion coefficient of thieh species diffusing into theth species is given by

2.66x 10 7T3/2 m?
Dlm - 1 — (29)

) S
IVIImO-ImQD

whereMim = 2(1/M; +1/Mm) L, aim = (01 + 0m) /2, andQp is the diffusion collision integral, an empirical
function of the temperatur€ [12]. It is assumed that nitrogen is the dominant species in any combustion
scenario considered here, thus the diffusion coefficient in the species mass conservation equations is that of
the given species diffusing into nitrogen

(pD)I,DNs =P DIO (30)

where species 0 is nitrogen.



3 Combustion

There are two types of combustion models used in FDS. The choice depends on the resolution of the under-
lying grid. For a DNS calculation where the diffusion of fuel and oxygen can be modeled directly, a global
one-step, finite-rate chemical reaction is most appropriate. However, in an LES calculation where the grid
is not fine enough to resolve the diffusion of fuel and oxygen, a mixture fraction-based combustion model
is used.

3.1 Mixture Fraction Combustion Model

The mixture fraction combustion model is based on the assumption that large-scale convective and radiative
transport phenomena can be simulated directly, but physical processes occurring at small length and time
scales must be represented in an approximate manner. The nature of the approximations employed are
necessarily a function of the spatial and temporal resolution limits of the computation, as well as our current
(often limited) understanding of the phenomena involved.

The actual chemical rate processes that control the combustion energy release are often unknown in fire
scenarios. Even if they were known, the spatial and temporal resolution limits imposed by both present and
foreseeable computer resources places a detailed description of combustion processes beyond reach. Thus,
the model adopted here is based on the assumption that the combustion is mixing-controlled. This implies
that all species of interest can be described in terms of a mixture fra¢tioh). The mixture fraction is a
conserved quantity representing the fraction of material at a given point that originated as fuel. The relations
between the mass fraction of each species and the mixture fraction are known as “state relations”. The state
relation for the oxygen mass fraction provides the information needed to calculate the local oxygen mass
consumption rate. The form of the state relation that emerges from classical laminar diffusion flame theory
is a piecewise linear function. This leads to a “flame sheet” model, where the flame is a two dimensional
surface embedded in a three dimensional space. The local heat release rate is computed from the local
oxygen consumption rate at the flame surface, assuming that the heat release rate is directly proportional
to the oxygen consumption rate, independent of the fuel involved. This relation, originally proposed by
Huggett [13], is the basis of oxygen calorimetry.

Start with the most general form of the combustion reaction

vg Fuel4+vp O, — ZVRi Products (32)
|

The numberw; are the stoichiometric coefficients for the overall combustion process that reacts fuel “F”
with oxygen “O” to produce a number of products “P”. The stoichiometric equdtign (31) implies that the
mass consumption rates for fuel and oxidizer are related as follows:

Y i
VEME VoMo

The mixture fractior? is defined as:

7 S —(Yo—Yg) . VoMo
= y S=
SY,': +Y3 VEME

(33)

By design, it varies fror = 1 in a region containing only fuel = 0 where the oxygen mass fraction takes

on its undepleted ambient valugy. Note thaty{ is the fraction of fuel in the fuel stream. The quantities
Mg and Mg are the fuel and oxygen molecular weights, respectively. The mixture fraction satisfies the
conservation law

pDD—f =0d-pb0Z (34)
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FIGURE 1: State relations for propane.

obtained from a linear combination of the fuel and oxygen conservation equations. The assumption that the
chemistry is “fast” means that the reactions that consume fuel and oxidizer occur so rapidly that the fuel
and oxidizer cannot co-exist. The requirement that fuel and oxidizer simultaneously vanish defines a flame
surface as:

__ Yo
TS Y
The assumption that fuel and oxidizer cannot co-exist leads to the “state relation” between the oxygen mass
fractionYp andZ

Zx)=2; ; Z (35)

oy - { -z 22

State relations for both reactants and products can be derived by considering the following ideal reaction of
a hydrocarbon fuel:

CiHy +Nn(x+y/4) (O2+3.76 N;) — max0,1—n) CxHy+min(1,n)x COx+
min(1,n) (y/2) H,O + max0,n—1) (x+y/4) O2+n(x+y/4)3.76 N,  (37)

Heren is a parameter ranging from O (all fuel with no oxygen) to infinity (all oxygen with no fuel). A
correspondence betwegrandZ is obtained by applying the definition @f(Eq.[33) to the left hand side of
Eq. (37). Mass fractions of the products of the infinitely fast reaction (including excess fuel or oxygen) can
be obtained from the right hand side of Hq.|(37). State relations for the ideal reaction of propane and air is
shown in Fig[ 1.

An expression for the local heat release rate can be derived from the conservation equations and the state
relation for oxygen. The starting point is Huggett's|[13] relationship for the heat release rate as a function



of the oxygen consumption
4" = AHo Mg (38)

Here, AHo is the heat release rate per unit mass of oxygen consumed. The oxygen mass conservation
equation

DY, .
p—p = O-pDOYo+ 11§ (39)

can be transformed into an expression for the local heat release rate using the conservation equation for the
mixture fraction|(34) and the state relation for oxygesZ).

2
dYo ) dYo Yo 10 (40)

-n N: . E— E—— . — —
Mg =0 (pD 0z 0-pDOZ = pD =7

dz
Neither of these expressions for the local oxygen consumption rate is particularly convenient to apply nu-
merically because of the discontinuity of the derivative/efZ) atZ = Z;. However, an expression for the
oxygen consumption rate per unit area of flame sheet can be derived from Eq. (40)
., dYo

4z pDOZ-n (41)

Z<Zs

In the numerical algorithm, the local heat release rate is computed by first locating the flame sheet, then
computing the local heat release rate per unit area, and finally distributing this energy to the grid cells cut
by the flame sheet. In this way, the ideal, infinitely thin flame sheet is smeared out over the width of a grid

cell, consistent with all other gas phase quantities.

3.2 Enhancements to the Mixture Fraction Model

The mixture fraction model described in the previous section has several limitations, both numerical and
physical. Its numerical limitations are related to the resolution of the underlying numerical grid. On coarse
grids, the accuracy of the fuel transport and combustion processes is diminished by the high levels of numer-
ical diffusion. The above procedure for determining the local heat release rate works well for calculations
in which the fire is adequately resolved. A measure of how well the fire is resolved is given by the nondi-
mensional expressidd* /dx, whereD* is a characteristic fire diameter

. _ Q i
) @

andox is the nominal size of a grid cI The quantityD*/dx can be thought of as the number of compu-
tational cells spanning the characteristic (not necessarily the physical) diameter of the fire. The more cells
spanning the fire, the better the resolution of the calculation. For fire scenarios Whieremall relative

to the physical diameter of the fire, and/or the numerical grid is relatively coarse, the stoichiometric surface
Z = Z; will underestimate the observed flame hei@ht [14]. It has been found empirically that a good estimate
of flame height can be found for crude grids if a different valug &f used to define the combustion region

Z; off , D*
=min (1, C 6x> (43)

HereC is an empirical constant to be used for all fire scenarios. As the resolution of the calculation increases,
the Z; of approaches the ideal valug;. The benefit of the expression is that it provides a quantifiable

3The characteristic fire diameter is related to the characteristic fire size via the r€atiotD* /D)2, whereD is the physical
diameter of the fire.
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measure of the grid resolution that takes into account not only the size of the grid cells, but also the size of
the fire.

Another consequence of a coarse numerical grid is that a disproportionate amount of the combustion
energy is released near the edges of the burner. Frofn Eq. 41, it can be seen that the heat release rate per
unit area of the flame sheet is proportional to the local gradient of the mixture fraction and the local value
of the material diffusivity. The gradient of the mixture fraction is large at the base of the fire because there
a stream of pure fuel meets surrounding air. The diffusivity is large on a coarse grid because it is related to
the Smagorinsky viscosity. To prevent too much of the energy from being released too close to the burner
when a coarse grid is used, there is a maximum bound imposed on the local heat release rate per unit area
of flame sheet. This upper bound is based on an analysis in which the fire is assumed to be conical in shape
with surface area, and a flame heightl, given by Heskestad'’s correlatian [15]

H/D=37Q%5-102 ; A=mrVr2+h? (44)

The surface area of a real flame is larger than that of a cone, so the upper bound estimate will prevent too
much energy from being released too close to the fire when a coarse grid is used, but will be high enough
not to interfere with the calculation when the grid is well-resolved. Any energy that is “clipped” off due to
the upper bound is redistributed over the entire flame volume.

The physical limitation of the mixture fraction approach is that it is assumed that fuel and oxygen burn
instantaneously when mixed. For large-scale, well-ventilated fires, this is a good assumption. However, if a
fire isin an under-ventilated compartment, or if a suppression agent like water misg @s @@oduced, fuel
and oxygen may mix but may not burn. Also, a shear layer with high strain rate separating the fuel stream
from an oxygen supply can prevent combustion from taking place. The physical mechanisms underlying
these phenomena are complex, and even simplified models still rely on a reasonably accurate estimation of
the temperature and local strain rate in the neighborhood of the flame sheet. Sub-grid scale modeling of
gas phase suppression and extinction is still an area of active research in the combustion community. Until
reliable models can be developed for building-scale fire simulations, simple empirical rules can be devised
that prevent burning from taking place when the atmosphere immediately surrounding the fire cannot sustain
the combustion. Based on the work of Quintiere, Mowrer and others, a model for flame extinction has been
implemented in FDS. The mixture fraction continues to be used to track the progress of the fuel mixing with
the surrounding air, but now the surrounding volume is assessed to determine if it is more or less likely to
support combustion. Figufé 2 shows values of temperature and oxygen concentration for which burning can
and cannot take place. Note that once the combustion region falls in the “No Burn” zone, the state relations
(Fig.[1) are no longer valid for values @fbelow stoichiometric, since now some fuel may be mixed with
the other combustion products. To account for the deviation from the ideal state relations, at least one other
scalar quantity in addition to the mixture fraction would have to be tracked in the calculation.

