DOI QR코드

DOI QR Code

Biological Characters of Bacillus pumilus CPB-St Inhibiting the Growth of Fish Pathogenic Streptococci

어류병원성 연쇄구균의 생장을 억제하는 Bacillus pumilus CPB-St의 생물학적 특성

  • Lee, Minyeong (Fisheries policy office, Ministry of Oceans and Fisheries) ;
  • Kim, Eunheui (Department of Aqualife Medicine, Chonnam National University)
  • 이민영 (해양수산부 수산정책실) ;
  • 김은희 (전남대학교 수산생명의학과)
  • Received : 2015.07.04
  • Accepted : 2015.08.17
  • Published : 2015.08.30

Abstract

The biological characteristics of Bacillus sp.CPB-St as a probiotic strain to control fish streptococcosis was determined. Based on 16S rRNA sequencing, Bacillus sp.CPB-St was identified as Bacillus pumilus and named B. pumilus CPB-St (Abbreviated as CPB-St). Growth inhibitory activity of CPB-St against Streptococcus spp. was examined at three different incubation temperatures ($20^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$) and three culture media (NA, TSA, and BHIA) based on the diameter of inhibition zone. Its activity (inhibition zone of 11~29 mm) at $20^{\circ}C$ was higher than that (12~21 mm) at $30^{\circ}C$. Its activity (29 mm) in NA media was the same as that (29 mm) in TSA media. However, it was higher than that (22 mm) in BHIA media. The inhibitory activity of CPB-St against Streptococcus spp. was high at pH7. However, its activity was the same at salinity of 0.5% to 3%. CPB-St showed maximum growth after incubation at $25^{\circ}C$ for 48 h. To use CPB-St as probiotics, settlement studies in fish intestine and its efficacy through feeding are needed. CPB-St was highly resistant to gastric juice at pH4 and flounder's bile salt as well as deoxycholic acid at $300{\mu}g/ml$. CPB-St showed optimal viability in 1% NaCl. It showed similar growth in 0% to 7% NaCl. CPB-St could tolerate $-20^{\circ}C$ and $-70^{\circ}C$ for 45 min. There was no difference in the growth of the strain between room temperature and $4^{\circ}C$. Fish diet supplemented with CPB-St could be stored at low temperature without cell loss. Therefore, CPB-St might be used as probiotics to control streptococcosis of fish.

어류병원성 연쇄상구균에 대하여 항 미생물 효과를 갖는 것으로 보고된 Bacillus sp. CPB-St를 수산용 probiotics로 개발하기 위한 기초 조사로서 미생물의 생물학적인 특성을 알아보았다. Bacillus sp. CPB-St는 16S rRNA 유전자 염기서열에 근거하여 Bacillus pumilus로 동정되었으며 B. pumilis CPB-St (이하 CPB-St)로 명명되었다. CPB-St를 배양 온도 및 배지의 종류에 따라 Streptococcus sp.에 대한 생장억제능력을 평가한 결과, $20^{\circ}C$(억제대: 11~29 mm)에서 배양하였을 때가 $30^{\circ}C$ (12~21 mm)에서 배양했을 때보다 생장억제효과가 높았고, NA (29 mm)와 TSA (29 mm)에서는 유사하였으나 BHIA (22 mm)에서는 낮게 나타났다. 또한 생장억제대의 크기는 pH 7.0에서 18 mm로 가장 높게 나타났고, 염분농도 0.5~3%에서는 동일하였다. 한편 CPB-St 의 생물학적 특성을 알아본 결과 $30^{\circ}C$에서 완만한 증식을 보였으며 배양 후 48시간에 최고 생장을 나타내었다. pH 4.0로 조정한 인공위액에서는 5시간까지 약간의 감소만 나타내었다. 넙치에서 채취 한 담즙에서 CPB-St는 농도에 관계없이 동일한 성장을 보였으며 deoxycholic acid가 첨가된 TSA배지에서 $300{\mu}g/ml$의 농도까지 증식 가능하였다. 또한 1%의 염분농도에서 최적의 성장을 보였으며 7%의 농도까지 증식에 큰 차이를 보이지는 않았고 저온 내성의 경우 $-20^{\circ}C$$-70^{\circ}C$에서는 45분경과 시점부터 대조군에 비해 성장 감소가 나타났으나 $4^{\circ}C$에서는 실온과 차이를 보이지 않았다. 따라서 CPB-St는 어류의 소화관 내에서의 생존가능성이 높으며 사료에 첨가하여 저온에 보관하여도 균수가 감소되지 않을 것으로 판단된다.

