DOI QR코드

DOI QR Code

Changes in the Hyperspectral Characteristics of Wheat Plants According to N Top-dressing Rates at Various Growth Stages

밀에서 질소 시비 조건에 따른 생육 단계별 초분광 특성 변화

  • Jung, Jae Gyeong (Department of Agronomy, Gyeongsang National University) ;
  • Lee, Yeong Hun (Department of Agronomy, Gyeongsang National University) ;
  • Choi, Jae Eun (Department of Agronomy, Gyeongsang National University) ;
  • Song, Gi Eun (Department of Agronomy Applied Biological Science, Applied Biology (BK Plus), Gyeongsang National University) ;
  • Ko, Jong Han (Applied Plant Science, Chonnam National University) ;
  • Lee, Kyung Do (Department of Agricultural Enviroment, National Institute of Agricultural Sciences) ;
  • Shim, Sang In (Department of Agronomy, Gyeongsang National University)
  • 정재경 (국립 경상대학교 농학과) ;
  • 이영훈 (국립 경상대학교 농학과) ;
  • 최재은 (국립 경상대학교 농학과) ;
  • 송기은 (국립 경상대학교 응용생명과학부 BK21+ 프로그램) ;
  • 고종한 (국립 전남대학교 응용식물학과) ;
  • 이경도 (농촌진흥청 국립농업과학원 농업환경부) ;
  • 심상인 (국립 경상대학교 농학과)
  • Received : 2020.08.07
  • Accepted : 2020.09.12
  • Published : 2020.12.01

Abstract

Recently, wheat consumption has been increasing in Korea, requiring increased production. Nitrogen fertilization is a critical determinant in crop yield; therefore, it is necessary to optimize the nitrogen fertilization regime with current trends that emphasize the minimum impact of nitrogen fertilizer on the environment. In this study, both nondestructive spectral analysis using a hyperspectral camera and growth analysis were performed to determine the optimal N top-dressing rates after heading. The nitrogen application regimes consisted of three conditions according to the secondary top-dressing rate: N4:3:0 (0 kg 10 a-1), N4:3:3 (2.73 kg 10 a-1), and N4:3:6 (5.46 kg 10 a-1). Subsequently, growth and physiological investigations were performed at the jointing, heading, and ripening stages of wheat, and spectral investigations were conducted. On April 29, as the nitrogen fertilization rate was increased to N4:3:3 and N4:3:6, plant height and grain yield increased by 4% and 8%, and 8% and 52%, respectively, compared to those under N4:3:0. Leaf area index and SPAD value also increased by 13% and 24%, and 32% and 43%, respectively. The R (red), G (green), and B (blue) of leaf color were lowered by 15, 11, and 4 in N4:3:3 and 44, 34, and 18 in N4:3:6, respectively, as compared to the control. Grain yield was the highest at high top-dressing (N4:3:6), however, there was no difference between no top-dressing (N4:3:0) and intermediat top-dressing (N4:3:3). The reflectance analyzed using a hyperspectral camera showed a difference in the near-infrared (NIR) region on March 19, and on April 29, there was a difference both in the visible light region greater than 550 nm and the NIR region. Vegetation indices differed according to fertilization regime, except for the greenness index (GI). The results of this study showed that not only growth and physiological analysis but also spectral indices can be used to optimize the nitrogen top-dressing rate.

적절한 질소 시비는 작물에 초형을 개선하는 한편, 엽록소 유지에도 도움을 주어 엽노화를 억제하고 광합성도 증대시켰다. 드론을 활용해 얻어진 잎의 RGB 값은 4월 29일에서 추비량 증가에 따라 RGB 값의 뚜렷한 차이를 나타내 단순한 엽색 분석도 작물의 생리적 상태 평가에 활용할 수 있음을 보여주었다. 휴대용 측정기를 이용한 실험에서 추비 조건에 따른 NDVI와 SPAD 값은 3월 19일에 큰 차이 확인할 수 없었다. 그러나 초분광카메라를 통한 분석에서 추비량 증대에 따라 780 nm보다 큰 파장대인 NIR 영역에서 반사율 증가가 확인되었다. 이는 시비 효과가 명확히 드러나지 않는 생육 초반에도 초분광카메라 활용해 작물 상태를 진단할 수 있음을 보여준다. 포장에서 추비 수준이 낮을수록 4월 29일에는 가시광선 영역의 반사율이 증가하고, NIR 영역의 감소가 확인되어 시비에 따른 영향을 확인할 수 있었다. 초분광카메라를 이용한 식생지수 확인으로 엽록소 함량, 질소 부족 정도, 광합성 상태 분석에 근거한 시비 효과 평가가 가능하였다.

