DOI QR코드

DOI QR Code

Analysis of the Optimal Separation Distance between Multiple Thermal Energy Storage (TES) Caverns Based on Probabilistic Analysis

확률론적 해석에 기반한 다중 열저장공동의 적정 이격거리 분석

  • 박도현 (한국지질자원연구원 지구환경연구본부) ;
  • 김현우 (한국지질자원연구원 지구환경연구본부) ;
  • 박정욱 (한국지질자원연구원 지구환경연구본부) ;
  • 박의섭 (한국지질자원연구원 지구환경연구본부) ;
  • 선우춘 (한국지질자원연구원 지구환경연구본부)
  • Received : 2014.02.26
  • Accepted : 2014.03.13
  • Published : 2014.04.30

Abstract

Multiple thermal energy storage (TES) caverns can be used for storing thermal energy on a large scale and for a high-aspect-ratio heat storage design to provide good thermal performance. It may also be necessary to consider the use of multiple caverns with a reduced length when a single, long tunnel-shaped cavern is not suitable for connection to aboveground heat production and injection equipments. When using multiple TES caverns, the separation distance between the caverns is one of the significant factors that should be considered in the design of storage space, and the optimal separation distance should be determined based on a quantitative stability criterion. In this paper, we described a numerical approach for determining the optimal separation distance between multiple caverns for large-scale TES utilization. For reliable stability evaluation of multiple caverns, we employed a probabilistic method which can quantitatively take into account the uncertainty of input parameters by probability distributions, unlike conventional deterministic approaches. The present approach was applied to the design of a conceptual TES model to store hot water for district heating. The probabilistic stability results of this application demonstrated that the approach in our work can be effectively used as a decision-making tool to determine the optimal separation distance between multiple caverns. In addition, the probabilistic results were compared to those obtained through a deterministic analysis, and the comparison results suggested that care should taken in selecting the acceptable level of stability when using deterministic approaches.

다중 열저장공동은 열에너지의 대규모 저장, 열적 성능 향상을 위한 높은 종횡비의 저장소 설계에 활용될 수 있다. 또한 긴 터널형의 단일공동이 열생산 및 주입을 위한 지상설비와의 연결에 적합하지 않은 경우, 길이를 줄인 다중 암반공동의 활용을 고려할 필요가 있다. 다중 열저장공동 활용시 공동간의 이격거리는 저장공간 설계시 고려해야 하는 주요 설계인자 중 하나이며, 정량적인 안정성 평가기준을 토대로 적정 이격거리가 산정되어야 한다. 본 논문에서는 대규모 열에너지 저장을 위한 다중 암반공동 계획시 공동간 이격거리를 결정하기 위한 수치 해석적 접근법에 대해 기술하였다. 다중 암반공동의 안정성 평가를 위해 기존의 결정론적 접근법과 달리 확률밀도에 의해 입력 매개변수의 불확실성을 정량적으로 고려할 수 있는 확률론적 해석기법을 이용하였으며, 집단열수 공급을 위한 다중 암반공동의 개념모델 설계에 적용하였다. 본 적용을 통해 확률론적 해석기법이 다중 암반공동의 이격거리 산정을 위한 의사결정 도구로서 유용하게 활용될 수 있음을 확인할 수 있었으며, 결정론적 해석결과와의 비교 분석으로부터 결정론적 접근법 적용시 안정성 평가기준을 신중히 설정할 필요가 있는 것으로 검토되었다.

