DOI QR코드

DOI QR Code

Control Effect of Root-knot Nematode (Meloidogyne incognita) by Biological Nematicide

생물학적 살선충제의 뿌리혹선충 (Meloidogyne incognita) 방제 효과

  • Park, Moon-Hyun (Research Institute, HyosungONB Co., Ltd.) ;
  • Walpola, Buddhi Charana (Department of Bio-Environmental Chemistry, College of Agriculture and LifeSciences, Chungnam National University) ;
  • Kim, Sun-Joong (Department of Bio-Environmental Chemistry, College of Agriculture and LifeSciences, Chungnam National University) ;
  • Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and LifeSciences, Chungnam National University)
  • 박문현 ((주)효성오앤비) ;
  • ;
  • 김선중 (충남대학교 농업생명과학대학 생물환경화학과) ;
  • 윤민호 (충남대학교 농업생명과학대학 생물환경화학과)
  • Received : 2012.02.13
  • Accepted : 2012.04.02
  • Published : 2012.04.30

Abstract

An nematophagous fungi Arthrobotrys thaumasia Nema-1 and Bacillus subtilis C-9, which degrade the collagen and gelatin, were isolated from horticulture plantation soil in Kyungpook Sungju-gun Seonnam-myun and Chungnam Gongju-gun Woosung-myun to develop biological nematode pesticide. When $5,000mg\;kg^{-1}$ of A. thaumasia Nema-1 nematicide powder ($7.0{\times}10^3cfu\;g^{-1}$) was treated to pot including Meloidogyne incognita, the number of nematode's egg mass, which is a index of nematicidal activity, decreased to 35% compared to control. While the number of nematode's egg mass decreased to 67% by treating the nematicide powder mixture of $5,000mg\;kg^{-1}$ Nema-1 and B. subtilis C-9 ($8.5{\times}10^5cfu\;g^{-1}$). Furthermore the number of nematode's egg mass of the mixture containing cinnamon extract $10mg\;kg^{-1}$, each $5,000mg\;kg^{-1}$ of Nema-1 and C-9 nematicide powder was decreased to 84%, comparing to the result showed the number of nematode's egg mass decreased to 24%, by the treatment of chemical nemato pesticide Fosthiazate $24mg\;kg^{-1}$. These results suggested the mixture of microorganisms and plant extract was more effective biological nematicide than the case of only microorganism or plant extract for nematode control.

친환경 선충 방제제 개발을 위해 경북 성주군 선남면 및 충남 공주군 우성면의 시설원예 재배지 토양으로 부터 선충 포식성이 뛰어난 곰팡이 Arthrobotrys thaumasia Nema-1과 선충 표피성분인 collagen과 알집 주성분인 gelatin 분해능이 뛰어난 Bacillus subtilis C-9를 분리 하였다. 이들 분리균을 대상으로 포트실험을 통해 선충치사 효과의 지표인 난낭수 감소를 검토한 결과, 균밀도가 $7.0{\times}10^3cfu\;g^{-1}$인 A. thaumasia Nema-1 곰팡이 제제 $5,000mg\;kg^{-1}$을 처리 시 뿌리혹 선충의 난낭수가 무처리 대비 35% 감소하였다. 포식성 곰팡이 Nema-1 제제와 균밀도가 $8.5{\times}10^5cfu\;g^{-1}$인 B. subtilis C-9 세균 제제 각각 $5,000mg\;kg^{-1}$ 혼합 처리구에서는 난낭수가 무처리 대비 67% 감소하였다. 또한 선충치사효과를 증진시키기 위하여 살선충 활성이 있다고 보고 된 계피추출물 제제 $10mg\;kg^{-1}$$5,000mg\;kg^-$의 Nema-1과 C-9 제제와 혼합하여 처리 하였을 때 난낭수가 무처리 대비 84%이상 감소하였으며, 대표적 살선충제인 선충탄(Fosthiazate) $24mg\;kg^{-1}$은 난낭수가 26% 감소한 결과와 비교해 볼 때 훨씬 높은 수준이었다. 이상의 결과는 생물학적 선충방제제는 미생물 또는 식물체 추출물 단제 보다는 혼합물 형태로 사용하는 것이 더 효과적이라는 결과를 제시하였다.

