DOI QR코드

DOI QR Code

Thermal Hazards of Polystyrene Polymerization Process by Bulk Polymerization

벌크 중합법에 의한 폴리스티렌 중합공정의 열적위험성

  • Han, In-Soo (Occupational Safety & Health Research Institute, KOSHA) ;
  • Lee, Jung-Suk (Occupational Safety & Health Research Institute, KOSHA) ;
  • Lee, Keun-Won (Occupational Safety & Health Research Institute, KOSHA)
  • 한인수 (한국산업안전보건공단 산업안전보건연구원) ;
  • 이정석 (한국산업안전보건공단 산업안전보건연구원) ;
  • 이근원 (한국산업안전보건공단 산업안전보건연구원)
  • Received : 2013.07.16
  • Accepted : 2013.08.19
  • Published : 2013.08.31

Abstract

The aim of this study is to assess thermal hazards of polystyrene polymerization process by bulk polymerization with accelerating rate calorimeter(ARC) and Multimax reactor system(MM). From this study, we found out that the polymerization process should be operated at reaction temperature of $120^{\circ}C{\sim}130^{\circ}C$. At reaction temperature over $130^{\circ}C$, there was a runaway reaction hazard due to the temperature control failure following a viscosity increase of reaction products. With a cooling failure of a reactor in the early stage of process operation at the reaction temperature ($120^{\circ}C{\sim}130^{\circ}C$), there was a high thermal hazard of burst of a reactor's rupture disk or explosion of a reactor caused by the rapid rise of temperature and pressure to $340^{\circ}C$, 5.3 bar respectively within 30 - 50 minutes.

본 연구에서는 벌크 중합법을 이용한 폴리스티렌 중합공정의 폭주반응에 대한 열적 위험성을 가속속도열량계(ARC)와 소규모 반응열량계(MM)를 이용하여 평가하였다. 당해 중합공정은 반응온도 $120^{\circ}C{\sim}130^{\circ}C$로 운전되어져야 하며, $130^{\circ}C$ 이상의 반응온도에서는 반응 생성물의 급격한 점도 증가로 인하여 반응기의 온도제어 실패에 따른 폭주반응의 위험성이 존재하였다. 또한 당해 중합공정의 반응온도($120^{\circ}C{\sim}130^{\circ}C$)에서 공정운전 초기에 반응기의 냉각실패가 발생할 경우 폭주반응으로 인해 반응기의 온도와 압력이 각각 30 ~ 50분 이내에 약 $340^{\circ}C$, 5.3 bar 까지 급격히 상승하여 반응기의 파열판이 파열되거나 반응기가 폭발할 수 있는 열적 위험성이 높게 나타났다.

Keywords

References

  1. Sevas Educational Society, Production of polystyrene(process description), http://www.sbiinformatic.com/design_thesis/Polystyrene
  2. Korea Occupational safety & Health Agency, "Vapor cloud explosion? fire accident" Major accident news letter, KOSHA-CCPS-201102, (2011)
  3. Wilcock, E. and Rogers, R.L., "A review of the Phi factor during runaway conditions", Journal of Loss Prevention in the Process Industries, 10(5-6), 289-302, (1997) https://doi.org/10.1016/S0950-4230(97)00018-1
  4. HAN, I.S., Lee, K.W., Lee, J.Y., "Characteristics of thermal hazard in methylthioisocyanate synthesis reaction process", Journal of KOSOS, 27(5), 77-87, (2012)
  5. Francis Stoessel, "Planning protection measures against runaway reactions using criticality classes", Process Safety and Environmental Protection, 87, 105-112, (2009) https://doi.org/10.1016/j.psep.2008.08.003