3.3 Finite-rate Reaction (DNS)

In a DNS calculation, the diffusion of fuel and oxygen can be modeled directly, thus it is possible to im-
plement a relatively simple one-step chemical reaction. Consider the reaction of oxygen and a hydrocarbon
fuel

Ve,H, CxHy 4+ Vo, O2 — Ve, COz + V0 H20 (45)
The reaction rate is given by the expression
d[CxH _
[dt i BloH, P[0 e T (46)

Suggested values &, E, a andb for various hydrocarbon fuels are given in Refs.|[16, 17]. It should be
understood that the implementation of any of these one-step reaction schemes is still very much a research
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FIGURE 2: Oxygen-temperature phase space showing where
combustion is allowed and not allowed to take place.

exercise because it is not universally accepted that combustion phenomena can be represented by such a sim-
ple mechanism. Efforts are currently underway to determine in what cases a one-step reaction mechanism
provides a valid description of the combustion process.
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4 Thermal Radiation

The Radiative Transport Equation (RTE) for an absorbing/emitting and scattering medium is

o(X,A)
ATt

s- Oy (x,8) = — [K(X,A) +0(X,A)]1(X,8) + B(x,A) + d(s,9) I\ (x,8) dQ’ 47)

41

wherel, (X, s) is the radiation intensity at wavelengths is the direction vector of the intensitg(x,A) and

o(x,A) are the local absorption and scattering coefficients, respective\B@nal) is the emission source

term. The integral on the right hand side describes the in-scattering from other directions. In the case of a
non-scattering gas the RTE becomes

s- O (%,8) =K(X,A) [Ip(X) —1(X,9)] (48)

wherelp(X) is the source term given by the Planck function. This section describes the radiation transport
in the gas phase. The interaction of radiation with droplets is explained in Sectjon 6.6.

In practical simulations the spectral dependence can not be solved accurately. Instead, the radiation
spectrum is divided into a relatively small number of bands, and a separate RTE is derived for each band.
The limits of the bands are selected to give an accurate representation of the most important radiation bands
of CO, and water. The band specific RTE's are how

S- Oln(x,8) = Kn(X) [lon(X)—1(x,s)], n=1..N (49)

wherel, is the intensity integrated over the bandandky is the appropriate mean absorption coefficient
inside the band. The source term can be written as a fraction of the blackbody radiation

lo.,n = Fn(Amin, Amax) O T4/T[ (50)

whereo is the Stefan-Boltzmann constant. The calculation of fad¥pis explained in Ref[[18]. When the
intensities corresponding to the bands are known, the total intensity is calculated by summing over all the

bands
N

1(x,8) = In(X,s) (51)
n=1
From a series of numerical experiments it has been found that six bands are usually éheu@h (f the
absorption of the fuel is known to be important, separate bands can be reserved for fuel, and the total number
of bands is increased to teN & 10). For simplicity, the fuel is assumed to be £Hhe limits of the bands
are shown in Tablel 1.

TABLE 1: Limits of the spectral bands.

9 Band Model 1 2 3 4 5 6 7 8 9
. . Soot CO, CHy | Soot| CO, | HO H,O Soot | Soot
Major Species H»>0, Soot| Soot Soot | Soot | CHy4, Soot
v (1/cm) 10000 3800 3400 2800 2400 2174 1429 1160 1000 50
A (um) 1.00 2.63 294 357 417 470 7.00 8.62 10.0 200
6 Band Model 1 2 3 4 5 6
. . Soot CO, CHgy CO, H-O, CH,, Soot Soot
M
ajor Species H>0, Soot Soot Soot

Even with a reasonably small number of bands, the solutidd BTE’s is very time consuming. For-
tunately, in most large-scale fire scenarios soot is the most important combustion product controlling the
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thermal radiation from the fire and hot smoke. As the radiation spectrum of soot is continuous, it is possible
to assume that the gas behaves as a gray medium. The spectral dependence is lumped into one absorption
coefficient N = 1) and the source term is given by the blackbody radiation intensity

Ip(x) =0T (x)*/m (52)

In optically thin flames, where the amount of soot is small compared to the amount,cr@Ovater, the
gray gas assumption may produce significant overpredictions of the emitted radiation.

For the calculation of the gray or band-mean absorption coefficieptsa narrow-band model, Rad-
Cal [19], has been implemented in FDS. At the start of a simulation the absorption coefficient(s) are tabulated
as a function of mixture fraction and temperature. During the simulation the local absorption coefficient is
found by table-lookup.

In calculations of limited spatial resolution, the source telgnin the RTE requires special treatment
in the neighborhood of the flame sheet because the temperatures are smeared out over a grid cell and are
thus considerably lower than one would expect in a diffusion flame. Because of its dependence on the
temperature raised to the fourth power, the source term must be modeled in those grid cells cut by the flame
sheet. Elsewhere, there is greater confidence in the computed temperature, and the source term can assume
its ideal value there

4 .
Klb:{ KoT?/mt  Outside flame zone (53)

Xrg” /41 Inside flame zone

Here,q"” is the chemical heat release rate per unit volumeyansl thelocal fraction of that energy emitted
as thermal radiation. Note the difference between the prescription of ajpeaid the resulting global
equivalent. For a small firdX < 1 m), the local, is approximately equal to its global counterpart. However,
as the fire increases in size, the global value will typically decrease due to a net re-absorption of the thermal
radiation by the increasing smoke mantle.

The boundary condition for the radiation intensity leaving a gray diffuse wall is given as

l(S) = Elpw+ ——° / lw(€) |€ - | A (54)
T Jsnu<0

wherely(s) is the intensity at the walk is the emissivity, andh,, is the black body intensity at the wall.

The radiative transport equatign [49) is solved using techniques similar to those for convective transport
in finite volume methods for fluid flow [20], thus the name given to it is the Finite Volume Method (FVM).
To obtain the discretized form of the RTE, the unit sphere is divided into a finite number of solid angles. In
each grid cell a discretized equation is derived by integrating equatipn (48) over thi eitl the control
angledQ!', to obtain

/@/V__ S'Dln(x,S)dVsz/Ql/v_ Kn(X) [Ip.n(X) = In(X,5)]dVdQ (55)

The volume integral on the left hand side is replaced by a surface integral over the cell faces using the
divergence theorem. Assuming that the radiation interigiys) is constant on each of the cell faces, the
surface integral can be approximated by a sum over the cell faces. More detail on the discretization and
solution of the RTE can be found in Section]7.7.

The radiant heat flux vectay; is defined

ar(x) = / sl (x,s) dQ (56)
The radiative loss term in the energy equation is

—0-qr(X) =K(X) U(X) —4mtlp(x)] ; U(x)= 411I(x,s)dQ (57)
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In words, the net radiant energy gained by a grid cell is the difference between that which is absorbed and
that which is emitted.
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5 Thermal Boundary Conditions

The type of thermal boundary condition applied at any given surface depends on whether that surface is to
heat up and burn, whether the burning rate will simply be prescribed, or whether there is to be any burning
at all.

5.1 Convective Heat Transfer to Walls

The heat fluxes to a solid surface consist of gains and losses from convection and radiation. The radiative
flux at the surface is obtained from the boundary condition for the radiation equatiop, Eq. (54).

The calculation of the convective heat flux depends on whether one is performing a Direct Numerical
Simulation (DNS) or a Large Eddy Simulation (LES). In a DNS calculation, the convective heat flux to a
solid surfacey! is obtained directly from the gas temperature gradient at the boundary

oT
W=k — 58
wheren is the spatial coordinate pointing into the solid. In an LES calculation, the convective heat flux to

the surface is obtained from a combination of natural and forced convection correlations
) k
¢ =hAT W/m? ; h=max|CIAT|? |, [ 0.037 Ré P3|  W/m2K (59)

whereAT is the difference between the wall and the gas temperature (taken at the center of the grid cell
abutting the wall),C is the coefficient for natural convection (1.43 for a horizontal surface and 0.95 for

a vertical surface) [21]l- is a characteristic length related to the size of the physical obstruétisrthe

thermal conductivity of the gas, and the Reynolds Re and Prandtl Pr numbers are based on the gas flowing
past the obstruction. Since the Reynolds number is proportional to the characteristic lerpta heat
transfer coefficient is weakly related to For this reason, is taken to be 1 m for most calculations.

