DOI QR코드

DOI QR Code

Analysis of the Effectiveness of Autonomous Unmanned Underwater Vehicle Mine Search Operation by Side Scan Sonar Characteristics

측면주사소나 특성에 따른 자율무인잠수정 기뢰탐색 효과도 분석

  • Received : 2020.06.25
  • Accepted : 2020.07.01
  • Published : 2020.08.31

Abstract

In order to Mine Countermeasure (MCM), the search is carried out for the expected mine zone. At this time, mine hunting uses Autonomous Unmanned Vehicle(AUV), taking into account the danger of mine and the stability of our forces. Sonar system for identifying buried mines are equipped with Side Scan Sonar(SSS) or Synthetic Aperture Sonar(SAS). This paper describes the analysis of mine hunting effects according to the commercial SSS characteristics. Based on the characteristics of each SSS, the insonified area and recognition probability were modeled, and the analysis was performed according to the search pattern of the AUV. AUV's search pattern defines three patterns depending on the presence or absence of SSS or shaded areas. The analysis results derived search time and detection probability for each search pattern, and finally, the improvement of search depending on the presence or absence of side injection or shaded area.

부설된 기뢰를 소해하기 위해 기뢰매설 예상구역에 대한 탐색을 수행한다. 이 때 기뢰탐색은 기뢰의 위험성, 아군의 안정성 등을 고려하여 자율무인잠수정을 이용한다. 매설된 기뢰를 식별하기 위한 소나시스템은 측면주사소나, 합성개구소나 등을 탑재한다. 본 논문은 측면주사소나 특성에 따른 기뢰탐색효과도 분석에 대해 기술한다. 각 측면주사소나의 특성을 바탕으로 음향조사역 및 인식확률을 모델링 하였고, AUV의 주행패턴에 따라 분석을 수행하였다. AUV의 주행패턴은 측면주사소나 음영구역의 유무에 따라 3가지 탐색패턴을 정의하였다. 분석결과는 각 탐색패턴 마다 탐지시간, 탐지확률을 도출하고 최종적으로 측면주사소나 음영구역의 유무에 따른 탐색 향상도를 도출하였다.

Keywords

References

  1. S. P. Hong, S. I. Yoon, B. W. Choi, and H. S. Oh, "A study for Optimization Methodology of Unmanned System Architecture for Mine Countermeasure Based on Effectiveness," Society of Korea industrial and System Engineering, vol. 37, no. 2, pp. 62-69, Jun. 2014. https://doi.org/10.11627/jkise.2014.37.2.62
  2. A. R. Hwang, M. H. Kim, and S. Y. Lee, "A study of Simulation Model for Effectiveness Analysis Simulation of Unmanned Underwater Vehicle for Mine Searching," Korea Institute of Military Science and Technology, vol. 15, no. 4, pp. 410-416, Aug. 2012. https://doi.org/10.9766/KIMST.2012.15.4.410
  3. A. R. Hwang, M. H. Kim, S. Y. Lee, J. M. Yoon, and C. K. Kim, "A Study on Unmanned Underwater Vehicle Operational Performance Analysis for Mine Search Operation," Korea Institute of Military Science and Technology, vol. 14, no. 5, pp. 781-787, Oct. 2011. https://doi.org/10.9766/KIMST.2011.14.5.781
  4. J. E. Kye, J. I. Cho, W. P. Yoo, S. L. Choi, and J. H. Park, "Trends and Applications on Multi-beam Side Scan Sonar Sensor Technology," Electronics and Telecommunications Trends, vol. 28, no. 6, pp. 167-179, Dec. 2013. https://doi.org/10.22648/ETRI.2013.J.280617
  5. L. Xavier, "Modelling of the sound field radiated by Multibeam Echosounders for Acoustical Impact Assessment," Applied Acoustics 101, pp. 202-221, Sep. 2015.
  6. J. Fransman, J. Sijs, H. Dol, E. Theunissen, and B. De, "Distributed Constraint Optimization for Autonomous Multi AUV Mine Counetermeasure," OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, 2018.
  7. P. Wiliams, "The New Muesli Complexity Metric for Mine-Hunting Difficulty in Sonar Images," 2018 OCEANS MTS/IEEE Kobe Techno-Oceans, Kobe, Japan, 2018.
  8. C. Rhen, S. Keisala, A. Raberg, A. Lindberg, and P. Abrahamsson, "AUV Seafloor Tracking for MCM Operations," 2018 IEEE/OES Autonomous Underwater Vehicle Workshop(AUV), Porto, Portugal, 2018.
  9. A. Crawford, and W. Connors, "Performance Evaluation of a 3-D Sidescan Sonar for Mine Countermeasures," OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, 2018.
  10. J. I. Moon, "A study for Effective Methodology of the Search Pattern of AUV," M. S. Hannam Univ, 2014.