Keywords

References

  1. Amanullah, K., B. Marwat, P. Shah, N. Maula, and S. Arifullah. 2009. Nitrogen levels and its time of application influence leaf area, height and biomass of maize planted at low and high density. Pak. J. Bot. 41 : 761-768.
  2. Ashourloo, D., M. R. Mobasheri, and A. Huete. 2014. Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements. Remote. Sens. 6 : 5107-5123. https://doi.org/10.3390/rs6065107
  3. Behmann, J., J. Steinrucken, and Lutz. Plumer, P. 2014. Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm. Remote. Sens. 93 : 98-111. https://doi.org/10.1016/j.isprsjprs.2014.03.016
  4. Bendig, J., A. Bolten, S. Bennertz, J. Broscheit, S. Eichfuss, and G. Bareth. 2014. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB Imaging. Remote. Sens. 6 : 10395-10412. https://doi.org/10.3390/rs61110395
  5. Birth, G. S. and G. R. McVey. 1968. Measuring the color of growing turf with a reflectance spectrophotometer. J. Agron. 60 : 640-643. https://doi.org/10.2134/agronj1968.00021962006000060016x
  6. Blackburn, G. A. 1999. Relationship between spectral reflectance and pigment concentrations in stacks of deciduous broadleaves. Remote. Sens. Environ. 70 : 224-237. https://doi.org/10.1016/S0034-4257(99)00048-6
  7. Calderon, R., J. A. Navas-Cortes, C. Lucena, and P. J. Zarco-Tejada. 2013. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote. Sens. Environ. 139 : 231-245. https://doi.org/10.1016/j.rse.2013.07.031
  8. Cao, X., Y. Luo, Y. Zhou, J. Fan, X. Xu, J. S. West, X. Xiayu, and D. Cheng. 2015. Detection of powdery mildew in two winter wheat plant densities and prediction of grain yield using canopy hyperspectral reflectance. PLoS One. 10 : 1-14.
  9. Carter, G. A. 1993. Responses of leaf spectral reflectance to plant stress. Am. J. Bot. 80 : 239-243. https://doi.org/10.1002/j.1537-2197.1993.tb13796.x
  10. Cho, S. W., C. S. Kang, T. G. Kang, K. M. Cho, and C. S. Park. 2018. Influence of different nitrogen application on flour properties, gluten properties by HPLC and end-use quality of Korean wheat. J. Integr. Agric. 17 : 982-993. https://doi.org/10.1016/S2095-3119(18)61920-3
  11. Darvishzadeh, R., A. Skidmore, C. Atzberger, and S. V. Wieren. 2008. Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture. Int. J. Appl. Earth. OBS. 10 : 358-373. https://doi.org/10.1016/j.jag.2008.02.005
  12. Datt, B. 1999. A New reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves. J. Plant. Physiol. 154 : 30-36. https://doi.org/10.1016/S0176-1617(99)80314-9
  13. FAO. 2020. Food outlook - Biannual report on global food markets. pp. 11-16.
  14. Feng, W., X. Yao, Y. Zhu, Y. C. Tian, and W. X. Cao. 2008. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Eur. J. Agron. 28 : 394-404. https://doi.org/10.1016/j.eja.2007.11.005
  15. Filella, I., L. Serrano, J. Serra, and J. Penuelas. 1995. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop. Sci. 35 : 1400-1405. https://doi.org/10.2135/cropsci1995.0011183X003500050023x
  16. Fritschi, F.B. and J. D. Ray. 2007. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica. 45 : 92-98. https://doi.org/10.1007/s11099-007-0014-4
  17. Gamon, J. A., J. Penuelas, and C. B. Field. 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote. Sens. Environ. 41 : 35-44. https://doi.org/10.1016/0034-4257(92)90059-S
  18. Gitelson, A. and M. N. Merzlyak. 1994. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. spectral features and relation to chlorophyll estimation. J. Plant. Physiol. 143 : 286-292. https://doi.org/10.1016/S0176-1617(11)81633-0