5.2 Pyrolysis Model, Thermally-Thick Solid

If the surface material is assumed to be thermally-thick, a one-dimensional heat conduction equation for the
material temperaturfg(n,t), is applied in the direction pointing into the air/solid interfacen = 0)

o0Ts 0°Ts ]
psCsE:ksW ;o —ks

9Ts

= (0,t) =L + ¢/ — " AHy (60)

whereps, cs andks are the (constant) density, specific heat and conductivity of the matefiat the
convective andy’ is the (net) radiative heat flux at the surfao®,is the mass loss rate of fuel aidH, is
the heat of vaporization. It is assumed that fuel pyrolysis takes place at the surface, thus the heat required
to vaporize fuel is extracted from the incoming energy flux. The pyrolysis rate is given by an Arrhenius
expression

m’ =AeB/RT (61)

The value of the pre-exponential factéy,is fixed,R is the universal gas constant, aads adjusted so that

the material burns in the neighborhood of a prescribed temperature. The actual burning rate is governed
by the overall energy balance in the solid. These parameters are often difficult to obtain for real fuels; the

intent of using the given expression for the mass loss rate is to mimic the behavior of burning objects when

details of their pyrolysis mechanisms are unknown. Figlire 3 displays a few plots of the mass flux versus

temperature for two different temperatures.
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FIGURE 3: Fuel pyrolysis rates for two given “ignition” tem-
peratures. See Ed. 61.

5.3 Pyrolysis Model, Thermally-Thin Solid

If the surface material is assumed to be thermally-thin, that is, its temperature is assumed uniform across its
width, Ts(t) is affected by gains and losses due to convection, radiation and pyrolysis. The thermal lag of
the material is a function of the product of its density, specific heat and thickness

de - qg + q;/ -’ AHv

dt PsCsd (62)

The convective and radiative fluxes are summed over the front and back surfaces of the thin fuel. Unless
otherwise specified, the back surface is assumed to face an ambient temperature void. Note that the indi-
vidual values of the parameteps, cs andd are not as important as their product, thus often in the literature

and in the computer program, the three values are lumped together as a product. The pyrolysis rate for a
thermally-thin fuel is the same as for a thermally-thick; seg¢ Efy. 61.

5.4 Pyrolysis Model, Liquid Fuels

The rate at which liquid fuel evaporates when burning is a function of the liquid temperature and the con-
centration of fuel vapor above the pool surface. Equilibrium is reached when the partial pressure of the fuel
vapor above the surface equals the Clausius-Clapeyron pressure

B hyM: /1 1
Pcc = Po €XP [— 3 <Ts - Tb>} (63)
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whereh, is the heat of vaporizatioM; is the molecular weightls is the surface temperature, afgis the
boiling temperature of the fuel [22].

For simplicity, the liquid fuel itself is treated like a thermally-thick solid for the purpose of computing
the heat conduction. There is no computation of the convection of the liquid within the pool.
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6 Sprinklers

Simulating the effects of a sprinkler spray involves a number of pieces: predicting activation, computing the
droplet trajectories and tracking the water as it drips onto the burning commodity.

6.1 Sprinkler Activation

The temperature of the sensing element of a given sprinkler is estimated from the differential equation put
forth by Heskestad and Bill [23], with the addition of several terms to account for radiative heating and
cooling by water droplets in the gas stream from previously activated sprinklers

d
Vg - ST g (64

HereT, is the link temperaturéelg is the gas temperature in the neighborhood of the ligkis the temper-

ature of the sprinkler mount (assumed ambient), @rgl the volume fraction of (liquid) water in the gas
stream. The sensitivity of the detector is characterized by the value of RTI. The amount of heat conducted
away from the link by the mount is indicated by the “C-Fact@’, The constan€, has been empirically
determined by DiMarzd [24] to be 6 10° K/(m/s)%, and its value is relatively constant for different types

of sprinklers.

6.2 Sprinkler Droplet Size Distribution

Once activation is predicted, a sampled set of spherical water droplets is tracked from the sprinkler to either
the floor or the burning commaodity. In order to compute the droplet trajectories, the initial size and velocity
of each droplet must be prescribed. This is done in terms of random distributions. The initial droplet
size distribution of the sprinkler spray is expressed in terms of its Cumulative Volume Fraction (CVF),

a function that relates the fraction of the water volume (mass) transported by droplets less than a given
diameter. Researchers at Factory Mutual have suggested that the CVF for an industrial sprinkler may be
represented by a combination of log-normal and Rosin-Rammler distributions [25]

In(d’/d

_ ﬁ/ e “dd (@<dw) (65)
1- e 069%(d)" (dm < d)

wheredy, is the median droplet diameteirg, half the mass is carried by droplets with diameterglgf
or less), andy ando are empirical constants equal to about 2.4 and 0.6, respedﬂvéme median drop
diameter is a function of the sprinkler orifice diameter, operating pressure, and geometry. Research at
Factory Mutual has yielded a correlation for the median droplet diameter [26]

dm 1
— OWe™

D e (66)
whereD is the orifice diameter of the sprinkler. The Weber number, the ratio of inertial forces to surface
tension forces, is given by
pwU?D

Ow

wherepy is the density of wateflJ is the water discharge velocity, amg, is the water surface tension
(72.8 x 1072 N/m at 20°C). The discharge velocity can be computed from the mass flow rate, which is a

We =

(67)

4The Rosin-Rammler and log-normal distributions are smoothly joined=if2/(v/2m(In 2) y) = 1.15/y.
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FIGURE 4: Cumulative Volume Fraction and Cumulative Number Fraction functions of the droplet
size distribution from a typical industrial-scale sprinkler. The median diameter dy, is 1 mm, o = 0.6
andy=2.4.

function of the sprinkler’s operating pressure and K-Factor. FM reports that the constant of proportionality in
Eq. (66) appears to be independent of flow rate and operating pressure. Three different sprinklers were tested
in their study with orifice diameters of 16.3 mm, 13.5 mm, 12.7 mm and the constants were approximately
4.3, 2.9, 2.3, respectively. The strike plates of the two smaller sprinklers were notched, while that of the
largest sprinkler was ndt [26].

In the numerical algorithm, the size of the sprinkler droplets are chosen to mimic the Rosin-Rammler/log-
normal distribution. A Probability Density Function (PDF) for the droplet diameter is defined

tay= " //Om P g (68)

d d

Droplet diameters are randomly selected by equating the Cumulative Number Fraction of the droplet distri-
bution with a uniformly distributed random varialile

U(d) = /Od f(d')dd (69)

Figure[4 displays typical Cumulative Volume Fraction and Cumulative Number Fraction functions.

Every droplet from a given sprinkler is not tracked. Instead, a sampled set of the droplets is tracked.
Typically, 1,000 droplets per sprinkler per second are tracked (50 droplets every 0.05 s, depending on user
preference). The procedure for selecting droplet sizes is as follows: Suppose water is leaving the sprinkler at
a mass flow rate ah.”Suppose also that the time interval for droplet insertion into the numerical simulation
is ot, and the number of droplets inserted each time intervidll i€hooseN uniformly distributed random
numbers between 0 and 1, call thésn obtainN droplet diametersl, based on the given droplet size
distribution (Eq.[(6D), and then compute a weighting constant C from the mass balance

modt=C S i"Ttp <di>3 (70)
2,3\
The mass and heat tranferred from each droplet will be multiplied by the weighting @ctor
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6.3 Sprinkler Droplet Trajectory in Air

For a sprinkler spray, the force teffrim Eq. (3) represents the momentum transferred from the water droplets
to the gas. It is obtained by summing the force transferred from each droplet in a grid cell and dividing by
the cell volume

1y pComrg(ug—u)|ug —ul
2 Oxdy dz
whereCp is the drag coefficientq is the droplet radiusyq is the velocity of the droplet is the velocity of
the gasp is the density of the gas, aRedydzis the volume of the grid cell. The trajectory of an individual
droplet is governed by the equation

f (71)

d 1
i (Msa) = Mag — 5pCo g (ua — u)ug —ul (72)
wheremy is the mass of the droplet. The drag coefficient is a function of the local Reynolds number
24/Re Re<1
Co = ( 24(1+0.15R&%") /Re 1< Re< 1000 (73)
0.44 1000< Re
Re — p|“d—u“12rd (74)

wherep is the dynamic viscosity of air.

6.4 Sprinkler Droplet Transport on a Surface

When a water droplet hits a solid horizontal surface, it is assigned a random horizontal direction and moves
at a fixed velocity until it reaches the edge, at which point it drops straight down at the same fixed velocity.
This “dripping” velocity has been measured to be on the order of 0.5[m/s [27]. Penetration of water into
porous materials is handled very crudely by assigning a fraction of the water droplets that strike a solid
horizontal surface to go straight through the solid at a slow velocity. Neither the fraction nor the velocity
has been validated.

6.5 Mass and Energy Transfer from Droplets

The evaporation of water droplets is handled semi-empirically. A water droplet suspended in air will evap-
orate as a function of the droplet equilibrium vapor mass fraction, the local gas phase vapor mass fraction,
the heat transfer to the droplet, and the droplet’s motion relative to the gas. A correlation for the mass loss
rate of a droplet that involves these parameters is given helre [28]

dmy

The subscriptsl andg refer to the droplet and gas, respectively, is the droplet masd) is the diffusion
coefficient for water vapor into aily is the water vapor mass fraction, and Sh is the droplet Sherwood
number, given by a correlation involving the Reynolds and Schmidt numbers

Sh=2+0.6 Re? Sci (76)

The vapor mass fraction of the ga§, is obtained from the overall set of mass conservation equations and
the vapor mass fraction of the droplet is obtained from the Clausius-Clapeyron equation

_ hMy (1 1 . B X4
x"‘exp[ R <Tb Td>] Y L Ma/My) § Ma/My, (77
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whereXy is the droplet water vapor volume fractidn, is the heat of vaporizatioril,, is the molecular
weight of waterM, is the molecular weight of aitR_is the gas constanty, is the boiling temperature of
water andTy is the droplet temperature.