Keywords

References

  1. Bucher C., D. Hintze and D. Roos, 2000, Advanced analysis of structural reliability using commercial FE-codes, European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, CD-ROM.
  2. Christian, J.T., Ladd, C.C and G.B. Bacher, 1994, Reliability applied to slope stability analysis, Journal of Geotechnical Engineering Division 120, 2180-2207. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2180)
  3. Dawson, E.M., W.H. Roth and A. Drescher, 1999, Slope stability analysis by strength reduction, Getechnique 49.6, 835-840. https://doi.org/10.1680/geot.1999.49.6.835
  4. Deng, J., Yue, Z.Q., Tham, L.G. and H.H. Zhu, 2003, Pillar design by combining finite element methods, neural networks and reliability: a case study of the Feng Huangshan copper mine, China, International Journal of Rock Mechanics & Mining Sciences 40, 585-599. https://doi.org/10.1016/S1365-1609(03)00042-X
  5. Duncan, J.M., 2000, Factors of safety and reliability in geotechnical engineering, Journal of Geotechnical & Geoenvironmental Engineering 126.4, 307-316. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307)
  6. Genske, D.D. and B. Walz, 1991, Probabilistic assessment of the stability of rock slopes, Structural Safety 9, 179-195. https://doi.org/10.1016/0167-4730(91)90042-8
  7. Griffiths, D.V., Fenton, G.A. and C.B. Lemons, 2002, Probabilistic analysis of underground pillar stability, International Journal for Numerical & Analytical Methods in Geomechanics 26, 774-791.
  8. Guarascio, M. and P. Oreste, 2012, Evaluation of the stability of underground rock pillars through a probabilistic approach, American Journal of Applied Sciences 9.8, 1273-1282. https://doi.org/10.3844/ajassp.2012.1273.1282
  9. Juang C.H., Rosowsky, D.V. and W.H. Tang, 1999, Reliabilitybased method for assessing liquefaction potential of soils, Journal of Geotechnical and Geoenvironmental Engineering 125.8, 684-689. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:8(684)
  10. KIGAM(Korea Institute of Geoscience and Mineral Resources), 2012, Development of core technology for underground thermal energy storage in rock cavern, Research report GP2011-003-2012(1) Part. III, Ministry of Knowledge Economy, Seoul.
  11. Kim, D.S. and Y.G. Kim, 2007, A study on the stability analysis for asymmetry parallel tunnel with rock pillar, Journal of Korean Tunnelling & Underground Space Association 9.4, 387-401.
  12. Kim, W.B., Yang, H.S. and T.W. Ha, 2012, An assessment of rock pillar behavior in very near parallel tunnel, Tunnel & Underground Space 22.1, 60-68. https://doi.org/10.7474/TUS.2012.22.1.060
  13. Kim, P.G. and J.W. Kim, 2013, Scale model studies for stability estimation of twin tunnels with small clearance, Tunnel & Underground Space 23.2, 130-140. https://doi.org/10.7474/TUS.2013.23.2.130
  14. Lee, Y.J. and S.D. Lee, 2010, Pillar width of twin tunnels in horizontal jointed rock using large scale model test, Tunnel & Underground Space 20.5, 352-359.
  15. Lee, M.H., Kim, B., Jang, Y.S., Yun, J.N. and H.G. Park, 2013, Behavior and pillar stability of enlarged existing parallel tunnels, Journal of Korean Tunnelling & Underground Space Association 15.5, 537-546. https://doi.org/10.9711/KTAJ.2013.15.5.537
  16. Park, D., Park, E.S., Song, W.K and D.W. Ryu, 2010, Reliability assessment of tunnel support systems using a probability-based method, Tunnel & Underground Space 20.1, 39-48.
  17. Park, D., Kim, H.M., Ryu, D.W, Choi, B.H. and K.C. Han, 2012, Comparative study on the applicability of point estimate methods in combination with numerical analysis for the probabilistic reliability assessment of underground structures, Tunnel & Underground Space 22.2, 86-92. https://doi.org/10.7474/TUS.2012.22.2.086
  18. Park, D., Ryu, D., Choi, B.H., Sunwwo, C. and K.C. Han, 2013, Mechanical stability analysis to determine the optimum aspect ratio of rock caverns for thermal energy storage, Tunnel & Underground Space 23.2, 150-159. https://doi.org/10.7474/TUS.2013.23.2.150
  19. Rocscience, 2014, Rocscience Phase2 software, http://www.rocscience.com/products/3/Phase2 [Accessed February 7, 2014)].
  20. Sin, Y.W. and Y.G. Kim, 2010, Review of mechanical behaviors of pillar in large parallel tunnel, Tunnel & Underground Space 20.3, 131-144.
  21. Withiam, J.L., Voytko, E.P., Barker, R.M., Duncan, J.M., Kelly, B.C., Musser, S.C. and V. Elias, 1997, Load and resistance factor design (LRFD) for highway bridge substructures, Federal Highway Adminstration, Washington D.C.
  22. You, K.H. and J.G. Kim, 2011, Evaluation of the influence of pillar width on the stability of a twin tunnel, Journal of Korean Tunnelling & Underground Space Association 13.2, 115-131.
  23. Zhou, J. and A.S. Nowak, 1988, Integration formulas to evaluate functions of random variables, Structural Safety 5.4, 267-284. https://doi.org/10.1016/0167-4730(88)90028-8

Cited by

  1. Thermal Performance Analysis of Multiple Thermal Energy Storage (TES) Caverns with Different Separation Distances Using Computational Fluid Dynamics vol.24, pp.3, 2014, https://doi.org/10.7474/TUS.2014.24.3.201
  2. Guidelines for Designing the Shape and Layout of Thermal Energy Storage (TES) Rock Caverns vol.25, pp.2, 2015, https://doi.org/10.7474/TUS.2015.25.2.115