  19. Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote. Sens. Environ. 58 : 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7
  20. Gitelson, A. A. and M. N. Merzlyak. 1998. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space. Res. 22 : 689-692. https://doi.org/10.1016/S0273-1177(97)01133-2
  21. Gitelson, A. A., Y. Gritz, and M. N. Merzlyak. 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant. Physiol. 160 : 271-282. https://doi.org/10.1078/0176-1617-00887
  22. Goetz, A. F. H. 2009. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote. Sens. Environ. 113 : S5-S16. https://doi.org/10.1016/j.rse.2007.12.014
  23. Han, L., G. Yang, H. Dai, B. Xu, H. Yang, H. Feng, Z. Li, and X. Yang. 2019. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods. 15 : 10. https://doi.org/10.1186/s13007-019-0394-z
  24. Ivushkin, K., H. Bartholomeus, A. K. Bregt, A. Pulatov, H. D. Franceschini, H. Kramer, E. N. van Loo, V. J. Roman, and R. Finkers. 2018. UAV based soil salinity assessment of cropland. Geoderma. 338 : 502-512. https://doi.org/10.1016/j.geoderma.2018.09.046
  25. Kong, L., Y. Xie, L. Hu, J. Si, and Z. Wang. 2017. Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Sci. Rep. 7 : 43363. https://doi.org/10.1038/srep43363
  26. KOSTAT. 2020. 2019 Food Grain Consumption Survey. pp. 17-30.
  27. Lelong, C. C. D., P. C. Pinet, and H. Poilve. 1998. Hyperspectral imaging and stress mapping in agriculture. Remote. Sens. Environ. 66 : 179-191. https://doi.org/10.1016/S0034-4257(98)00049-2
  28. Li, F., Y. Miao, S. D. Hennig, M. L. Gnyp, X. Chen, L. Jia, and G. Bareth. 2010. Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precis. Agric. 11 : 335-357. https://doi.org/10.1007/s11119-010-9165-6
  29. Li, B., X. Xu, J. Han, L. Zhang, C. Bian, L. Jin, and J. Liu. 2019. The estimation of crop emergence in potatoes by UAV RGB imagery. Plant Methods. 15 : 15. https://doi.org/10.1186/s13007-019-0399-7
  30. Luo, L., Y. Zhang, and G. Xu. 2020. How does nitrogen shape plant architecture? J. Exp. Bot. 71 : 4415-4427. https://doi.org/10.1093/jxb/eraa187
  31. Mahlein, A. K., U. Steiner, H. W. Dehne, and E. C. Oerke. 2010. Spectral signature of sugar beet leaves for the detection and differentiation of diseases. Precis. Agric. 11 : 413-431. https://doi.org/10.1007/s11119-010-9180-7
  32. McKinney, G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140 : 315-322. https://doi.org/10.1016/S0021-9258(18)51320-X
  33. Merzlyak, M. N., A. A. Gitelson, O. B. Chivkunova, and V. Y. Rakitin. 1999. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 106 : 135-141. https://doi.org/10.1034/j.1399-3054.1999.106119.x
  34. Mishra, P., M. S. M. Asaari, A. Herrero-Langreo, S. Lohumi, B. Diezma, and P. Scheunders. 2017. Close range hyperspectral imaging of plants: A review. Biosyst. Eng. 164 : 49-67. https://doi.org/10.1016/j.biosystemseng.2017.09.009
  35. Moran, R. 1982. Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiol. 69 : 1376-1381. https://doi.org/10.1104/pp.69.6.1376
  36. Nebiker, S., M. Abacherli, N. Lack, and S. Laderach. 2016. Lightweight multispectral UAV sensors and their capabilities for predicting grain yield and detecting plant diseases. ISPRS-Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 963-970.
  37. Netto, A. T., E. Campostrini, J. G. de. Oliveira, and R. E. Bressan-Smith. 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hortic. 104 : 199-209. https://doi.org/10.1016/j.scienta.2004.08.013