In addition to calculating the mass transfer due to evaporation, the transfer of energy must also be
calculated. The droplet heats up due to the convective heat transfer across the surface of the droplet minus
the energy required to evaporate water

dT, d
My Cpu o = Adha (Tg=Ta) =~ e (78)
Herecpw is the specific heat of wateAy = 47113 is the surface area of the droplét, is the heat transfer

coefficient, given by
~ Nuk

d = Trd )
Nu is the Nusselt numbekis the thermal conductivity of air, and the Prandtl number, Pr, is about 0.7 for
air. The Sherwood number, Sh, is analagous to the Nusselt number, with the Schmidt number about 0.6
compared to the 0.7 for the Prandtl number.
Finally, the exchange of mass and energy between the droplets and the gas results in an additional term
that must be added to the expression for the divergence] Eq. (8)

_ R WIVNCANLE

Nu=2+0.6 Re Pr3 (79)

nrcv) (80)

wheren, is the water evaporation rate per unit volume. The liquid water droplets are assumed to occupy
no volume, simplifying the analysis.

6.6 Interaction of Droplets and Radiation

The attenuation of thermal radiation by water droplets is an important consideration, especially for water
mist systems [29]. Water droplets attenuate thermal radiation through a combination of scattering and ab-
sorption [30]. The radiation-droplet interaction must therefore be solved for both the accurate prediction of
the radiation field and for the droplet energy balance.

If the gas phase absorption and emission in Eq. (47) are temporarily neglected for simplicity, the radia-
tive transport equation becomes

s- 01y (X,S) = — [Kd(X,A) + 04 (X,A)] 1 (X,S) + Kd(X,\) Ib,d(x,)\)+odg(1;)\) , ®(s,9) 1) (x,5)dQ" (81)

wherekg is the droplet absorption coefficiewmly is the droplet scattering coefficient ahg is the emission

term of the droplets®(s,s) is a scattering phase function that gives the scattered intensity from direction
s tos. The local absorption and scattering coefficients are calculated from the local droplet number density
N(x) and mean diametek,(X) as

Ka(%,A) = N(X) [ £ (r, dm(X)) Ca(r,A) dr
0d(X,A) =N(x) [g f(r,dm(x)) Cs(r,A) dr

wherer is the droplet radius and, andCs are absorption and scattering cross sections, respectively, given
by Mie theory. The droplet number density functibfr,dn,) is assumed to have the same form as the droplet
size distribution, but a different mean.

An accurate computation of the in-scattering intergal on the right hand side ¢f Eq (81) would be ex-
tremely time consuming. It is here approximated by dividing the tatedalid angle to a “forward angle”

(82)
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3Q' and “ambient angle®Q* = 41— 8Q'. For compatibility with the FVM solvedQ' is set equal to the
control angle given by the angular discretization. However, it is assumed to be symmetric around the center
of the control angle. WithidQ' the intensity idy (x,s) and elsewhere it is approximated as

U(x,A) —3Q'I5(x,9)

U (x, ) = =2 (83)

whereU (x) is the total integrated intensity. The in-scattering integral can now be written as

(01| (X7 )\)
4an 41t

D(s,9) In(x,8) dQ" = ag(X,A) [x5 Ix(X,S) + (L —X)U*(X)] (84)

wherexs = x¢(r,\) is a fraction of the total intensity originally within the solid an@i@' that is scattered
into the same angl&Q'. Defining now an effective scattering coefficient section

GalxN) = gm0 [ (1 x0) Culr A a @)

the spray RTE becomes
Ed (X,)\)

s-OIx(X,S) = — [Kd(X,A) + 0d (X, A)] 1 (X, ) + Kd (X, A) lp.a(X,A) + U(X,A) (86)
This equation can be integrated over the spectrum to get the band specific RTE’s. The procedure is exactly
the same as what is used for the gas phase RTE. After the band integrations, the spray RTE for band

becomes _
_ Od(X,A)

S-Oln(x,8) = — [Kd,n(X) + 0d.n(X)] In(X,S) + Kd.n(X) lpdn(X) + 471_[Un(x) (87)
where the source function is based on the average droplet temperature within a cell. The absorption and
scattering cross sections and the scattering phase function are calculated using the MieV code developed
by Wiscombe[[31]. Bothy anday are averaged over the possible droplet radii and wavelength before
the actual simulation. A single constant temperature is used in the wavelength averaging. This “radiation
temperatureT,aq should be selected to represent a typical radiating flame temperature. A value 1173 K is
used by default. The averaged quantities, being now functions of the droplet mean diameter only, are saved
in one-dimensional arrays. During the simulation, the local properties are calculated as a table lookup using
the local mean droplet diameter [32]. Details of the computation are given in Sectjon 7.8.

6.7 Fire Suppression by Water

The above two sections describe heat transfer from a droplet of water to a hot gas, a hot solid, or both.
Although there is some uncertainty in the values of the respective heat transfer coefficients, the fundamental
physics are fairly well understood. However, when the water droplets encounter burning surfaces, simple
heat transfer correlations become more difficult to apply. The reason for this is that the water is not only
cooling the surface and the surrounding gas, but it is also changing the pyrolysis rate of the fuel. If the
surface of the fuel is planar, it is possible to characterize the decrease in the pyrolysis rate as a function of
the decrease in the total heat feedback to the surface. Unfortunately, most fuels of interest in fire applications
are multi-component solids with complex geometry at scales unresolvable by the computational grid.

To date, most of the work in this area has been performed at Factory Mutual. An important paper on
the subject is by Ywet al. [33]. The authors consider dozens of rack storage commodity fires of different
geometries and water application rates, and characterize the suppression rates in terms of a few global
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parameters. Their analysis yields an expression for the total heat release rate from a rack storage fire after
sprinkler activation

Q=Qe k-0 (88)

whereQy is the total heat release rate at the time of applicatipandk is a fuel-dependent constant. For
the FMRC Standard Plastic commaoditys given as

k=0.716m,—0.0131 s! (89)

wheren}, is the flow rate of water impinging on the box tops, divided by the area of exposed surface (top
and sides). It is expressed in units of kg/m For the Class Il commoditi,is given as

k=0.536m,—0.0040 s (90)

Unfortunately, this analysis is based on global water flow and burning rates. Eqiialion (88) accounts for
both the cooling of non-burning surfaces as well as the decrease in heat release rate of burning surfaces. In
the FDS model, the cooling of unburned surfaces and the reduction in the heat release rate are computed
locally, thus it is awkward to apply a global suppression rule. However, the exponential nature of suppression
by water is observed both locally and globally, thus it is assumed that the local burning rate of the fuel can
be expressed in the form [27]

fiif (t) = i o(t) e /KO (91)

Herenf{ 4(t) is the burning rate per unit area of the fuel when no water is applieé(@ni a linear function
of the local water mass per unit ared),, expressed in units of kgm

kit) =anf(t) s (92)

Note thata is an empirical constant.
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7 Numerical Method

This section presents the details of the numerical algorithm. First the equations that are being solved are
presented. Each of the conservation equations emphasize the importance of the velocity divergence and
vorticity fields, as well as the close relationship between the thermally expandable fluid equations [5] and the
Boussinesq equations for which the authors have developed highly efficient solution prodedures [34, 35]. All
spatial derivatives are approximated by second order central differences and the flow variables are updated
in time using an explicit second order predictor-corrector scheme.

7.1 Simplified Equations

Regardless of whether one is performing an LES or a DNS calculation, the overall solution algorithm is the
same. The equations derived in Secfipn 2 that are to be solved numerically are listed again here.

Conservation of Mass

(Zf+u-Dp:—pD~u (93)
Conservation of Species
aaptY'+u-DpY|:—pY|D-u+D‘pDDY|+r'rﬂ” (94)
Conservation of Momentum
ou 1
E+uxw+D}[:5((p—pm)g+f+D-r) (95)

Divergence Constraint

O-u=
pcp T

M. I 1 7& dipo
<D kOT +0O ZprJdT pDIUOY —0U-gr +q >+<pCpT po> at (96)

Equation of State

Po(t) = DTKZYI/MI (97)

Notice that the source terms from the energy conservation equation have been incorporated into the diver-
gence and ultimately are involved in the mass conservation equation. The temperature is found from the
density and background pressure via the equation of state.

7.2 Temporal Discretization

All calculations start with ambient initial conditions. At the beginning of each time step, the quapfities

Y, u", 4", and pg are known. All other quantities can be derived from them. Note that the superscript

(n+ 1) refers to an estimate of the value of the quantities atthie1)st time step.

