DOI QR코드

DOI QR Code

Experimental Study on the Measurement of the Low Permeability in Tight Gas Reservoir

치밀가스 저류층의 저투과도 측정에 관한 실험적 연구

  • Jang, Ho-Chang (Dept. of Energy and Resources Engineering, Chonnam National University) ;
  • Shin, Chang-Hoon (R&D Division, Korea Gas Corporation) ;
  • Lee, Jeong-Hwan (Dept. of Energy and Resources Engineering, Chonnam National University)
  • 장호창 (전남대학교 에너지자원공학과) ;
  • 신창훈 (한국가스공사 연구개발원) ;
  • 이정환 (전남대학교 에너지자원공학과)
  • Received : 2014.05.02
  • Accepted : 2014.06.11
  • Published : 2014.06.30

Abstract

To develop a unconventional gas reservoir, an analysis of tight rock property are required. Especially, conventional measurements are difficult to be applied to unconventional resources such as tight gas reservoir because the permeability are extremely low compared to a conventional gas reservoir. In this study, an apparatus was developed for measuring low permeability and porosity based on a pressure pulse decay method under unsteady state conditions. The apparatus was applied for measuring the porosity and permeability of tight sand core samples from Gyeongsang basin in Korea. As a validation of the measurement, regression analysis was carried out using the dimensionless pseudo-pressure between the measured data and analytical solution. The results show the correlation coefficients above 0.96. Therefore, it is believed that the apparatus has a high accuracy.

비전통가스 자원을 개발하기 위해서는 저류층 암체의 치밀성을 도출하는 물성 분석이 요구된다. 특히, 치밀가스와 같은 비전통자원의 경우, 전통적인 천연가스전과 비교하여 투과도가 특징적으로 낮아서 통상적인 물성 측정 기술을 적용하기에는 한계가 있다. 이에 본 연구에서는 비정상상태에서 저투과성 암체의 물성을 측정하는 압력펄스감소법을 기반으로 실험 장치를 개발하였다. 개발된 기기는 우리나라 경상분지 치밀사암의 물성 분석에 이용되었으며, 각 시료의 투과도와 공극률을 도출하였다. 또한, 실험을 통해 얻은 자료와 이론해 모델 간의 회귀분석 결과 모두 0.96 이상의 상관계수를 나타냈으며, 개발된 장치에 대한 높은 신뢰성을 확인할 수 있었다.

Keywords

References

  1. Baek, M.S., "Unconventional Gas Resources & KOGAS' Projects", Journal of the Korean Society for Geosystem Engineering, 48(4), 524-538, (2011)
  2. Holditch, S.A., "Tight Gas Sands", Journal of Petroleum Technology, 58(6), 88, (2006)
  3. Suarez-Rivera, R., Chertov, M., Willberg, D.M., Green, S.J. and Keller, J., "Understanding Permeability Measurements in Tight Shales Promotes Enhanced Determination of Reservoir Quality", SPE Canadian Unconventional Resources Conference, Society of Petroleum Engineers, Calgary, Alberta, Canada, (2012)
  4. Brace, W.F., Walsh, J.B. and Frangos, W.T., "Permeability of Granite Under High Pressure", Journal of Geophysical Research, 73(6), 2225-2236, (1968) https://doi.org/10.1029/JB073i006p02225
  5. Yamada, S.E. and Jones, A.H., "A Review of a Pulse Technique for Permeability Measurements", Society of Petroleum Engineers Journal, 20(5), 357-358, (1980) https://doi.org/10.2118/8760-PA
  6. Hsieh, P.A., Tracy, J.V., Neuzil, C.E., Bredehoeft, J.D. and Silliman, S.E., "A Transient Laboratory Method for Determining the Hydraulic Properties of 'Tight' Rocks-I. Theory", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18(3), 248-252, (1981)
  7. Bourbie, T. and Walls, J., "Pulse Decay Permeability: Analytical Solution and Experimental Test", Society of Petroleum Engineers Journal, 22(5), 719-721, (1982) https://doi.org/10.2118/9744-PA
  8. Chen, T. and Stagg, P.W., "Semilog Analysis of the Pulse-Decay Technique of Permeability Measurement", Society of Petroleum Engineers Journal, 24(6), 639-642, (1984) https://doi.org/10.2118/11818-PA
  9. Haskett, S.E., Narahara, G.M. and Holditch, S.A., "A Method for the Simultaneous Determination of Permeability and Porosity in Low- Permeability Cores, Journal of SPE Formation Evaluation, 3(3), 651-658, (1988) https://doi.org/10.2118/15379-PA
  10. Kwan, M.Y., Okazawa, T. and Fortier, R.A., "Application of the Pulse-Decay Technique to the Measurement of Heavy Oil Core Fluid Mobilities and Porosity", Journal of Canadian Petroleum Technology, 27(5), 92-98, (1998)
  11. Holder, J., Koelsch, T., Fruth, L. and Donath, F., "Laboratory Measurement of Permeability in Rock", The 29th U.S. Symposium on Rock Mechnics (USRMS), American Rock Mechanics Association, Minneapolis, Minnesota, USA, (1988)
  12. Kamath, J., Boyer, R.E. and Nakagawa, F.M., "Characterization of Core-Scale Heterogeneities Using Laboratory Pressure Transients", Society of Petroleum Engineers Journal, 7(3), 219-227, (1992)
  13. Dicker, A.I. and Smits, R.M., "A Practical Approach for Determining Permeability from Laboratory Pressure Pulse Decay Measurements", International Meeting on Petroleum Engineering, Society of Petroleum Engineers, Tianjin, China, (1988)
  14. Kim, H.T., Huh D.G., Kim, S.J., Sung, W.M. and Jang, T.H., "Measurements of Tight Rock Permeability by Pressure Pulse Decay Method", Journal of Mineral and Energy Resources, 35, 475-480, (1998)
  15. Jones, S.C., "A Technique for Faster Pulse-Decay Permeability Measurements in Tight Rocks", Journal of SPE Formation Evaluation, 12(1), 19-26, (1994)
  16. Jeon, Y.M. and Sohn, Y.K., "Characteristics, emplacement processes, and stratigraphic implications of the basalts intercalated in the Hayang Group, Cretaceous Gyeongsang Basin, SE Korea", Journal. of the Geological Society of Korea, 44(6), 707-727, (2008)
  17. Kang, H.C., Paik, I.S., Lee, H.L., Lee, J.E. and Chun J.H., "Soft-sediment deformation structures in Cretaceous non-marine deposits of southeastern Gyeongsang Basin, Korea: Occurrences and origin", Island Arc, 19, 628-646, (2010) https://doi.org/10.1111/j.1440-1738.2010.00738.x