DOI QR코드

DOI QR Code

Low Dilution Glass Bead Digestion Technique for the Trace Element Analysis of Rock Samples

저희석 유리구 용해법에 의한 암석시료 미량원소 분석법

  • Park, Chan-Soo (Division of Earth and Environmental Science, Korea Basic Science Institute) ;
  • Shin, Hyung-Seon (Division of Earth and Environmental Science, Korea Basic Science Institute) ;
  • Oh, Hae-Young (Division of Earth and Environmental Science, Korea Basic Science Institute) ;
  • Moon, Jong-Hwa (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Cheong, Chang-Sik (Division of Earth and Environmental Science, Korea Basic Science Institute)
  • 박찬수 (한국기초과학지원연구원 오창센터 환경과학연구부) ;
  • 신형선 (한국기초과학지원연구원 오창센터 환경과학연구부) ;
  • 오혜영 (한국기초과학지원연구원 오창센터 환경과학연구부) ;
  • 문종화 (한국원자력연구원 하나로이용연구본부) ;
  • 정창식 (한국기초과학지원연구원 오창센터 환경과학연구부)
  • Received : 2011.07.22
  • Accepted : 2011.08.25
  • Published : 2011.09.30

Abstract

Open beaker digestion method is routinely used as the sample preparation technique for trace element determination of rock samples by inductively coupled plasma mass spectrometry, With this method, however, dissolution of Zr and Hf is not always guaranteed especially when the samples contain refractory minerals. In this study, glass bead digestion technique was compared with conventional open beaker digestion technique for the sample preparation of three USGS rock standards such as AGV-2, BHVO-2, and G-3. Thirty trace elements including rare earth elements were analysed by ICP-MS and ICP-AES. There were no clear differences in analytical results for the AGV-2 and BHVO-2 standards between the two techniques, but Zr, Hf, Y, and middle- to heavy- rare earth element concentrations of the G-3 standard prepared by open beaker digestion technique were significantly lower than the recommended values. This can be attributed to the presence of refractory mineral zircon. On the contrary, all the analytical results of the G-3 standard prepared by glass bead digestion technique were in good agreement with the recommended values, indicating complete dissolution of zircon. The analytical results show that the volatile elements such as Pb and Zn were not lost during the preparation of glass bead. Low dilution glass bead digestion technique described here will be very helpful to enhance precision and accuracy of trace element analysis for geological samples containing refractory minerals.

