DOI QR코드

DOI QR Code

Application of Residual Statics to Land Seismic Data: traveltime decomposition vs stack-power maximization

육상 탄성파자료에 대한 나머지 정적보정의 효과: 주행시간 분해기법과 겹쌓기제곱 최대화기법

  • Sa, Jinhyeon (Dept. of Earth and Environmental Sciences, Chungbuk National University) ;
  • Woo, Juhwan (Dept. of Earth and Environmental Sciences, Chungbuk National University) ;
  • Rhee, Chulwoo (Dept. of Earth and Environmental Sciences, Chungbuk National University) ;
  • Kim, Jisoo (Dept. of Earth and Environmental Sciences, Chungbuk National University)
  • 사진현 (충북대학교 지구환경과학과) ;
  • 우주환 (충북대학교 지구환경과학과) ;
  • 이철우 (충북대학교 지구환경과학과) ;
  • 김지수 (충북대학교 지구환경과학과)
  • Received : 2016.01.12
  • Accepted : 2016.02.16
  • Published : 2016.02.29

Abstract

Two representative residual static methods of traveltime decomposition and stack-power maximization are discussed in terms of application to land seismic data. For the model data with synthetic shot/receiver statics (time shift) applied and random noises added, continuities of reflection event are much improved by stack-power maximization method, resulting the derived time-shifts approximately equal to the synthetic statics. Optimal parameters (maximum allowable shift, correlation window, iteration number) for residual statics are effectively chosen with diagnostic displays of CSP (common shot point) stack and CRP (common receiver point) stack as well as CMP gather. In addition to removal of long-wavelength time shift by refraction statics, prior to residual statics, processing steps of f-k filter, predictive deconvolution and time variant spectral whitening are employed to attenuate noises and thereby to minimize the error during the correlation process. The reflectors including horizontal layer of reservoir are more clearly shown in the variable-density section through repicking the velocities after residual statics and inverse NMO correction.

나머지 정적보정 기법중에서 가장 많이 쓰이는 주행시간 분해기법과 겹쌓기제곱 최대화기법의 적용성을 육상 탄성파자료에서 비교 검토하였다. 모든 발파점과 수신점에 대한 임의의 나머지 정적보정값(시간차이)과 무작위 잡음이 포함된 모델자료에서 겹쌓기제곱 최대화기법은 주행시간 분해기법에 비해 흐트러진 반사 이벤트를 정확히 정렬시키고 보정과정에서 출력된 발파점과 수신점의 정적보정 그래프가 입력된 값과 거의 같은 진폭으로 역전된다는 점에서 신호대잡음이 작은 자료의 반사면 향상에 보다 효과적이었다. 나머지 정적보정에 적합한 입력인자(최대허용 시간차이, 상관창, 반복횟수)들은 공통중간점 자료외에 공통발파점 겹쌓기자료와 공통수신점 겹쌓기자료에 대한 연속 테스트를 거쳐 효과적으로 진단할 수 있었다. 나머지 정적보정에 앞서 송수신점의 높이보정 및 풍화대 깊이보정을 실시하여 장파장 시간차이를 제거하고 진동수-파수 필터링, 예측곱풀기, 시간변화 빛띠흰색화로 잡음을 줄여 교차상관의 오차를 최소화시킨다. 또한 나머지 정적보정후 수직시간차 역보정을 거쳐 속도를 재분석하여 겹쌓기한 결과 저류층을 포함한 반사면들의 향상된 연속성 및 분해능을 확인할 수 있었다.

Keywords

References

  1. Ait-Messaoud, M., Boulegroun, M.-Z., Gribi, A., Kasmi, R., Touami, M., Anderson, B., van Baaren, P., El-Eman, A., Rached, G., Laake, A., Pickering, S., Moldoveanu, N., and Ozbek, A., 2005, New dimensions in land seismic technology, Oilfield Review, Schlumberger Ltd, 42-53.
  2. Ali Gholami, 2013, Residual Statics Estimation by Sparsity Maximization, Geophysics, 78, 11-19.
  3. Alistair, R. B., 2011, Interpretation of Three-Dimensional Seismic Data, Stephen, E. L. and Vladimir, G., The American Association of Petroleum Geologists and the Society of Exploration Geophysicists, 610-614.
  4. Dahl-Jensen, T., 1989, Reflection seismic studies in the baltic shield: special processing techniques and results, Uppsala University.
  5. Gallant, E. V., Stewart, R. R., Bertram, M. B., and Lawton, D. C., 1995, Acquisition of the Blackfoot broad-band seismic survey, CREWES, 7, 36:1-9.
  6. Hatton, L., Worthington, M. H., and Makin, J., 1986, Seismic Data Processing: Theory and Practice, Blackwell Scientific Publications.
  7. Hileman, J. A., Embree, P., and Pfleuger, J. C., 1968, Automated static corrections, Geophys. Prosp., 16, 326-358. https://doi.org/10.1111/j.1365-2478.1968.tb01980.x
  8. Kim, J. S., Moon, W. M., Lodha, G., Serzu, M., and Soonawala, N., 1994, Imaging of reflection seismic energy for mapping shallow fracture zones in crystalline rocks, Geophysics, 59, 753-765. https://doi.org/10.1190/1.1443633
  9. Kim, J. S., Han, S. H., Kim, H. S., Choj, W. S., and Jung, C. H., 2001, High-Resolution Seismic Reflection Profiling on Land with Hydrophones Employed in the Stream-Water Driven Trench, Korean Society of Exploration Geophysicists, 4, 133-144.
  10. Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P., 1983, Optimization by Simulated Annealing, Science, 220, 671-680. https://doi.org/10.1126/science.220.4598.671
  11. Marsden, D., 1993(a), Static corrections−a review, Part I, Geophys: The Leading Edge, 12, 43-49. https://doi.org/10.1190/1.1436912
  12. Marsden, D., 1993(b), Static corrections−a review, Part II, Geophys: The Leading Edge, 12, 115-120. https://doi.org/10.1190/1.1436936
  13. Marsden, D., 1993(c), Static corrections−a review, Part III, Geophys: The Leading Edge, 12, 210-216. https://doi.org/10.1190/1.1436944
  14. Michael J. G. Cox, 1999, Static Corrections for Seismic Reflection Surveys, Society of Exploration Geophysicists, 352-394.
  15. Miller, S. L. M., 1996, Multicomponent Seismic Data Interpretation, The University of Calgary, pp. 46-70.
  16. O. Yilmaz, 2001, Seismic data Analysis, Society of Exploration Geophysicists, pp. 324-370.
  17. Ronen, J. and Claerbout, J. F., 1985, Surface-consistent residual statics estimation by stack-power maximization, Geophysics, 50, 2759-2767. https://doi.org/10.1190/1.1441896
  18. Schlumberger Ltd., 2014a, OMNI3D Workshop Seismic Survey Design & Modeling, USA.
  19. Schlumberger Ltd., 2014b, VISTA 2D/3D Full PRO Seismic Processing Software, USA.
  20. Strahler, A. N., 1981, Physical geology, Harper & Row.
  21. Taner, M. T., Koehler, F., and Alhilali, K. A., 1974, Estimation and correction of near-surface time anomalies, Geophysics, 41, 441-463.
  22. Wiggins, R. A., Larner, K. L., and Wisecup, R. D., 1976, Residual statics analysis as a general linear inverse problem, Geophysics, 41, 922-938. https://doi.org/10.1190/1.1440672