Keywords

References

  1. Avonts, L., van Uytven, E. and de Vuyst, L.: Cell growth and bacteriocin production of probiotic Lactobacillus strains in different media. Int. Dairy J., 14: 947-955, 2004 https://doi.org/10.1016/j.idairyj.2004.04.003
  2. Fernsndez, M.F., Boris, S. and Barbes, C. : Probiotic properties of human Lactobacilli strains to be used in the gastrointestinal tract. J. of App. Microbiol., 94: 449-455, 2003. https://doi.org/10.1046/j.1365-2672.2003.01850.x
  3. Gildberg, A., Mikkelsen, H., Sandaker, E. and Ringo, E. : Probiotic effect of lactic acid bacteria in the feed on growth and survival of fry of Atlantic cod (Gadus morhua). Hydrobiologia, 352: 279-285, 1997. https://doi.org/10.1023/A:1003052111938
  4. Gomez-Gil, B., Roque, A. and Turnbull, J. F. : The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture, 191: 259-270, 2000. https://doi.org/10.1016/S0044-8486(00)00431-2
  5. Irianto, A. and Austin, B.: Probiotics in aquaculture. J. of Fish Disease, 25: 633-642, 2002a. https://doi.org/10.1046/j.1365-2761.2002.00422.x
  6. Irianto, A. and Austin, B. : Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J. of Fish Diseases, 25: 333-342. 2002b. https://doi.org/10.1046/j.1365-2761.2002.00375.x
  7. Kesarcodi-Watson, A., Kaspar, H., Lategan, M.J., Gibson, L. : Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes. Aquaculture, 274: 1-14, 2008. https://doi.org/10.1016/j.aquaculture.2007.11.019
  8. Lee, J.K., Kim, W.T. and Lee, J.H. : Isolation and identification of lactic acid bacteria for preparation of probiotics. Kor. J. Appl. Microbiol. Biotechnol., 19: 429-432. 1991.
  9. Lee, M. and Kim, E. : Inhibitory effects of candidate probiotic bacteria on the growth of fish pathogenic bacteria, Streptococcus sp.. J. Fish. Pathol., 27: 107-114, 2014. https://doi.org/10.7847/jfp.2014.27.2.107
  10. Macey, B.M and Coyne, V.E. : Improved growth rate and disease resistance in farmed Haliotis midae through probiotic treatment. Aquaculture, 245: 249-261, 2004.
  11. Nikoskelainen, S., Ouwehand, A.C., Bylund, G. and Salminen, S. : Protection of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture, 198: 229-236, 2001. https://doi.org/10.1016/S0044-8486(01)00593-2
  12. Nikoskelainen, S., Ouwehand, A. C. Bylund, G., Salminen, S. and Lilius, E-M. : Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol., 15: 443-452, 2003. https://doi.org/10.1016/S1050-4648(03)00023-8
  13. Nwachi, O.F.: An overview of the importance of probiotics in aquaculture. J. fish. Aquat. Sci., 8: 30-32, 2013. https://doi.org/10.3923/jfas.2013.30.32
  14. Panigrahi, A., Kiron, V., Kobayashi, T., Puangkaew, J., Satoh, S. and Sugita, H. : Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136. Vet. Immunol. and Immunopathol., 102: 379-388, 2004. https://doi.org/10.1016/j.vetimm.2004.08.006
  15. Park, C.J., Pyeon, J.S., Cho, Y. K., Hong, S. S. and Lee, H. S.: Characteristics of Enterococcus sp. isolated from animal intestine and powder. Kor. J. Appl. Microbiol. Biotechnol., 24: 393-398, 1996.
  16. Park, H.S., Lee, S. H. and Uhm, T. B. : Selection of microorganisms for probiotics and their characterization. J. Korean Soc. Food Sci. Nutr., 27: 433-440, 1998.
  17. Robertson, P.A.W., O'Dowd, C., Burrells, C., Williams, P. and Austin, B. : Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture, 185: 235-243, 2000. https://doi.org/10.1016/S0044-8486(99)00349-X
  18. Ruangpan, L., Na-anan, P. and Direkbusarakom, S. : Inhibitory effect of Vibrio alginolyticus on the Growth of V. harveyi. Fish Pathol., 33: 293-296, 1998. https://doi.org/10.3147/jsfp.33.293
  19. Sugita, H., Shibuya, K., Shimooka. H. and Dehuchi, Y. : Antibacterial abilities of intestinal bacteria in freshwater cultured fish. Aquaculture, 145 : 195-203, 1996. https://doi.org/10.1016/S0044-8486(96)01319-1
  20. Sugita, H., Hirose, Y., Matsuo, N. and Deguchi, Y. : Production of the antibacterial substance by Bacillus sp. strain NM 12, an intestinal bacterium of Japanese coastal fish. Aquaculture, 165 : 269-280, 1998. https://doi.org/10.1016/S0044-8486(98)00267-1
  21. Tuan, T.N., Duc, P.M. and Hatai, K.: Overview of the use of probiotics in aquaculture. Int. J. of Res. in Fish. and Aquculture, 3: 89-97, 2013.
  22. Verschuere, L., Rombaut, G., Sorgeloos, P. and Verstraete, W. : Probiotic bacteria as biological control agents in aquaculture. Microbiol. and Mol. Biol. reviews, 64: 655-671. 2000. https://doi.org/10.1128/MMBR.64.4.655-671.2000