DOI QR코드

DOI QR Code

Interactions between Biosynthetic Pathway and Productivity of IAA in Some Rhizobacteria

근권에서 분리한 세균의 IAA 생합성 경로와 IAA 생성능과의 관계

  • Kim, Woon-Jin (Department of Biological Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
  • 김운진 (강원대학교 자연과학대학 생명과학과) ;
  • 송홍규 (강원대학교 자연과학대학 생명과학과)
  • Received : 2012.01.18
  • Accepted : 2012.03.19
  • Published : 2012.03.31

Abstract

This study explores the interaction between the production of indole-3-acetic acid (IAA), a typical phytohormone auxin and the role of IAA biosynthetic pathways in each IAA producing rhizobacterial strain. The bacterial strains were isolated from rhizosphere of wild plants and identified as Acinetobacter guillouiae SW5, Bacillus thuringiensis SW17, Rhodococcus equi SW9, and Lysinibacillus fusiformis SW13. A. guillouiae SW5 exhibited the highest production of IAA using tryptophan-dependent pathways among the 4 strains. When indole-3-acetamide (IAM) was added, Rhodococcus equi SW9 showed the highest IAA production of $3824{\mu}g/mg$ protein using amidase activity. A. guillouiae SW5 also showed the highest production of IAA using two pathways with indole-3-acetonitrile (IAN), and its nitrile hydratase activity might be higher than nitrilase. B. thuringiensis SW17 showed the lowest IAA production, and most of IAA might be produced by the amidase activity, although the nitrilase activity was the highest among 4 strains. The roles of nitrile converting enzymes were relatively similar in IAA synthesis by Lysinibacillus fusiformis SW13. Tryptophan-independent pathway of IAA production was utilized by only A. guillouiae SW5.

대표적인 식물호르몬인 indole-acetic acid (IAA)를 생성하는 근권세균에서 IAA 생합성 경로와 생성량과의 관계를 파악하기 위해 IAA 생성능이 크게 다른 4개 균주를 선발하고 동정하였다. 특정 경로를 이용한 IAA 생합성능의 조사를 위해 주요 전구물질을 첨가하여 IAA 생성량을 측정하였다. Tryptophan 의존적 경로에 의한 총 IAA 생성량은 Acinetobacter guillouiae SW5가 1.66 mg/ml로 가장 높았으며, indole acetamide (IAM)를 배지에 첨가했을 때 amidase의 활성은 분리균주 중 Rhodococcus equi SW9이 가장 높았다. IAA 생합성을 위한 또 다른 두 가지 경로의 전구물질인 indole acetonitrile (IAN)을 첨가하였을 때 IAA 생합성은 A. guillouiae SW5가 가장 높았으며, 이 때 nitrilase 보다는 nitrile hydratase의 활성이 높았다. 그러나 두 경로 중 IAN을 직접 IAA로 전환시키는 nitrilase의 활성은 Bacillus thuringiensis SW17이 균주들 중 가장 높았다. B. thuringiensis SW17은 4균주 중 IAA생합성능이 가장 낮았으며 tryptophan을 이용하여 생합성하는 IAA 중 상당량을 IAM을 거치는 경로를 통해 생성한다. Lysinibacillus fusiformis SW13은 IAA 생합성에 관여하는 nitrile 전환경로들을 비교적 고르게 이용하여 IAA를 생성하였다. Tryptophan 비의존적 경로를 통한 IAA 생합성은 A. guillouiae SW5에서만 소량 관찰되었다.