1. The thermodynamic quantiti@sY;, andpo are estimated at the next time step with an explicit Euler
step. For example, the density is estimated

p(M e = p"— &t(u"- Op"+p"0-u") (98)
The divergence - u)(”“)e is formed from these estimated thermodynamic quantities. The normal

velocity components at boundaries that are needed to form the divergence are assumed known.
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2. A Poisson equation for the pressure is solved with a direct solver

(|:| . u)<n+1)e _ (D . u)n

2qgm _
e = ot

—0-F" (99)

Note that the vectoF contains the convective, diffusive and force terms of the momentum equation.
These will be described in detail below. Then the velocity is estimated at the next time step

u(MBe — y" — 8t (F" + OAH™) (100)

Note that the divergence of the estimated velocity field is identically equal to the estimated divergence
(0-u)(™e that was derived from the estimated thermodynamic quantities. The time step is checked

at this point to ensure that

ot < min <6x76y’62> (101)
u’'v

w

If the time step is too large, it is reduced so that it satisfies the CFL condition and the procedure starts
from the beginning of the time step. If the time step satisfies the stability condition, the procedure
continues.

3. The thermodynamic quantitigs Y;, and pg are corrected at the next time step. For example, the
density is corrected

pﬂ+l = % (pn —+ p(n+l)e _ at(u(n+l>e . Dp(n"l‘l)E + p(n+1)e|:| . u(n+1)e)> (102)

The divergencél - u)(™Y is derived from the corrected thermodynamic quantities.

4. The pressure is recomputed using estimated quantities

Z(D . u)n+l _ (D . u)(n+l)e _ (D -u)n

DZ}[(n-‘rl)e — 5 0. F(n+l)e (103)
t
The velocity is then corrected
ne1_ L[ n (0 (1) (1)
ut = 2 "+ e—at(F ey OH )} (104)
Note again that the divergence of the corrected velocity field is identically equal to the corrected

divergence.

7.3 Spatial Discretization

Spatial derivatives in the governing equations are written as second order accurate finite differences on a
rectilinear grid. The overall domain is a rectangular box that is divided into rectangular grid cells. Each cell
is assigned indiceis j andk representing the position of the cell in they andz directions, respectively.

Scalar quantities are assigned in the center of each grid ceII,pﬂ"lLu'ts the density at theth time step

in the center of the cell whose indices arg andk. Vector quantities like velocity are assigned at cell
faces, thus th& component of velocity is defined at the faces whose normals are parallel tx-es,

they componenv is defined at the faces whose normals are parallel tg-togs, and the componentv is

defined at the faces whose normals are parallel ta-thés. The quantityy, is thex component of velocity

at the forward pointing face of thgkth cell; ui”_Ljk is at the backward pointing face of thi&th cell.
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7.4 Large Eddy vs. Direct Numerical Simulation

The major difference between an LES and a DNS calculation is the form of the viscosity, and the thermal
and material diffusivities. For a Large Eddy Simulation, the dynamic viscosity is defined at cell centers

Wik = Pijk (CsB)? S (105)

whereCs is an empirical constanfy = (6x6y62)%, and

ou\? v 2 ow\% /ou ov\? [ou ow\? [ov ow\? 2
2_2( = 2( — 2( — — 4+ — —+— —+— ) —Z(0u? @
S X + oy + 0z + 6y+ax + az+6x + az+6y 3( u)” (106)
The quantity|S consists of second order spatial differences averaged at cell centers. The thermal conduc-
tivity and material diffusivity of the fluid are related to the viscosity by
Hiik

Cp,0 Hijk
ijk = Sc

Br (107)

(PD)ijk =
where Pr is the Prandtl number and Sc is the Schmidt number, both assumed constant. Note that the specific
heatcy o is that of the dominant species of the mixture. Based on simulations of smoke plymes,14,
Prand Sc are 0.2. There is no rigorous justification for these choices.

The dynamic viscosity, thermal conductivity and diffusion coefficients for a DNS calculation are defined
at cell centers

Mijk = ZYI,ijk M (Tijk) (108)
kik = ZYI,ijk ki (Tijk) (109)
Diijk = Dio(Tijk) (110)

where the values for each individual species are approximated from kinetic theory [12]. ThBteisn

the binary diffusion coefficient for speciésiffusing into the predominant species 0, usually nitrogen. It

is often the case that the numerical grid is too coarse to resolve steep gradients in flow quantities when the
temperature is near ambient. However, as the temperature increases and the diffusion coefficients increase
in value, the situation improves. As a consequence, there is a provision in the numerical algorithm to place
a lower bound on the viscous coefficients to avoid numerical instabilities at temperatures close to ambient.
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7.5 The Mass Transport Equations

Due to the low Mach number approximation being used in the model, the mass and energy equations are
combined by way of the divergence. The divergence of the flow field contains much of the fire-specific
source terms described above.

7.5.1 Convective and Diffusive Transport

The density at the center of thgth cell is updated in time with the following predictor-corrector scheme.
In the predictor step, the density at tfre+ 1)st time level is estimated based on information atritielevel

e

pi(jnk+ e Pilk
ot

Following the prediction of the velocity and background pressure afrthel)st time level, the density is

corrected

+ (u-0p)ij = =Pl (0 u)fik (111)

(n+1)

+1)e
Pk (n+1)

5 (P + ol
2ot
The species conservation equations are differenced the same way
(PYD5e — (YR .
ot
at the predictor step, and

A (G G
ot

le 1e 19
) +(U‘Dp)i(jnk+ o= _pi<jnk+ : (D‘u)i(jnk+ ) (112)

(u-0pY)il = —(PYD (O u)ily + (O- pDOY] )i + i (113)

> +(u- Dle)i(jnk+1)e = —(pYI)i(jT:rl)e(D‘U)i(jnkﬂ)e‘F (D‘pDDmi(jrlljl)eJrﬂglk

(114)
at the corrector step.
The convective terms are written as upwind-biased differences in the predictor step and downwind-
biased differences in the corrector step. In the expressions to follow, the synmheanst in the predictor
step and- in the corrector step. The opposite is true far

(u-Op)i = 1q:2s,u uijkpi+1,jgx— Pijk lizeu Ui—l,jkw N
lq:zsvvijk Pi,j+1gy— Pijk n lzzevvi,jl,kW N
1EEWWijk Pk 1Pk 1jzswwij,k—lw (115)
(u-Op¥)i = 1qczeu i (pYI)i+1,ng (PYDijc 1:;su b (PY)ijk 6§(pY|)i1,jk N
lzsvvijk (pY')‘legy_ (PYije 13;5vvi7j17k(le)ijk —6(;)Yl)i,jl,k N
1qczewwijk (pYI)ij,k+éz (PYDijk 1izswwij, (YD 6(ZpY|)ij’k1 (116)

Note that without the inclusion of th&s, these are simple central difference approximations. €l are

local CFL numbersg, = udt/dx, &, = vot/dy, ande,, = wdt/dz, where the velocity components are those
that immediately follow. Their role is to bias the differencing upwind. Where the local CFL number is near
unity, the difference becomes nearly fully upwinded. Where the local CFL number is much less than unity,
the differencing is more centralized [36].
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7.6 Discretizing the Divergence

The divergence in both the predictor and corrector step is discretized

1 1 dpo
0-u)ijk = —— | i+ (O-KOT); 0-hpDOY)jj 117
(O-u)ijk T G <q|1k + (O Jijk + Z( P I)ljk> + (pT o p0> at (117)
The thermal and material diffusion terms are pure central differences, with no upwind or downwind bias,
thus they are differenced the same way in both the predictor and corrector steps. For example, the thermal
conduction term is differenced as follows:

(O0-KOT)ij = 6ix :ki+%7jkW _ K%JkTiik—;—Lik] N
61y Kb HlakyTJk - Kﬁj_%’kw} N
5% kij,k+%w_kij.k%-l-i“(_6-lzm] (118)
The temperature is extracted from the density via the equation of state
Tije = R (119)

PikR YN o(M,ijk/Mi)
Because only species 1 throulyrare explicitly computed, the summation is rewritten
N
Yi Jjk 1 1
— —— Y 120
Z = o Z<M| M0> (120)

In isothermal calculations involving multiple species, the density can be extracted from the average molec-
ular weight

Po
ToR 3 Lo Wik /M

Again, because only species 1 througlare explicitly computed, this expression can be written

Pijk = (121)

Pijk =

(1—) (O (122)

7.6.1 Heat Release Rate (Mixture Fraction)

Energy from combustion is released into those grid cells through which the flame Zheéd;] passes.
The analytical expression for the heat release rate per unit area of flame sheet is

dYo

—AHo S0 (pD)0Z-n (123)
dz Z<Z;

wheren is the outward facing unit normal. Note that batit,/dZ andJZ - n are negative. To convert the
analytical expression for the HRR per unit area into a discretized expression for the HRR per unit volume,
all cells through which the flame sheet passes must be identified. Then, the normal derivativestfbe
computed component by component. For example, suppose the flame sheet passes befjleandekll
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i+1, jk, and also suppose thatk > Z > Zi 1 jx. The contribution to the heat release rate per unit volume
in theijkth andi + 1, jkth cells from the small flame sheet is

[(DD)H%,,-k (Zijk = Ziga,jk)/OX+ Uijk Piyt i (Z-12y)| dydz
7<7; ox Oy 0z

. Y
q/// — _AHo dio

7 (124)

The distribution of energy is based on a linear interpolation of the value of the mixture fraction. A similar
expression can be derived for all other possible cuts through the cell by the flame sheet. Note that the second
term in the expression above corrects for error associated with locating the flame sheet. The terms above are
a consequence of writing the convective and diffusive flux of fuel (mixture fraction) across the cell interface

in conservative form:

7): o+ (p2)ii Zivw — 7 .
i )'H”kz B2 (PD); g j g =
_ (77 D Zik = Li1ik (105
Uijk fpi+%,jk+uuk( - f)pi+%7jk+(p )i+%7jkT( )
where (02) (02)

—  (PL)it+1,jk + (PL)ijk . Pi+1,jk + Pijk
7= ©p g, = LK 126
Pit+1,jk + Pijk Pid ik 2 (126)

The second two terms on the right hand side constitute the “diffusive” flux, from which the heat release rate
is derived.

