DOI QR코드

DOI QR Code

Fabrication of Monolithic Spectrometer Module Based on Planar Optical Waveguide Platform using UV Imprint Lithography

UV 임프린트 공정을 이용한 평판형 광도파로 기반의 집적형 분광 모듈 제작

  • Received : 2015.09.17
  • Accepted : 2015.09.25
  • Published : 2015.09.30

Abstract

This paper presents integrated polymeric spectrometer module which offers compact size, easily-fabricated structure and low cost. The proposed spectrometer module includes the nano diffraction grating with non-uniform pitch and planar optical waveguide with concave mirror to be fabricated by UV imprint lithography. To increase the reflection efficiency, we designed the nano diffraction grating with triangular profiles. The polymeric planar spectrometer includes a spectral bandwidth of 700 nm, resolution of 10 nm and precision below 5 nm. This polymeric planar spectrometer is well-suited for sensor system.

본 논문에서는 저가로 쉽게 제작할 수 있는 구조를 지닌 단일칩 형태의 고분자 기반 평판형 분광모듈을 제안하였다. 제안된 분광모듈은 UV 임프린트 기법에 의해 제작되어진 비등간격 나노회절격자와 오목거울이 포함된 평판형 광도파로로 구성되어진다. 회절효율을 향상시키기 위해 나노회절격자의 구조는 $25^{\circ}$의 블레이징 각도와 100nm의 선폭을 가지도록 설계, 제작되었다. 평판형 분광모듈은 700 nm 대역폭과 10 nm 분해능을 가짐을 확인하였다. 이러한 집적형 고분자 분광모듈은 다양한 센서 시스템에 적용될 수 있을 것으로 기대된다.

Keywords

References

  1. S. Babin, C. Peroz, A. Bugrov, S. Dhuey and S. Cabrini, "Fabrication of novel digital optical spectrometer on chip", J. Vac. Sci. Technol. B, 27(6), 3187 (2009). https://doi.org/10.1116/1.3237114
  2. J. Hoja and Grzegorz Lentka, "An analysis of a measurement probe for a high impedance spectrscopy analyzer", Journal of the International Measurement Confederation, 41(1), 65 (2008). https://doi.org/10.1016/j.measurement.2006.11.023
  3. V. Galyanin, A. Melenteva and A. Bogomolov, "Selecting optimal wavelength intervals for an optical sensor", Sensors and Actuators B, 218, 97 (2015). https://doi.org/10.1016/j.snb.2015.03.101
  4. K. Wu, F. Li and Y. Yang, "Sensitive detection of $CO_2$ concentration and temperature for hot gases using quantum-cascade laser absorption spectroscopy", Applied Physics B, 117(2), 659 (2014). https://doi.org/10.1007/s00340-014-5880-4
  5. T. H. Kim, H. J. Kong and T. H. Kim, "Design and fabrication of a 900-1700 nm hyper-spectral imaging spectrometer", Optics Communications, 283, 355 (2010). https://doi.org/10.1016/j.optcom.2009.10.022
  6. S. C. Truxal, K. Kurabayashi and Y. C. Tung, "Design of a MEMS Tunable Polymer Grating for Single Detector Spectroscopy", Journal of Optomechatronics, 2(2), 75 (2008). https://doi.org/10.1080/15599610802081779
  7. S. M. Azmayesh-Fard, L. Lam, A. Melnyk and R. G. DeCorby, "Design and fabrication of a planar PDMS transmission grating microspectrometer", Optics Express, 21, 11889 (2013). https://doi.org/10.1364/OE.21.011889
  8. A. Nitkowski, K. Preston, N. Sherwood-Droz, B. S. Schmidt and A. R. Hajian, "On-chip spectrometer for low-cost optical coherence tomography", SPIE, 8934, 89340F (2014).
  9. J. W. Kim, S. U. Cho and M. Y. Jeong, "A Study on optical characteristic of nano metal grid polarizer film with different deposition thickness", J. Microclectron. Packag. Soc., 22(1), 63 (2015). https://doi.org/10.6117/kmeps.2015.22.1.063
  10. T. H. Kim, S. H. Huh and M. Y. Jeong, "Fabrication for optical layer and packaging technology of optical PCB", J. Microclectron. Packag. Soc., 22(1), 1 (2015).