Keywords

References

  1. Abo-Elyousr, K.A., Z. Khan, M.E. Award, and M.F. Abedel- Moneim. 2010. Evaluation of plant extracts and Pseudomonas spp. for control of root-knot nematode, Meloidogyne incognita on tomato. Nematropica 40(2):289-299.
  2. Anke, H., M. Stadler, A. Mayer, and O. Sterner. 1995. Secondary metabolites with nematicidal and antimicrobial activity from nematophagous fungi and Ascomycetes. Can. J. Bot. 73:932-939. https://doi.org/10.1139/b95-341
  3. Balan, J., L. Krizzkova, P. Nemec, and V. Voller. 1974. Production of nematode-attracting and nematicidal substances by predaceous fungi. Folia Microbiol. 19:512-519. https://doi.org/10.1007/BF02872918
  4. Barron, G.L. and R.G. Thorn, 1987. Destruction of nematodes by species of Pleurotus. Can. J. Bot. 65:774-778. https://doi.org/10.1139/b87-103
  5. Braga, F.R., A.R. Silva, R.O. Carvalho, J.V. Araujo, P.H.G. Guimaraes, R.T. Fujiwara, and L.N. Frassy. 2010. In vitro predatory activity of the fungi Duddingtonia flagrans, Monacrosporium thaumasium, Monacrosporium sinense and Arthrobotrys robusta on Ancylostoma ceylanicum third-stage larvae. Vet. Microbiol. 146:183-186. https://doi.org/10.1016/j.vetmic.2010.05.003
  6. Chanh, N.D.M. 2010. Nematicidal activity of compounds extracted from cinnamomum cassia against root-knot nematode Meloidogyne incognita. M.S. Thesis, Chonnam National University, Gwangju, Korea.
  7. Cho, C.H., D.S. Kang, Y.J. Kim, and K.S. Hwang. 2008. Morphological and phylogenetic characteristics of a nematophagous fungus, Drechslerella brochopaga Kan-23. Kor. J. Microbiol. 44(1):63-68.
  8. Choi, Y.H., 1982. Phytonematology. Hyang-moon-sa, p. 58-69. Korea.
  9. Huang, Y., C.K. Xu, L. Ma, K.Q. Zhang, C.Q. Duan, and M.H. Mo. 2010. Characterization of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. J. Plant Pathol. 126(3):417-422. https://doi.org/10.1007/s10658-009-9550-z
  10. Kim, J.H., S.M. Seo, and I.K. Park. 2011. Nematicidal activity of plant essential oils and components from Gaultheria fragrantissima and Zanthoxylum alatum against the pine wood nematode, Bursaphelenchus xylophilus. Nematology 13(1):87-93. https://doi.org/10.1163/138855410X504907
  11. Kim, S.S., S.I. Kang, J.S. Kim, Y.S. Lee, S.H. Hong, K.W. Naing, and K.Y. Kim. 2011. Biological Control of Root-knot Nematode by Streptomyces sampsonii KK1024. Korean J. Soil Sci. Fert. 44(6):1150-1157. https://doi.org/10.7745/KJSSF.2011.44.6.1150
  12. Lee, J. G. 2003. Occurrence, ecology and control of root- knot nematodes under greenhouse cultivation system. Ph.D. Thesis, Chungnam National University, Daejeon, Korea.
  13. Olthof, T.H. and R.H. Estey. 1963. A nematotoxin produced by the nematophagous fungus Arthrobotrys oligospora Fresenius. Nature. 197:514-515.
  14. Paik, S.B., S.C. Sim, H.M. Ku, and W.G. Yoe. 1998. Screening for antifungal medicinal plants against brown patch and large patch diseases of turfgrass. Kor. Turfgrass Sci. 12(3):183-194.
  15. Park, M.H., J.K. Kim, W.H. Choi, and M.H. Yoon. 2011. Nematicidal effect of root-knot nematode (Meloidogyne incognita) by biological nematicide. Korean J. Soil Sci. Fert. 44(2):228-235. https://doi.org/10.7745/KJSSF.2011.44.2.228
  16. Stadler, M., H. Anke, and O. Sterner. 1993. Linoleic acid-the nematicidal principle of several nematophagous fungi and its production in trap-forming submerged cultures. Arch. Microbiol. 169:401-405.
  17. Tayler, A.L. and J.N. Sasser. 1978. Biology, identification and control of root-knot nematodes(Meloidogyne Species). North Carolina State Univ. Graphics, North Carolina, p. 111.
  18. Tunlid, A. and S. Janson. 1991. Proteases and their involvement in the infection and immobilization of nematodes by the nematophagous fungus Arthrobotrys oligospora. Appl. Environ. Microbiol. 57:2868-2872.
  19. Tunlid, A., H.B. Jansson, and H.B. Nordbring. 1992. Fungal attachment to nematodes. Mycol. Res. 96(6):401-412. https://doi.org/10.1016/S0953-7562(09)81082-4
  20. Veenhuis, M., W. Harder, and H.B. Nordbring. 1989. Occurence and metabolic significance of microbodies in trophic hyphae of the nematophagous fungus Arthrobotrys oligospora. Antonie van Leeuwenhoek. 56:241-249. https://doi.org/10.1007/BF00418936
  21. Veenhuis, M., W.C. Van, U. Wyss, and H.B. Nordbring. 1989. Significance of electron dense microbodies in trap cells of the nematophagous fungus Arthrobotrys oligospora. Antonie van Leeuwenhoek. 56:251-261. https://doi.org/10.1007/BF00418937
  22. Viglierchio, D.R. and R.V. Schmitt. 1983. On the methodology of nematode extraction from field samples: Baermann Funnel Modifications. J. Nematol. 15(3):438-444.
  23. Zhang, Y., M. Qiao, E. Weber, H.O. Baral., G. Hagedorn, K. Zhang., and Z. Yu. 2010. Arthrobotrys scaphoides from China and Europe with a phylogenetic analysis including the type strain. Mycotaxon. 111:291-300. https://doi.org/10.5248/111.291

Cited by

  1. Antagonistic Potential ofBacillus pumilusL1 Against Root-Knot Nematode,Meloidogyne arenaria vol.164, pp.1, 2016, https://doi.org/10.1111/jph.12421
  2. Role of Lytic Enzymes Secreted by Lysobacter capsici YS1215 in the Control of Root-Knot Nematode of Tomato Plants vol.55, pp.1, 2015, https://doi.org/10.1007/s12088-014-0499-z