7.6.2 Heat Release Rate (Finite-Rate Reaction)
In a DNS calculation (usually), a one-step, finite-rate reaction of a hydrocarbon fuel is assumed
Ve,H, CxHy +Vo, O2 — Vo, CO +-Vh,0 H20 (127)

For each grid cell, at the start of a time step wheeret" andYZ, i = Yr(t") andYg, ;= Yo(t"), the
following ODE is solved numerically with a 2nd order Runge-Kutta scheme

d¥e Bpf" b E/RT
— = Y (1)®Yo(t E/RTik 128
at ME Va1 F(H)*Yo(t) e (128)
dYo VoMo d¥e

- _ - 129
dt VEMg dt ( )

The temperaturd;j, and densityp;jx are fixed at their values at tint& and the ODE is iterated fromf to
t"1in about 100 time steps. The pre-exponential faBidhe activation energl, and the exponentsand
b are input parameters. The average heat release rate over the entire time step is given by

YF (tn) _ YF (tn+l>
ot

Gjn = AH Pl (130)

wheredt = t"1 —t". The species mass fractions are adjusted at this point in the calculation (before the
convection and diffusion update)

Vi M

— o (Ve =Y () (131)

Yk =Yi(t"
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7.7 Thermal Radiation
The discretized RTE is derived by integrating equa@l (48) over the gridjkeihd the control angl&Q'

// s-DI(x,s)dVdQ:// K(X) [Is(X) —1(x,9)]dVdQ (132)
Q' JVijk Q' Vi

The volume integral on the left hand side is replaced by a surface integral over the cell faces using the
divergence theorem. Assuming that the radiation interigiys) is constant on each of the cell faces, the
surface integral can be approximated by a sum over the cell faces. Assuming furthéx thiais constant

within the volumeVjjx and over the angldQ' we obtain

6
> Anlm /Q| (s:Nm)dQ = Kijk [lb.,ijk - Iiljk} Vijk 80 (133)
m=1

where

Ii'jk radiant intensity in directioh

I radiant intensity at cell facen

I,ijk radiant blackbody Intensity in cell

3Q) solid angle corresponding to directibn

Vijk volume of cellijk

Anm area of cell facen

Nm unit normal vector of the cell facm

It must be noticed, that while the intensity is assumed constant within the &ylés direction covers the
angledQ' exactly.

In Cartesian coordina@,sthe normal vectora, are the base vectors of the coordinate system and the
integrals over the solid angle do not depend on the physical coordinate, but the direction only. The intensities
on the cell boundaries),, are calculated using a first order upwind scheme. If the physical space is swept in
the directiors , the intensityi'jk can be directly solved from an algebraic equation. This makes the numerical
solution of the FVM very fast. Iterations are needed only to account for the reflective boundaries. However,
this is seldom necessary in practice, because of the small time step set by the flow solver.

The spatial discretization for the RTE solver is the same as for the fluid solver. The coordinate system
used to discretize the solid angle is shown in Fidyre 5. The discretization of the solid angle is done by
dividing first the polar angle, into Ng bands, wherdNg is an even integer. Eaditband is then divided
into Ny(0) parts in the azimuthakg) direction. Ny(8) must be divisible by 4. The numbely andN(0)
are chosen to give the total number of andligsas close to the value defined by the user as possiglés
calculated as

Ne
Ng = Z\ Noy(8)) (134)

The distribution of the angles is based on empirical rules that try to produce equal solid&®/gtedrt/Ng.
The number oB-bands is
No = 1.17Ng/*2° (135)

rounded to the nearest even integer. The numberarfgles on each band is

Ny(6) = max{4,0.5Nq [cog8™) —cogb™)]} (136)

SIn the axisymmetric case equati33) becomes a little bit more complicated, as the cell face normahygatersiot
always constant. However, the computational efficiency can still be retained.
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FIGURE 5: Coordinate system of the angular discretization.

rounded to the nearest integer that is divisible byo4.and6* are the lower and upper bounds of of the
0-band, respectively. The discretization is symmetric with respect to the plardy y = 0, andz= 0.
This symmetry has three important benefits: First, it avoids the problems caused by the fact that first order
upwind scheme, used to calculate intensities on the cell boundaries, is more diffusive in non-axial directions
than axial. Second, the treatment of the mirror boundaries becomes very simple, as will be shown later.
Third, it avoids so called “overhang” situations, wherg s-j or s-k changes sign inside the control angle.
These “overhangs” would make the resulting system of linear equations more complicated.

In the axially symmetric case these “overhangs” can not be avoided, and a special treatment, developed
by Murthy and Mathur([37], is applied. In these cabléd;) is kept constant, and the total number of angles
is No = Ng x Ny. In addition, the angle of the vertical slice of the cylinder is chosen to be sab as

The cell face intensitied), appearing on the left hand side 33) are calculated using a first order
upwind scheme. Consider, for example, a control angle having a direction \&ectbthe radiation is
traveling in the positive-direction,i.e. s-i > 0, the intensity on the upwind sidg,, is assumed to be the
intensity in the neighboring ceII-,'fljk, and the intensity on the downwind side is the intensity in the cell

itself 1.

On a rectilinear grid, the normal vectong, are the base vectors of the coordinate system and the
integrals over the solid angle can be calculated analytically. Equatioh (133) can be simplified

a!jkliljk = Al +a by, + AL, + b!jk (137)
where

aljec = ADy|+ADy| + Ay DY + Kijk VijdQ' (138)

4 = A (139

, = AJD} (140)

a, = AJDY (141)

b!jk = Kijklb,ijkvijk 69' (142)

5Q — / dQ — / / sind do do (143)

Jal 5p./ 80
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|(§ -1)dQ (144)
/ (< -i)sin6 dodg
o0

/ cospsinBsind dodg
30

9
1

(sing” —sing ™) [A6— (cosB* sin6* — cosB™ sinb ™) |

(d-)dQ (145)

)

<=

Il
— NI

Q!

/sin(psinesineded(p
5./ 38

Il
P S5—

5 (cosp™ —cosg') [AB— (cosB' sin6* —cosB™ sin6 ™) |

D, — /Q| (& -k)dQ (146)

- / / cossind dodg

50/ 50

1 . 2 L N2
= éA(p{(sméﬁ) — (sin®™) }

Herei, j andk are the base vectors of the Cartesian coordinate sy§tep@., @™ andg" are the upper and
lower boundaries of the control angle in the polar and azimuthal directions, respectivel\d anéi™ — 6~
andA@ = @" — @ . The solution method 07) is based on an explicit marching sequence [38]. The
marching direction depends on the the propagation direction of the radiation intensity. As the marching is
done in the “downwind” direction, the “upwind” intensities in all three spatial directions are known, and the
intensityli'jk can be solved directly. Iterations may be needed only with the reflective walls and optically
thick situations. Currently, no iterations are made.
The boundary condition on a solid wall is given as
4

|¢v:s%+1ins 5 1ol (147)

Dl,<0

whereD}, = Jor (s-nw)dQ. The constrainbl, < 0 means that only the “incoming” directions are taken into
account when calculating the reflection. The radiative heat flux on the wall is

N i
Ow = I;IW/ml (s-nw)dQ = I;IWDn (148)

where the coefficient®;, are equal tatD}, +D}, or +D}, and can be calculated for each wall element
beforehand.

The open boundaries are treated as black walls, where the incoming intensity is the black body intensity
of the ambient temperature. On mirror boundaries the intensities leaving the wall are calculated from the
incoming intensities using a predefined connection matrix.

Computationally intensive integration over all the incoming directions is avoided by keeping the solid angle
discretization symmetrig, y andz planes. The connection matrix associates one incoming direlétton
each mirrored direction on each wall cell.
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The local incident radiation intensity is
No
Uik = 5 11330 (150)
=1

7.8 Interaction of Droplets and Radiation

The computation gf; for a similar but simpler situation has been derived in Refl. [39]. It can be shown that
herex: becomes

1 dord flan Py(6q)
Xf_@/o /0 /ud.o (1_u2)(1_u/2)_(“d_uu)2]dl-Udeli (151)

whereyy is a cosine of the scattering an@lgandPy(8y) is a single droplet scattering phase function

~ N2(|S1(84)[? + |S2(60) )
- 2C4(r,\)

S1(84) andS;(8q) are the scattering amplitudes, given by Mie-theory. The integration jlinita cosine of
the polar angle defining the boundary of the symmetric control a¥@fe

Po(Bq) (152)

W =cog6)=1- NZQ (153)

The limits of the innermost integral are

oo~ B+ VITRVITWR e i — VIRV (154)

When is integrated over the droplet size distribution to get an averaged value, it is multipl@gdrby).
It is therefore|S;|2 + |S:|2, not Py(8g), that is integrated. Physically, this means that intensities are added,
not probabilities[[31].