유도결합 플라즈마 질량분석법에 의한 암석 시료의 미량원소 정량분석을 위한 전처리 과정으로 통상 산분해법인 비이커-가열판 용해법이 사용된다. Zr과 Hf은 다른 비유동성 원소들과 함께 지구조 해석에 이용되는 중요한 원소이지만 암석 내에 이들을 농집시키는 불용성 광물이 있으면 비이커-가열판 용해법으로 완전히 용해되지 않는다. 이러한 불용성 광물을 용해시키기 위해 고압 테프론 용기법이나 알칼리 용융법을 이용하는데 전처리시간이 너무 오래 걸리거나 농도가 낮은 희토류원소 등의 분석 정확도가 감소하는 문제점이 있다. 이 연구에서는 자동 용융 기기를 사용하여 미국지질조사소의 암석 표준시료 3종(AGV-2, BHVO-2, G-3)을 저희석 유리구로 제작하고 이 유리구를 분말로 만들어 산분해를 거쳐 용해시킨 방법(유리구 용해법)으로 전처리한 후, 유도결합 플라즈마 질량분석기와 유도결합 플라즈마 원자방출분광기를 이용하여 희토류 원소를 포함한 30종의 미량원소 분석을 실시하였으며 시료에 대한 최종적인 희석비율은 1:2,000 이하로 유지하였다. 이 유리구 용해법에 의한 분석결과를 암석 분말시료를 이용한 비이커-가열판 용해법과 비교해 보았다. 대체적으로 Cr, Co, Ni, Cu, Zn, Pb 등의 원소분석 결과는 두 방법 모두 3종의 표준물질에서 추천치와 잘 부합되었으며 유리구 용해법을 이용한 분석에서 Pb, Zn 등 휘발성 원소의 손실은 나타나지 않았다. 저어콘을 많이 함유한 화강암 표준시료(G-3)의 Y, Zr, Hf과 중희토류원소에 대해서는 비이커-가열판 용해법의 경우 추천치에 비해 체계적으로 낮은 값을 보인 반면 유리구 용해법은 추천값에 잘 부합되는 결과를 얻었다. 이 연구의 유리구 용해법을 이용하면 불용성 원소를 포함한 미량원소 분석의 정확도가 크게 향상될 것으로 기대된다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. 이승구, 김건한, 송용선, 김용제, 2005, ICP-MS를 이용한 희토류원소 분석시 표준시료의 선택이 미치는 영향, 암석학회지, 14, 4, 237-250.
  2. 최만식, 정창식, 박계헌, 암석용해방법에 따른 미량원소 분석결과 비교, 1994, 암석학회지, 3, 1, 41-48.
  3. Balcaen, L., Schrijver, I.D., Moens, L. and Vanhaecke, F., 2005, Determination of the 87Sr/86Sr isotope ratio in USGS silicate reference materials by multi-collector ICP--mass spectrometry, 242, 251-255.
  4. Bayon, G., Barrat, J.A., Etoubleau. J., Benoit, M., Claire Bollinger, C., and Rvillon, S., 2008, Determination of Rare Earth Elements, Sc, Y, Zr, Ba, Hf and Th in Geological Samples by ICP-MS after Tm Addition and Alkaline Fusion, Geostandards and geoanalytical research, 33, 51-62.
  5. Bennett, H. and Oliver G.J., 1976, Development of fluxes for the analysis of ceramic materials by x-ray fluorescence spectrometry. Analyst, 101, 803-807. https://doi.org/10.1039/an9760100803
  6. Claisse, F., 1956, Accurate x-ray fluorescence analysis without internal standard. Preliminary Report No 327, Department of Mines, Quebec, 24p.
  7. Date, A.R. and Jarvis, K.E., 1989, Application of ICP-Ms in the earth sciences, in "Applications of Inductively Coupled Plasma Mass Spectrometry", Date, A. R. and Gray, A.L., Blackie, Glasgow, 43-70.
  8. Fan J. and Kerrich R., 1997, Geochemical characteristics of aluminum depleted and undepleted komatites and HREE-enriched low-Ti tholeiites, western Abitibi greenstonebelt: A heterogeneous mantle plume-convergent margin environment, Geochimica et Cosmochimica acta, 63, 2071-2088.
  9. Feldman C., 1983, Behavior of Trace Refractory minerals in the lithium metaborate fusion-acid dissolution procedure, Anal. Chem, 55, 2451-2453. https://doi.org/10.1021/ac00264a064
  10. Gao, S. Ling W., Qui Y., Lian Z., Hartmann G. and Simon K., 1999, Cintrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-gradeterrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et cosmochimica Acta, 63, 2071-2088. https://doi.org/10.1016/S0016-7037(99)00153-2
  11. Hanson, G.N., 1980, Rare earth elements in petrogenetic studies of igneous systems, Ann . Rev . Earth Planet. Sci., 8, 371-406. https://doi.org/10.1146/annurev.ea.08.050180.002103
  12. Henderson, P., 1984, Rare earth element geochemistry, Developments in Geochemistry 2, Elsvier, 510p.
  13. Hutton J.T. and Elliott S.M., 1980, An accurate XRF method for the analysis of geochemical exploration samples for major and trace element using one glass disc, Chem. Geol., 29, 1-11. https://doi.org/10.1016/0009-2541(80)90002-9
  14. Jarvis, K.E., 1988, Inductively Coupled P!asma Mass Spectrometry, a new technique for the rapid or ultratrace level determination of rare earth elements in geological materials, Chem. Geol. 58, 31-39.
  15. Jin X. and Zhu H., 2000, Determination of platinum group elements and gold in geological samples with ICP-MS using a sodium peroxide fusion and tellurium co-precipitation. Journal of Analytical Atomic Spectrometry., 15, 747-751. https://doi.org/10.1039/b000470g
