DOI QR코드

DOI QR Code

Experimental Proof for Symmetric Ramsey Numbers

대칭 램지 수의 실험적 증명

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 멀티미디어공학과)
  • Received : 2014.12.01
  • Accepted : 2015.01.12
  • Published : 2015.03.31

Abstract

This paper offers solutions to unresolved $43{\leq}R(5,5){\leq}49$ and $102{\leq}R(6,6){\leq}165$ problems of Ramsey's number. The Ramsey's number R(s,t) of a complete graph $k_n$ dictates that n-1 number of incidental edges of a arbitrary vertex ${\upsilon}$ is dichotomized into two colors: (n-1)/2=R and (n-1)/2=B. Therefore, if one introduces the concept of distance to the vertex ${\upsilon}$, one may construct a partite graph $K_n=K_L+{\upsilon}+K_R$, to satisfy (n-1)/2=R of {$K_L,{\upsilon}$} and (n-1)/2=B of {${\upsilon},K_R$}. Subsequently, given that $K_L$ forms the color R of $K_{s-1)$, $K_S$ is attainable. Likewise, given that $K_R$ forms the color B of $K_{t-1}$, $K_t$ is obtained. By following the above-mentioned steps, $R(s,t)=K_n$ was obtained, satisfying necessary and sufficient conditions where, for $K_L$ and $K_R$, the maximum distance should be even and incidental edges of all vertices should be equal are satisfied. This paper accordingly proves R(5,5)=43 and R(6,6)=91.

본 논문은 램지 수에 대해 해결하지 못한 $43{\leq}R(5,5){\leq}49$$102{\leq}R(6,6){\leq}165$의 문제를 해결하였다. $k_n$ 완전 그래프의 램지 수 R(s,t)는 임의의 정점 ${\upsilon}$의 n-1개 부속 간선수가 (n-1)/2=R과 (n-1)/2=B의 2가지 색으로 정확히 양분된다. 따라서 임의의 정점 ${\upsilon}$로부터 거리 개념을 적용하여 {$K_L,{\upsilon}$}의 (n-1)/2=R, ${\upsilon},K_R$의 (n-1)/2=B색이 되도록 $K_n=K_L+{\upsilon}+K_R$ 분할 그래프를 형성하였다. 이로부터 $K_L$$K_{s-1)$의 R색을 형성하면 $K_s$를 얻을 수 있다. $K_R$$K_{t-1}$의 B색을 형성하면 $K_t$를 얻는다. $K_L$$K_R$의 최대 거리는 짝수와 모든 정점의 부속 간선 수는 동일하다는 필요충분조건을 만족시키는 $R(s,t)=K_n$을 구하였다. 결국, R(5,5)=43과 R(6,6)=91을 증명하였다.

Keywords

References

  1. F. P. Ramsey, "On a Problem of Formal Logic," Proceedings of London Mathematics, Series 2, Vol. 30, pp. 264-286, 1930.
  2. Wikipedia, "Ramsey Theory," http://en.wikipedia.org/wiki/Ramsey_theory, Wikimedia Foundation Inc., 2014.
  3. Wikipedia, "Ramsey's Theorem," http://en.wikipedia.org/wiki/Ramsey's_theorem, Wikimedia Foundation Inc., 2014.
  4. E. W. Weisstein, "Ramsey's Theorem" http://mathworld.wolfram.com/RamseysTheorem.html, MathWorld, Wolfram Research, Inc., 2014.
  5. E. W. Weisstein, "Ramsey Number" http://mathworld.wolfram.com/RamseyNumber.html, MathWorld, Wolfram Research, Inc., 2014.
  6. Wikipedia, "Theorem on Friends and Strangers," http://en.wikipedia.org/wiki/Theorem_on_friends_and_strangers, Wikimedia Foundation Inc., 2014.
  7. Wikipedia, "Pigeonhole Principle," http://en.wikipedia.org/wiki/Pigonhole_principle, Wikimedia Foundation Inc., 2014.
  8. G. E. W. Taylor, "Ramsey Theory," School of Mathematics, The University of Birmingham, 2006.
  9. Math Explorers' Club, "Howto Play Ramsey Graph Games," Math Explorers' Club, Cornell Department of Mathematics, 2004.
  10. I. Leader, "Friends and Strangers," Millenium Mathematics Project, University of Cambridge, 2001.
  11. B. D. McKay and S. P. Radziszowski, "Subgraph Counting Identities and Ramsey Numbers," Journal of Combinatorial Theory, Series B, Vol. 69, No. 2, pp. 193-209, Mar. 1997. https://doi.org/10.1006/jctb.1996.1741
  12. C. J. Kunkel and P. Ng, "RamseyNumbers: Improving the Bounds of R(5,5)," Midwest Instruction and Computing Symposium (MICS), 2003.
  13. Z. Bian, F. Chudak,W.G.Macready, L. Clark, and F. Gaitan, "Experimental Determination of Ramsey Numbers," Physical ReviewLetters, Vol. 111, No. 13, pp. 1-6, Sep. 2013.
  14. X. Xiaodong, X. Zheng, G. Exoo, and S. P. Radziszowski, "Constructive Lower Bounds on Classical Multicolor Ramsey Numbers," Electronic Journal of Combinatorics, Vol. 11, No. 1, pp. 1-24, Jan. 2004.
  15. J. A. Bondy andU. S. R.Murty, "Graduate Texts in Mathematics: Graph Theory," Springer-Verlag, 2006.