DOI QR코드

DOI QR Code

A Study on Fabrication of Hydrophobic Modification on the Surface of Copper using 355nm-Pulsed Laser

355nm 펄스 레이저를 이용한 구리 표면의 소수성 개질에 관한 연구

  • Yun, Dan Hee (Interdisciplinary Department for Innovative Manufacturing Engineering, Pusan National University) ;
  • Kang, Bo Seok (Interdisciplinary Department for Innovative Manufacturing Engineering, Pusan National University) ;
  • Park, Jun Han (Department of Cogno-mechatronics Engineering, Pusan National University) ;
  • Gwak, Cheng Yeol (Interdisciplinary Department for Innovative Manufacturing Engineering, Pusan National University) ;
  • Shin, Bo Sung (Interdisciplinary Department for Innovative Manufacturing Engineering, Pusan National University)
  • 윤단희 (부산대학교 첨단정밀공학협동과정) ;
  • 강보석 (부산대학교 첨단정밀공학협동과정) ;
  • 박준한 (부산대학교 인지메카트로닉스공학과 대학원) ;
  • 곽청렬 (부산대학교 첨단정밀공학협동과정) ;
  • 신보성 (부산대학교 첨단정밀공학협동과정)
  • Received : 2016.12.13
  • Accepted : 2016.12.28
  • Published : 2016.12.31

Abstract

Recently, the hydrophobic surface has been attracted because of the excellent opto-physical properties. Various processing methods such as chemical, mechanical, photolithographic and laser processing are competitively introduced for fabrication of hydrophobic surface of polymer, metal and ceramics. In this paper, we fabricated the hydrophobic surface of copper metal by simple method which irradiated 355 nm UV-pulsed laser in order to shape microgrooves and increased surface roughness through oxidation process at room temperature. Finally the contact angle is dramatically increased by maximum $45^{\circ}$, as a result of oxidation which simply created nanostructures on the microstructures without expensive chemical process.

최근 자연모방을 이용한 소수성 표면 가공이 많은 관심을 끌고 있다. 대표적인 가공 방법으로 기계적 가공, 포토리소그래피 가공, 레이저를 이용한 공정이 있다. 본 논문에서는 구리필름에 UV 펄스 레이저를 직접 조사해 마이크로 그루브를 형성하고 상온에서의 산화를 통해 표면의 거칠기를 증가시켜 소수성 표면을 제작하였다. 패턴 생성 뒤 일정 시간 산화를 시킨 후에 측정된 접촉각은 산화를 시키기 전보다 약 $30{\sim}70^{\circ}$까지 증가함을 보인다. 본 연구 결과를 통해서 화학적인 처리과정 없이 보다 안정한 소수성 표면을 제조할 수 있음을 확인하였다.

Keywords

References

  1. R. Jagdheesh, B. Pathiraj, E. Karatay, G. R. B. E. Romert and A. J. Juis, "Laser-Induced Nanoscale Superhydrophobic Structures on Metal Surfaces", Langmuir, 27(13), 8464 (2011). https://doi.org/10.1021/la2011088
  2. I. H. Cho, J. H. Lee, J. W. Noh and S. W. Lee, "A Study on Surface Fabrication of Super Hydrophobic using Pico Second Laser", Journal of the Korean Society for Precision Engineering, 29(2), 161 (2012). https://doi.org/10.7736/KSPE.2012.29.2.161
  3. J. Bekesi, J. J. J. Kaakkunen, W. Michaeli, F. Klaiber, M. Schoengart, J. Ihlemann and P. Simon, "Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds", Appl. Phys. A., 99(4), 691 (2010). https://doi.org/10.1007/s00339-010-5719-8
  4. M. Tang, V. Shim and M. H. Hong, "Laser Ablation of Metal Substrates for Super-hydrophobic Effect", Journal of Laser Micro/Nanoengineering, 6(1), 6 (2011). https://doi.org/10.2961/jlmn.2011.01.0002
  5. E. M. Petrie, "Determining Critical Surface Tension of Solid Substrates", SpicialChem, (Jan 24, 2007) from http://adhesives.specialchem.com/
  6. M. H. Majeed, "Static Contact Angle and Large Water Droplet Thickness Measurements with the Change of Water Temperature", Nahrain University, College of Engineering Journal, 17(1), 114 (2014).
  7. H. E. Lim, J. S. Park and W. D. Kim, "Micro/nanostructured Superhydrophobic Surface", Elastomers and Composites, 44(3), 244 (2009).
  8. J. S. Kim, H. S. Sim, S. H. Lee and Y. E. Shin, "Femto-second Laser Ablation Process for Si Wafer Through-hole", J. Microelectron. Packag. Soc., 14(3), 29 (2007).
  9. J. S. Kim, N. G. Cha, K. K. Lee, J. G. Park and H. J Shin, "Characterization of Fluorocarbon Thin Films by Contact Angle Measurements and AFM/LFM", J. Microelectron. Packag. Soc., 7(1), 35 (2000).