  38. Nutter, F. W. 1989. Detection and measurement of plant disease gradients in peanut with a multispectral radiometer. Phytopathol. 79 : 958-963. https://doi.org/10.1094/Phyto-79-958
  39. Penuelas, J., B. Frederic, and I. Filella. 1995. Semi-empirical indices to assess carotenoids/chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica. 31 : 221-230.
  40. Penuelas, J. and I. Filella. 1998. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends. Plant. Sci. 3 : 151-156. https://doi.org/10.1016/S1360-1385(98)01213-8
  41. Reyniers, M., D. J. J. Walvoort, and J. De Baardemaaker, 2006. A linear model to predict with a multi‐spectral radiometer the amount of nitrogen in winter wheat. Int. J. Remote. Sens. 27 : 4159-4179. https://doi.org/10.1080/01431160600791650
  42. Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering. 1974. Monitoring vegetation systems in the Great Plains with ERTS. In Proc. Third ERTS Symposium. NASA SP-351. 1 : 301-317.
  43. Rumpf, T., A. K. Mahlein, U. Steiner, E. C. Oerke, H. W. Dehne, and L. Plumer. 2010. Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Compute. Electron. Agric. 74 : 91-99. https://doi.org/10.1016/j.compag.2010.06.009
  44. Siegal, B. S. and A. F. H. Goetz. 1977. Effect of vegetation on rock and soil type discrimination, Photogramm. Eng. Rem. S. 43 : 191-196.
  45. Sims, D. A. and J. A. Gamon. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote. Sens. Environ. 81 : 337-354. https://doi.org/10.1016/S0034-4257(02)00010-X
  46. Vogelmann, J. E., B. N. Rock, and D. M. MOSS, 1993. Red edge spectral measurements from sugar maple leaves. Int. J. Remote. Sens. 14 : 1563-1575. https://doi.org/10.1080/01431169308953986
  47. Wijitdechakul, J., S. Sasaki, Y. Kiyoki, and C. Koopipat. 2016. UAV-based multispectral image analysis system with semantic computing for agricultural health conditions monitoring and real-time management. International Electronics Symposium (IES). pp. 459-464.
  48. Wu, C., Z. Niu, Q. Tang, and W. Huang. 2008. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agr. Forest. Meterol. 148 : 1230-1241. https://doi.org/10.1016/j.agrformet.2008.03.005
  49. Xingyun, L., T. Zhang, X. Lu, D. S. Ellsworth, H. BassiriRad, C. You, D. Wang, P. He, Q. Deng, H. Liu, J. Mo, and Q. Ye. 2019. Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis. Glob. Chang. Biol. 26 : 3585-3600. https://doi.org/10.1111/gcb.15071
  50. Xu, J., H. Cai, X. Wang, C. Ma, Y. Lu, Y. Ding, X. Wang, H. Chen, Y. Wang, and Q. Saddique. 2019. Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching. Agric. Water. Manag. 228 : 105904.
  51. Zarco-Tejada, P. J., V. Gonzalez-Dugo, and J. A. Berni. 2012. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote. Sens. Environ. 117 : 322-337. https://doi.org/10.1016/j.rse.2011.10.007
  52. Zhang, L., Y. Niu, H. Zhang, W. Han, G. Li, J. Tang, and X. Peng. 2019. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring. Front. Plant. Sci. 10 : 1-18. https://doi.org/10.3389/fpls.2019.00001
  53. Zheng, T., P. F. Qi, Y. L. Cao, Y. N. Han, H. L. Ma, Z. R. Guo, Y. Wang, Y. Y. Qiao, S. Y. Hua, H. Y. Yu, J. P. Wang, J. Zhu, C. Y. Zhou, Y. Z. Zhang, Q. Chen, L. Kong, J. R. Wang, Q. T. Jiang, Z. H. Yan, X. J. Lan, G. Q. Fan, Y. M. Wei, and Y. L. Zheng. 2018. Mechanisms of wheat (Triticum aestivum) grain storage proteins in response to nitrogen application and its impacts on processing quality. Sci. Rep. 8 : 11928. https://doi.org/10.1038/s41598-018-30451-4