7.9 Thermal and Material Boundary Conditions

Four types of thermal boundary conditions are applied at solid surfaces. The first, and simplest, is an
adiabatic boundary condition that states that there is no temperature gradient normal to the surface. It is
implemented by assigning to the grid cell that is embedded in the solid (the ghost cell) the same temperature
as the first cell in the gas (the gas cell).
The second type of boundary condition is where the solid surface has a prescribed temperature (usually
this prescribed temperature is a function of time).
The third type of boundary condition assumes the solid to be thermally-thin. The surface temperature is
updated in time according to
&%+
PsCsO

TO = T0 + 3t (155)

whereT,, is the wall temperatureédts is the time step used when updating the thermal boundary conditions

(usually greater than the hydrodynamic time sb&p andps, Cs, 0 are the input density, specific heat and

thickness of the wall. In a DNS calculation where the boundary layer is resolved, the convective flux to the

wall is given by

. Tgas—TW
on/2

e = (156)
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whereodn is the size of a grid cell in the normal direction to the wall. In an LES calculation where the
boundary layer is not resolved,

1

whereC is an empirical coefficient (0.95 for vertical surface; 1.43 for horizontal),Tgags the temperature
of the gas in the cell bordering the wall.

The fourth type of thermal boundary condition is for a thermally-thick solid. In this case, a one dimen-
sional heat transfer calculation is performed at each boundary cell designated as thermally-thick. The width
of the solidd is partitioned intoN cells, clustered near the front face. The cell boundaries are located at
pointsx; )

e3&i/d _
x="f(&)=23 o_1

where 0<i <N, & =i&, 8 = 8/N, and 0< s< 1 is a measure of the degree of clustering of the cells
at the front face. The width of each cell & = f'(§;_1)d§, 1 <i < N where¢; 1= (i— 7)62 The

temperature at the center of tita cell is denoted;. T?hese temperatures are updated in time using an
implicit Crank-Nicholson scheme

(158)

_ si+1 S
ot 20x; 0%y 1 OXsi -1 0%y 1 0% _1

for 1 <i < N. The boundary condition is discretized

T+l _Tn a TN Tn Tn__Tn__ T+l _ n+l Tﬂ_+1 T+l
S,i S,i si+1 S| S,i 1+ S, S,i— 1+ (159)

Tn+1 . Tn+1

s1 R/ 3 +1
—ke e S0 =gl 40T (Tgl T”Z) (160)

: :
whereTs‘% = (Ts1+ Tsp)/2 is the temperature at the front face. Notice that the radiative emission term has
been linearized Dt S fid o
T T~ AT (T T (161)
The wall temperature is defindg, = Ts,% = (Tso+Ts1)/2.

Regardless of how the wall temperature is determined, there are two ways of coupling the wall temper-
ature with the fluid calculation. Gas phase temperatures are defined at cell centers; the wall is defined at
the boundary of the bordering gas phase cell and a “ghost” cell inside the wall. As far as the gas phase cal-
culation is concerned, the normal temperature gradient at the wall is expressed in terms of the temperature
difference between the “gas” cell and the “ghost” cell. The wall temperature affects the gas phase calculation
through the prescription of the ghost cell temperature. This ghost cell temperature has no physical meaning
on its own. Only the difference between ghost and gas cell temperatures matters, for this defines the heat
transfer to the wall. In a DNS calculation, the wall temperature is assumed to be an average of the ghost cell
temperature and the temperature of the first cell in the gas, thus the ghost cell temperature is defined

Tghost: 2Ty — Tgas (162)
For an LES calculation, the heat lost to the boundary is equated with an empirical expression

kTgas_ Tghost
on

whereodn is the distance between the center of the ghost cell and the center of the gas cell. This equation is
solved forTgnost, SO that when the conservation equations are updated, the amount of heat lost to the wall is

1
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equivalent to the empirical expression on the right hand side. Not&dghgatis purely a numerical construct.
It does not represent the temperature within the wall, but rather establishes a temperature gradient at the walll
consistent with the empirical correlation.
At solid walls there is no transfer of mass, thus the boundary condition fdthtspecies at a wall is
simply
Yl,ghost: YI,gas (164)

where the subscripts “ghost” and “gas” are the same as above since the mass fraction, like temperature, is
defined at cell centers. At forced flow boundaries either the mass fragticor the mass fluxy’ of species
| may be prescribed. Then the ghost cell mass fraction can be derived because, as with temperature, the
normal gradient of mass fraction is needed in the gas phase calculation. For cases where the mass fraction
is prescribed

Y|7ghost: 2YI,W_ l,gas (165)

For cases where the mass flux is prescribed, the following equation must be solved iteratively

r-r‘, — PghostYl,ghost T PgasY,gas B pDYI.gas_ Yl.ghost:F ot U% Pgasf gas— PghostYl ghost

2 on 2 on (166)

whereni’ is the mass flux of specidsper unit areapy, is the normal component of velocity at the wall
pointing into the flow domain, andh is the distance between the center of the ghost cell and the center of
the gas cell. Notice that the last term on the right hand side is subtracted at the predictor step and added at
the corrector step, consistent with the biased upwinding introduced earlier.

Once the temperature and species mass fractions have been defined in the ghost cell, the density in the
ghost cell is computed from the equation of state

Pghost= Po
P05 R Tghost 31 (Y ghosy/ M1 )

(167)
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7.10 The Momentum Equation

The three components of the momentum equation are

Jou 0H 1 O0Tyx  OTyy  OTxs
R 4+—=0 : F = —=| fx+—+—=""+—= 168
a g ; x = Way = Ve p( +6x+6y 0z (168)
ov 0H _ B 1 0Tyx | 0Ty  OTy,
E+Fy+a—y_o , R=uw,—wuy— p(fy+ ox "oy oz (169)
ow 0H ) B 1 0Tx arzy 015,
i + R+ —=— 3 =0 ; Fz_vwx—ucoy—p<fz+ I 3y 5, (170)
The spatial discretization of the momentum equations take the form

ou o Hiajw—Hik

5+ et —HC (171)

ov | FHijak—Hk

ow _  FHijk1i— Hik

s +Fzijk+ s 0 (173)

where#ji is taken at center of cellk, ujjx andFyjk are taken at the side of the cell facing in the forward
direction,vijx andFy;jx at the side facing in the forwargdirection, andwv;jx andF,;jk at the side facing in
the forwardz (vertical) direction. In the definitions to follow, the components of the vortigity, wy, w,) are
located at cell edges pointing in tlkey andz directions, respectively. The same is true for the off-diagonal
terms of the viscous stress tensog; = Ty,, Txz = Tzx, andTyy = Tyx. The diagonal components of the stress
tensortyy, Txx, andTy; the external force component§,, fy, f;); and the upwinding bias ternes, €, and

€w are located at the respective cell faces.

1Fey 1+tey
Frijk (ZWi+;, jk Oyijk T == Wi 1 kg Gyijk-1
1qu\, 1is\,
_< 2 |+ 1k Wzijk +—5— 2 |+ -1k Wzi,j-1k
B £ +Tx>gi+1,jk—Tx>gijk _’_Txy,ijk—Txy,i,jfl,k_{_szijk—sz,i,j,kfl (174)
Prp g\ Ox dy 5
1:F5u lisu
Fijk = < 5 Uij+l 1k Wzijk +—5— 5 Ui1jrik @zi-1jk
—<2 Wi 42k Wxijk 2 T Wijrik-1 Oxijk-1
4 f ..k+Tyxijk—Tyxi—1,jk+Tyw.j+1,k—Tyy.,ijk . Dyzilk — Tyzijk-1 (175)
Pijiik \ O dy 8z
1q:s\, 1is\,
Fzik = <2 Vij, k+3 Wxijk +—5— 2 Vi —Lk+3 Wi, j—1k
1:Fsu 1ieu
( 5 Ui, k+1 Oyijk +——5— 5 Ui-1jked Wyi-1ik
B £ szijk_sziijk+szijk_sz7i,j717k+Tzzij7k+1_1—zz,ijk (176)
Psey \ 2 By 5z
Wi j+1k —Wijk  Vij k+1— Vijk
Wi = e (177)
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Uij k+1 — Uijk

Wit jk — Wijk

Dk = T & (178)
Wik = Vi+1.jgx— Vik Ui,j+1,e|_><y— Uijk (179)
ik = Mk (Zuuk _6: 1jk 2 ”k> = ik (4 Wik — o Vil 5\;1 Lk Wik — W|J ke '11>30)
Tk = M‘jk( o Viik 6‘31 1k ”k> = ik <2(D Wik — 2 o ik 6l;|7171k _ Wik 6\/2\,']*7%1 1)
Tk = Mk <2W|Jk 6W|J k=1 ”k) = g (g Wik — o Uik _6l)1(i—1,jk _ o Vilk —6\31—1,@82)
Tayijk = Tyxijk = Hipd j1ik <UI kT ik V|+1.ng V”k> (183)
Taik = Taxijk = Kid jued <UIJ k1 Uuk Wi+1,jgx— Wijk) (184)
Tyzik = Tayijk =M jod gl <V” derl ~ Vi, W"ngy_ijk) (185)

& = lgs(t (186)

& = \g (187)

Ew = V\gzt (188)

The variableg,, €, andg,, are local CFL numbers evaluated at the same locations as the velocity compo-
nent immediately following them, and serve to bias the differencing of the convective terms in the upwind
direction. The subscript+ 3 indicates that a variable is an average of its values aitthaend the(i + 1)th

cell. The divergence defined in Efj. (117) is identically equal to the divergence defined by

Uijk — Ui—1,jk
j L

Vik = Vijj—1k . Wijk —Wij k-1
+
OX

oy 0z
The equivalence of the two definitions of the divergence is a result of the form of the discretized equations,
the time-stepping scheme, and the direct solution of the Poisson equation for the pressure.