Keywords

References

  1. Ahmad, F., Ahmad, I., and Khan, M. 2004. Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk. J. Biol. 29, 29-34.
  2. Ali, B., Sabri, A., Ljung, K., and Hasnain, S. 2009. Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). World J. Microbiol. Biotechnol. 25, 519-526. https://doi.org/10.1007/s11274-008-9918-9
  3. Banerjee, A., Kaul, P., Sharma, R., and Banerjee, U. 2003. A high-throughput amenable colorimetric assay for enantioselective screening of nitrilase-producing microorganisms using pH sensitive indicators. J. Biomol. Scr. 8, 559-564. https://doi.org/10.1177/1087057103256910
  4. Bartling, D., Seedorf, M., Mithofer, A., and Weiler, E. 1992. Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitlie to the plant hormone, indole-3-acetic acid. Eur. J. Biochem. 205, 417-424. https://doi.org/10.1111/j.1432-1033.1992.tb16795.x
  5. Baxter, J. and Cummings, S.P. 2006. The current and future applications of microorganism in the bioremediation of cyanide contamination. Antonie van Leeuwenhoek 90, 1-17. https://doi.org/10.1007/s10482-006-9057-y
  6. Bui, K., Arnaud, A., and Galzy, P. 1982. A new method to prepare amide by bioconversion of corresponding nitriles. Enzyme Microb. Technol. 4, 195-197. https://doi.org/10.1016/0141-0229(82)90117-X
  7. Clark, E., Manulis, S., Ophir, Y., Barash, I., and Gafni, Y. 1993. Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae. Phytophathol. 83, 234-240. https://doi.org/10.1094/Phyto-83-234
  8. Dash, R., Gaur, A., and Balomajumder, C. 2009. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J. Hazard. Mater. 163, 1-11. https://doi.org/10.1016/j.jhazmat.2008.06.051
  9. Felici, C., Vettori, L., Giraldi, E., Forino, L., Toffanin, A., Tagliasacchi, A., and Nuti, M. 2008. Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: Effects on plant growth and rhizosphere microbial community. Appl. Soil Ecol. 40, 260-270. https://doi.org/10.1016/j.apsoil.2008.05.002
  10. Gutierrez, C., Matsui, G., Lincoln, D., and Lovell, C. 2009. Production of the phytohormone indole-3-acetic acid by estuarine species of the genus Vibrio. Appl. Environ. Microbiol. 75, 2253-2258. https://doi.org/10.1128/AEM.02072-08
  11. Kobayashi, M., Izui, H., Nagasawa, T., and Yamada, H. 1993. Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile: Cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues. Proc. Natl. Acad. Sci. USA 90, 247-251. https://doi.org/10.1073/pnas.90.1.247
  12. Kobayashi, M., Suzuki, T., Fujita, T., Masuda, M., and Shimizu, S. 1995. Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Microbiol. 92, 714-718.
  13. Meyers, P., Gokool, P., Rawlings, D., and Woods, D. 1991. An efficient cyanide-degrading Bacillus pumilus strain. J. Gen. Microbiol. 137, 1397-1400. https://doi.org/10.1099/00221287-137-6-1397
  14. Morris, R.O. 1995. Genes specifying auxin and cytokinin biosynthesis in prokaryotes, pp. 318-339. In Davies, P. (ed.) Plant hormones. Kluwer Academic, Dordrecht, The Netherlands.
  15. Nagasawa, T., Mauger, J., and Yamada, H. 1990. A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3 purification and characterization. Eur. J. Biochem. 194, 765-772. https://doi.org/10.1111/j.1432-1033.1990.tb19467.x
  16. Nemec, A., Musilek, M., Sedo, O., De Baere, T., Maixnerova, M., van der Reijden, T., Zdrahal, Z., Vaneechoutte, M., and Dijkshoorn, L. 2010. Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. Int. J. Syst. Evol. Microbiol. 60, 896-903. https://doi.org/10.1099/ijs.0.013656-0
  17. Prinsen, E., Costacurta, A., Michiels, K., Vanderleyden, J., and Onckelen, H. 1993. Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol. Plant-Microbe Inter. 6, 609-615. https://doi.org/10.1094/MPMI-6-609
  18. Rapparini, F., Cohen, J., and Slovin, J. 1999. Indole-3-acetic acid biosynthesis in Lemna gibba studied using stable isotope labeled anthranilate and tryptophan. Plant Growth Regul. 27, 139-144. https://doi.org/10.1023/A:1006191502391
  19. Sekine, M., Ichikawa, T., Kuga, N., and Kobayashi, M. 1988. Detection of the IAA biosynthetic pathway from tryptophan via indole-3-acetamide in Bradyrhizobium spp. Plant Cell Physiol. 29, 867-874.
  20. Sewell, B., Berman, M., Meyers, P., Jandhyala, D., and Benedik, M. 2003. The cyanide degrading nitrilase from Pseudomonas stutzeri AK61 is a two-fold symmetric, 14-subunit spiral. Structure 11, 1413-1422. https://doi.org/10.1016/j.str.2003.10.005
  21. Spaepen, S. and Vanderleyden, J. 2010. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a001438.
  22. Spaepen, S., Vanderleyden, J., and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. 31, 425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
  23. Theunis, M., Kobayashi, H., Broughton, W., and Prinsen, E. 2004. Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol. Plant-Microbe Interact 17, 1153-1161. https://doi.org/10.1094/MPMI.2004.17.10.1153
  24. Yamamoto, K., Oishi, K., Fujimatsu, I., and Komatsu, K. 1991. Production of R-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl. Environ. Microbiol. 57, 3028-3032.

Cited by

  1. Interactions between Indole-3-acetic Acid Producing Acinetobacter sp. SW5 and Growth of Tomato Plant vol.50, pp.4, 2014, https://doi.org/10.7845/kjm.2014.4050
  2. Key Microbes and Metabolic Potentials Contributing to Cyanide Biodegradation in Stirred-Tank Bioreactors Treating Gold Mining Effluent pp.1547-7401, 2019, https://doi.org/10.1080/08827508.2019.1575213
  3. Expression of Auxin Response Genes SlIAA1 and SlIAA9 in Solanum lycopersicum During Interaction with Acinetobacter guillouiae SW5 vol.25, pp.6, 2012, https://doi.org/10.4014/jmb.1408.08047