DOI QR코드

DOI QR Code

Basic Study on P(VDF-TrFE) Smart Sensor for Monitoring Composite Structure Behaviors

복합재료구조물 거동 관찰을 위한 P(VDF-TrFE) 스마트센서의 기초연구

  • Received : 2015.06.11
  • Accepted : 2015.06.25
  • Published : 2015.06.30

Abstract

Poly(vinylidene fluoride-trifluoroethylene; P(VDF-TrFE)) is one of the most promising electroactive polymers with numerous application potentials in many fields of industry. Because of its good electro-mechanical properties P(VDF-TrFE) has been used for a number of sensors and actuators and also can be used for monitoring composite structure behaviors as a sensor. Three different ways (Electrical poling, annealing-cooling, and pressing) to enhance ${\beta}$-phase of P(VDF-TrFE) film were carried out. A microscopic analysis was conducted using X-ray diffraction to investigate the effect of such treatments on piezoelectric properties of P(VDF-TrFE) film. From the results, poling, annealing-cooling, and pressing were all effective to enhance ${\beta}$ crystallinity of P(VDF-TrFE) film and the maximum increase rate was 62.80% from 45.29% of the control group.

Poly(vinylidene fluoride-trifluoroethylene; P(VDF-TrFE))는 여러 분야에서 다양한 형태로 활용되고 있는 유망한 전기활성고분자이다. 이 재료는 전기-기계적 특성을 가지고 있기 때문에 다양한 형태의 센서와 구동기로 활용되고 있으며, 복합재료 구조의 거동을 관찰하는 센서로도 활용이 가능하다. 본 논문에서는 세 가지 방법; (1) 전기적 폴링, (2) 어닐링-냉각, (3) 압축을 사용하여 P(VDF-TrFE) 공중합체 필름의 ${\beta}$ 상 결정구조 향상시켜 센서로서의 특성을 강화하기 위한 연구를 수행하였다. P(VDF-TrFE) 필름에 대한 각 방법의 효과를 조사하기 위해 X-선 회절을 통한 미세구조분석을 수행하였다. 실험 결과, 전기적 폴링, 어닐링-냉각, 그리고 압축 방법 모두 P(VDF-TrFE) 필름의 ${\beta}$ 상 결정구조 향상에 효과적이었으며 대조군 (45.29%)대비 최대 62.80%까지 ${\beta}$ 상 결정도가 향상됐다.

Keywords

References

  1. Sharma, T., Aroom, K., Naik, S., Gill, B., and Zhang, J., "Flexible Thin-Film PVDF-TrFE Based Pressure Sensor for Smart Catheter Applications", Annals of Biomedical Engineering, Vol. 41, No. 4, 2013, pp. 744-751. https://doi.org/10.1007/s10439-012-0708-z
  2. Brodal, E., Melandso, F., and Jacobsen, S., "Performance of an Ultrasonic Imaging System Based on a 45-MHz Linear PVDF Transducer Array: A Numerical Study", Advances in Acoustics and Vibration, Vol. 2011, 2011, pp. 1-15.
  3. Gu, G.Y., Wang, Z.J., Kwon, D.J., and Park, J.M., "Interfacial Durability and Acoustic Properties of Transparent xGnP/ PVDF/xGnP Graphite Composites Film for Acoustic Actuator", Journal of the Korean Society for Composite Materials, Vol. 25, No. 3, 2012, pp. 70-75. https://doi.org/10.7234/kscm.2012.25.3.070
  4. Guzman, E., Cugnoni, J., Gmur, T., Bonhote, P., and Schorderet, A., "Survivability of Integrated PVDF Film Sensors to Accelerated Ageing Conditions in Aeronautical, Aerospace Structures", Smart Materials and Structures, Vol. 22, No. 6, 2013.
  5. Nilsson E., Lund A., Jonasson C., Johansson C., and Hag-stom B., "Poling and Characterization of Piezoelectric Polymer Fibers for Use in Textile Sensors", Sensors and Actuators A, Vol. 201, 2013, pp. 477-486. https://doi.org/10.1016/j.sna.2013.08.011
  6. Gregorio, R. and Cestari, M., "Effect of Crystallization Temperature on the Crystalline Phase Content and Morphology of Poly(vinylidene Fluoride)", Journal of Polymer Science Part B: Polymer Physics, Vol. 32, No. 5, 1994, pp. 859-870. https://doi.org/10.1002/polb.1994.090320509
  7. Matsushige, K. and Takemura, T., "Melting and Crystallization of Poly(vinylidene Fluoride) under High Pressure", Journal of Polymer Science: Polymer Physics Edition, Vol. 16, No. 5, 1978, pp. 921-934. https://doi.org/10.1002/pol.1978.180160516
  8. Hindeleh, A.M. and Johnson, D.J., "Crystallinity and Crystallite Size Measurement in Polyamide and Polyester Fibres", Polymer, Vol. 19, No. 1, 1978, pp. 27-32. https://doi.org/10.1016/0032-3861(78)90167-2
  9. Hartono, A., Satira, S., Djamal, M., Ramli, R., Bahar, H., and Sanjaya, E., "Effect of Mechanical Treatment Temperature on Electrical Properties and Crystallite Size of PVDF Film", Advances in Materials Physics and Chemistry, Vol. 3, No. 1, 2013, pp. 71-76. https://doi.org/10.4236/ampc.2013.31011
  10. Zhang, Q.M., Bharti, V., Cheng, Z.Y., and Zhao, X.Z., "Relaxor Ferroelectric Polymers", Ferroelectrics, Vol. 339, 2006, pp. 37-45. https://doi.org/10.1080/00150190600737917
  11. Rollik, D., Bauerv, S., and Gerhard, R., "Separate Contributions to the Pyroelectricity in Poly(vinylidene fluoride) from the Amorphous and Crystalline Phases, as Well as from Their Interface", Journal of Applied Physics, Vol. 85, 1999, pp. 3282-3288. https://doi.org/10.1063/1.369672
  12. Su, H., Starchan, A., and Goddard, W.A., "Density Functional Theory and Molecular Dynamics Studies of the Energetics and Kinetics of Electroactive Polymers: PVDF and P(VDF-TrFE)", Physical Review B, Vol. 70, 2004.
  13. Bohlen, M. and Bolton, K., "Effect of Single Wall Carbon Nanotubes on the Conformation of Poly(vinylidene fluoride)", Quantum Matter, Vol. 3, No. 4, 2014, pp. 339-343. https://doi.org/10.1166/qm.2014.1132
  14. Bohleen, M. and Bolton, K., "Conformational studies of Poly (vinylidene fluoride), Poly(trifluoroethylene) and Poly(vinylidene fluoride-co-trifluoroethylene) using Density Functional Theory", Physical Chemistry Chemical Physics, Vol. 16, 2014, pp. 12929-12939. https://doi.org/10.1039/c4cp01012d

Cited by

  1. 화학 결합 종류에 따른 생활 용품 기반 마찰 발전기 거동 연구 vol.32, pp.6, 2015, https://doi.org/10.7234/composres.2019.32.6.307