(0-uijk =

(189)

7.10.1 Force Terms

The external force term components, in addition to including the effects of buoyancy, may also include the
drag force from sprinkler droplets.

15 pCoTw3(Ug — Uijk ) |ug — ul

hije = 3 BxBydz ~ (Prg = P=)Ox (190)
15 pCpTrg(Va — Vijk)|ud — |
fyiik = 2 Oxdydz ~ (P jsa— P=)Gy (191)
1y pComrg(wg —Wijk)|ug — ul
fzije = 2 Oxdy dz = (Pij g — PG (192)

whereg = (0, 0y, 0.) is the gravity vectorrq is the radius of a droplet) = (ug,Vd,Wq) the velocity of a
droplet,Cp the drag coefficient, an8xdydz the volume of tha jkth cell. The summations represent all
droplets within a grid cell centered about they andz faces of a grid cell respectively.
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7.10.2 Time Step

The time step is determined by the CFL condition, and in cases of high viscosity, a parabolic stability
criterion typical of explicit second order accurate schemes
& < min <5X’ By Oz Pikd Pikdy P 522)
Uik Vijk Wik  SMijk — SHijk  Blijk

(193)

The estimated velocities™ Ve, (e andw(" Ve are tested at each time step to ensure that the above
condition is satisfied. If it is not, then the time step is set to 0.8 of its allowed maximum value and the
estimated velocities are recomputed (and checked again). The parabolic stability criterion is only invoked
for a DNS calculation.

7.11 The Pressure Equation

The divergence of the momentum equation yields a Poisson equation for the pressure

Hiaj— 2t Hiovj | Hhjerk— 2%+ Hjoaic | Hjies = 2Hj + Hjpe

52 dy? 072
Friik —Fi-1ik Rk —Fiij-1k  Feik —Fzijk-1 0
_ 5 5 5 _ ) i3 " 5 515 _ D . .. 1 4
OX oy oz ot (0-Wiik (194)

The lack of a superscript implies that all quantities are to be evaluated at the same time level. This elliptic
partial differential equation is solved using a direct (non-iterative) FFT-based solver that is part of a library
of routines for solving elliptic PDEs called CRAYFISHPAK [40]. To ensure that the divergence of the fluid

is consistent with the definition given in E{] (8), the time derivative of the divergence is defined

(n+1)e n
d (Du) _(D.u)..
5 (0 Wi = e K (195)
at the predictor step, and then
2(0-u)™1_ D.u.(n+l)e_ O.-u)n
%(D'U)ijk: ( )Ijk ( 6t)|]k ( )I]k (196)

at the corrector step. The discretization of the divergence was given ip Eg. (117).

Direct Poisson solvers are most efficient if the domain is a rectangular region, although other geometries
such as cylinders and spheres can be handled almost as easily. For these solvers, the no-flux condition (197)
is simple to prescribe at external boundaries. For example, at theZledl, the Poisson solver is supplied
with the Neumann boundary condition

Fhj1— Hijo
0z
However, many practical problems involve more complicated geometries. For building fires, doors and
windows within multi-room enclosures are very important features of the simulations. These elements may
be included in the overall domain as masked grid cells, but the no-flux conditioh (197) cannot be directly
prescribed at the boundaries of these blocked cells. Fortunately, it is possible to exploit the relatively small
changes in the pressure from one time step to the next to enforce the no-flux condition. At the start of a time
step, the components of the convection/diffusion terare computed at all cell faces that do not correspond
to walls. At those cell faces that do correspond to solid walls, prescribe
OH "

Fo= 5 +Bun (198)

=—Fijo (197)
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whereF, is the normal component & at the wall, ang is a relaxation factor empirically determined to be
about 0.8 divided by the time stép The asterisk indicates the most recent value of the pressure. Obviously,
the pressure at this particular time step is not known until the Poisson equation is solved. Efuajion (198)
asserts that following the solution of the Poisson equation for the pressure, the normal component of velocity
u, will be driven closer to zero according to

%n . pu, (199)

This is approximate because the true value of the velocity time derivative depends on the solution of the
pressure equation, but since the most recent estimate of pressure is used, the approximation is very good.
Also, even though there are small errors in normal velocity at solid surfaces, the divergence of each blocked
cell remains exactly zero for the duration of the calculation. In other words, the total flux into a given
obstruction is always identically zero, and the error in normal velocity is usually at least several orders of
magnitude smaller than the characteristic flow velocity. When implemented as part of a predictor-corrector
updating scheme, the no-flux condition at solid surfaces is maintained remarkably well.

At open boundaries (say= ), # is prescribed depending on whether the flow is incoming or outgoing

— (2 2 .
Hit = (ul,jk+V|7j,%7k+w|27j,%ﬂk)/2 ujk >0

200
Hhiy k=0 U jk <0 (209

wherel is the index of the last gas phase cell in ¥direction andy jk is thex component of velocity at the
boundary. The value of H in the ghost cell is

Hhivjk = 2H 1 — H (201)

7.12 Particle Tracking

Thermal elements are introduced into the flow field as a means of introducing heat and as a way to visualize
the flow. The positiorx,, of each thermal element is governed by the equations

dxp _
dt
The thermal element positions are updated according to the same predictor-corrector scheme that is applied

to the other flow quantities. Briefly, the positiag of a given thermal element is updated according to the
two step scheme

(202)

XE)n+1)e _ XB+5tUn (203)
1
XB+1 _ é (XB_‘_XgH’l)e + ot U(n-‘rl)e) (204)

where the bar over the velocity vector indicates that the velocity of the fluid is interpolated at the element’s
position.
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8 Conclusion

The equations and numerical algorithm described in this document form the core of an evolving fire model.
As research into specific fire-related phenomena continues, the relevant parts of the model can be improved.
Because the model was originally designed to analyze industrial-scale fires, it can be used reliably when the
fire size is specified and the building is relatively large in relation to the fire. In these cases, the model pre-
dicts flow velocities and temperatures to an accuracy of 10 to 20% compared to experimental measurements.
Currently, research is focussed on improving both the gas phase and solid phase descriptions of combustion
in the model so that simulations involving fire growth and suppression, especially in residential sized rooms,
can be improved.

Any user of the numerical model must be aware of the assumptions and approximations being employed.
There are two issues for any potential user to consider before embarking on calculations. First, for both real
and simulated fires, the growth of the fire is very sensitive to the thermal properties (conductivity, specific
heat, density, burning ratefc) of the surrounding materials. Second, even if all the material properties are
known, the physical phenomena of interest may not be simulated due to limitations in the model algorithms
or numerical grid. Except for those few materials that have been studied to date at NIST, the user must supply
the thermal properties of the materials, and then validate the performance of the model with experiments to
ensure that the model has the necessary physics included. Only then can the model be expected to predict
the outcome of fire scenarios that are similar to those that have actually been tested.
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9 Nomenclature

As water droplet surface area

B pre-exponential factor for Arrhenius reaction
C Sprinkler C-Factor

Co drag coefficient

Cs Smagorinsky constant (LES)

Cp constant pressure specific heat

D diffusion coefficient

D* characteristic fire diameter

dm median volumetric droplet diameter

E activation energy

f external force vector (excluding gravity)
g acceleration of gravity

H total pressure divided by the density

h enthalpy; heat transfer coefficient

h; enthalpy ofith species

h? heat of formation ofth species

[ radiation intensity

Iy radiation blackbody intensity

k thermal conductivity; suppression decay factor
M molecular weight of the gas mixture

M; molecular weight ofth gas species

11 fuel mass flux

m(, water mass flux

m, water mass per unit area

mg oxygen consumption rate per unit area
Nu Nusselt number

Pr Prandtl number

p pressure

Po background pressure

p pressure perturbation

ar radiative heat flux vector

q” heat release rate per unit volume

q’ radiative flux to a solid surface

qe convective flux to a solid surface

Q total heat release rate

Q* characteristic fire size

R universal gas constant

Re Reynolds number

rq water droplet radius

RTI Response Time Index of sprinkler

S unit vector in direction of radiation intensity
Sc Schmidt number

Sh Sherwood number

T temperature

t time

tp thermal element burn-out time (LES)
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u=(u,v,w)
rﬂl!

We
X=(XY,2)

EaxX "D g E X O

= (00, Wy, Wy)

integrated radiant intensity

velocity vector

production rate ofth species per unit volume
Weber number

position vector

volume fraction ofith species

mass fraction ofth species

mass fraction of oxygen in the ambient
mass fraction of fuel in the fuel stream

soot yield

mixture fraction

ratio of specific heats; Rosin-Rammler exponent
heat of combustion

energy released per unit mass oxygen consumed
wall thickness

absorption coefficient

dynamic viscosity

stoichiometric coefficient, speciés
dissipation function

density

viscous stress tensor

radiative loss fraction

Stefan-Boltzmann constant

vorticity vector
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