DOI QR코드

DOI QR Code

Manufacture of Continuous Glass Fiber Reinforced Polylactic Acid (PLA) Composite and Its Properties

연속 유리섬유 강화 폴리유산 복합재료의 제조 및 물성

  • 노정우 (서울대학교 기계항공공학부 기계전공) ;
  • 이우일 (서울대학교 기계항공공학부 기계전공)
  • Received : 2013.05.11
  • Accepted : 2013.08.16
  • Published : 2013.09.01

Abstract

The continuous glass fiber reinforced poly-lactic acid (PLA) composite was manufactured by direct melt impregnation. The mechanical and thermal properties of continuous glass fiber reinforced PLA composite were observed. Measured properties were compared with the reference values of neat PLA and the injection molded glass fiber/ PLA composite. The continuous glass fiber reinforced PLA composite having a fiber volume fraction of 27.7% shows enhanced tensile strength of 331.1 MPa, flexural strength of 528.6 MPa, and flexural modulus of 24.0 GPa. The enhanced heat deflection temperature (HDT) and the increased cystallinity were also observed. The degree of impregnation as a function of pulling speed was also assessed. The degree of impregnation at the pulling speed of 5 m/min was over 90% in this research.

본 연구에서는 연속 유리섬유 강화 폴리유산 복합재료를 직접함침방법을 이용하여 제조하였고, 이의 기계적 열적 물성이 고찰되었다. 프리프레그의 물성은 기존의 알려진 폴리유산의 물성과 사출 성형으로 제조된 유리섬유 강화 폴리유산 복합소재와 비교 평가되었으며, 섬유체적분율 27.7% 를 갖는 연속 유리섬유 강화 폴리유산 복합재료의 인장응력, 굽힘응력, 굴곡탄성율은 각각 331.1 MPa, 528.6 MPa, 24.0 GPa의 향상된 값을 보였다. 또한 향상된 열변형 온도와 결정화도가 확인되었다. 생산속도에 따른 함침도가 고찰되었고, 그 결과 본 연구에 사용된 공정조건에서는 분당 5 m의 섬유당김속도에서 함침도 90% 이상의 연속 유리섬유 강화 폴리유산 복합재료를 제조가능하였다.

Keywords

References

  1. Drumright, R.E., Gruber, P.R., and Henton, D.E., "Polylactic Acid Technology," Adv. Mater., Vol. 12, No. 23, 2000, pp. 1841-1846. https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  2. Athanasiou, K.A., Niederauer, G.G., and Agrawal, C.M., "Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers," Biomaterials, Vol. 17, 1996, pp. 93-102. https://doi.org/10.1016/0142-9612(96)85754-1
  3. Shi, Q. F., Mou, H.Y., Li, Q.Y., Wang, J.K., and Guo, W.H., "Influence of Heat Treatment on the Heat Distortion Temperature of Poly(lactic acid)/Bamboo Fiber/Talc Hybrid Biocomposites," Journal of Applied Polymer Science, Vol. 123, 2012, pp. 2828-2836. https://doi.org/10.1002/app.34807
  4. Jarus, D., Scheibelhoffer, A., Hiltner, A., and Baer, E., "The Effect of "Skin-Core" Morphology on the Heat-Deflection Temperature of Polypropylene," Journal of Applied Polymer Science, Vol. 60, 1996, pp. 209-219. https://doi.org/10.1002/(SICI)1097-4628(19960411)60:2<209::AID-APP8>3.0.CO;2-W
  5. Weustink, A.P.D., Development of a Rapid Thermoplastic Impregnation Device, Ph.D Thesis, Delft University of Technology, Netherlands, 2007.
  6. Nam, J.Y., Ray, S., and Okamoto, M., "Crystallization Behavior and Morphology of Biodegradable Polylactide/Layered Silicate Nanocomposite," Macromolecules, Vol. 36, 2003, pp. 7126-7131. https://doi.org/10.1021/ma034623j
  7. Huda, M.S., Drzal, L.T., Mohanty, A.K., and ManjusriMisra., "Chopped Glass and Recycled Newspapaer as Reinforcement Fibers in Injection Molded Poly(lactic acid) (PLA) Composite: A Comparative Study," Composites Science and Technology, Vol. 66, 2006, pp. 1813-1824. https://doi.org/10.1016/j.compscitech.2005.10.015
  8. Wallenberger, F.T., and Bingham, P.A., Fiberglass and Glass Technology: Energy-Friendly Compositions and Applications, Springer., New York, USA, 2010.

Cited by

  1. Processing and Flexural Properties of Chopped Jute Fiber Reinforced PLA Sandwich Composites vol.27, pp.3, 2014, https://doi.org/10.7234/composres.2014.27.3.096
  2. Preparation and Performance Improvement of Polylactic acid based composites by stereocomplex vol.16, pp.3, 2015, https://doi.org/10.5762/KAIS.2015.16.3.1671