  16. Johnson, D.M., Hooper, P.R. and Conrey, R.M., 1999, XRF Analysis of Rocks and Minerals for Major and Trace Elements on a Single Low Dilution Li-tetraborate Fused Bead, JCPDS-International Centre for Diffraction Data, 843-867.
  17. Lee R.F. and McConchie D.M., 1982, Comprehensive major and trace element analysis of geological material by X-ray fluorescence using low dilution fusions, X-ray Spectrom. 11, 55-63. https://doi.org/10.1002/xrs.1300110206
  18. Longerich, H.P., Jenner, G.A., Fryer, B.J. and Jackson, S.E., 1990, lnductively coupled plasma-mass spectrometric analysis of geologic samples: A critical evalution based on case studies Chem. Geol., 83, 105-118. https://doi.org/10.1016/0009-2541(90)90143-U
  19. Meisel T., Schner N., Paliulionyte V. and Kahr E., 2002, Determination of Rare Earth Elements, Y, Th, Zr, Hf, Nb and Ta in geological reference materials G-2, G-3, SCo-1 and WGB-1 by sodium peroxide sintering and inductively coupled plasma-mass spectrometry. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 26, 53-61. https://doi.org/10.1111/j.1751-908X.2002.tb00623.x
  20. Pearce, J.A. and Cann, J.R., 1973, Tectonic setting of basic volcanic rocks determined using trace element analysis, Earth Planet. Sci. Lett., 19, 290-300. https://doi.org/10.1016/0012-821X(73)90129-5
  21. Potts P.J., 2003, Handbook of Rock analysis, Viridian Publishing, 226-285.
  22. Sholkovitz, E.R., 1990, Rare-earth elements in marine sediments and geochemical standards, Chem. Geol., 88, 333-347. https://doi.org/10.1016/0009-2541(90)90097-Q
  23. Sulcek, Z. and Povondra, P., 1989, Methods of decomposition in inorganic analysis, CRC Press, 325p.
  24. Sun S.S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. in Magmatism in the ocean basins, Geological Society, Special publications, 42, 313-345.
  25. Taylor, H.E. and Garbarino, J.R., 1992, Analytical applications of Inductively Coupled Plasma Mass Spectrometry in "lnductive!y Coupled Plasmas in Analytical Atomic Spectrometry", 2nd edd., Montaser, A and Golight]y, D.W., VCH Pub., New York, 651p.
  26. Taylor, S.R. and McLennan, S.M., 1985, The continental crust: Its composition and evolution, Geoscience Texts, Blackwell, Oxford, 312p.
  27. Thomas L., and Haukka M.T., 1978, XRF determination of trace and major elements using a single fused disc. Chem. Geol., 21, 39-50. https://doi.org/10.1016/0009-2541(78)90005-0
  28. Totland, M., Jarvis, I. and Jarvis, K.E., 1992, An assessment of dissolution techniques for the analysis of geologic Samples by plasma spectrometry, Chem. Geol., 95, 35-62. https://doi.org/10.1016/0009-2541(92)90042-4
  29. Wilson, M., 1989, Igneous petrogenesis, Unwin Hyman Ltd. London, 466p.
  30. Wood, D.A., Joron, J.L. and Treuil, M., 1979, A reappraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings, Earth Planet. Sci. Lett., 45, 326-336. https://doi.org/10.1016/0012-821X(79)90133-X
  31. Yu Z., Robinson P. and McGoldrick P., 2001, An evaluation of methods for the chemical decomposition of geological materials for trace element determination using ICP-MS. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 25, 199-217. https://doi.org/10.1111/j.1751-908X.2001.tb00596.x

Cited by

  1. Evaluation of LA-ICP-MS Whole Rock Trace Element Analysis Using Fused Glass Bead of Silicate Rocks vol.24, pp.2, 2015, https://doi.org/10.7854/JPSK.2015.24.2.141
  2. Effect of Zircon on Rare-Earth Element Determination of Granitoids by ICP-MS vol.23, pp.4, 2014, https://doi.org/10.7854/JPSK.2014.23.4.337
  3. Late Paleozoic to Early Mesozoic arc-related magmatism in southeastern Korea: SHRIMP zircon geochronology and geochemistry vol.153, 2012, https://doi.org/10.1016/j.lithos.2012.02.007
  4. Effect on the Measurement of Trace Element by Pressure Bomb and Conventional Teflon Vial Methods in the Digestion Technique vol.25, pp.2, 2016, https://doi.org/10.7854/JPSK.2016.25.2.107