DOI QR코드

DOI QR Code

Fabrication and Evaluation Properties of Micro-Tubular Solid Oxide Fuel Cells (SOFCs)

마이크로 원통형 SOFC 제작 및 특성평가

  • Kim, Hwan (Department of Advanced Energy Technology, University of Science and Technology) ;
  • Kim, Wan-Je (Hydrogen and Fuel Cell Center, Korea Institute of Energy Research) ;
  • Lee, Jong-Won (Department of Advanced Energy Technology, University of Science and Technology) ;
  • Lee, Seung-Bok (Department of Advanced Energy Technology, University of Science and Technology) ;
  • Lim, Tak-Hyoung (Hydrogen and Fuel Cell Center, Korea Institute of Energy Research) ;
  • Park, Seok-Joo (Hydrogen and Fuel Cell Center, Korea Institute of Energy Research) ;
  • Song, Rak-Hyun (Department of Advanced Energy Technology, University of Science and Technology) ;
  • Shin, Dong-Ryul (Hydrogen and Fuel Cell Center, Korea Institute of Energy Research)
  • 김환 (과학기술연합대학원대학교 신에너지기술전공) ;
  • 김완제 (한국에너지기술연구원 수소연료전지연구단) ;
  • 이종원 (과학기술연합대학원대학교 신에너지기술전공) ;
  • 이승복 (과학기술연합대학원대학교 신에너지기술전공) ;
  • 임탁형 (한국에너지기술연구원 수소연료전지연구단) ;
  • 박석주 (한국에너지기술연구원 수소연료전지연구단) ;
  • 송락현 (과학기술연합대학원대학교 신에너지기술전공) ;
  • 신동열 (한국에너지기술연구원 수소연료전지연구단)
  • Received : 2012.03.10
  • Accepted : 2012.04.20
  • Published : 2012.08.01

Abstract

In present work, anode support for micro-tubular SOFC was fabricated with outer diameter of 3 mm and characterized with microstructure, mechanical properties and gas permeability. The microstructure of surface and cross section of a porous anode support were analyzed by using SEM (Scanning Electron Microscope) image. The gas permeability and the mechanical strength of anode support was measured and analysed by using differential pressure at the flow rates of 50, 100, 150 cc/min. and using universal testing machine respectively. The unit cell composed of NiO-YSZ, YSZ, YSZ-LSM/LSM/LSCF was fabricated and operated with reaction temperature and fuel flow rate and showed maximum power density of $1095mW/cm^2$ on the condition of $800^{\circ}C$. The performance of single cell for micro-tubular SOFC increased with the increasing the reaction temperature due to the decrement of ohmic resistance of cell by the increment of the ionic conductivity of electrolyte through the evaluation of electrochemical impedance analysis for single cell with reaction temperature.

본 연구에서는 마이크로 원통형 SOFC 지지체의 특성을 평가하기 위해 직경 3 mm의 연료극 지지체를 제조하여 지지체의 미세구조를 분석하고, 기계적 강도 및 가스투과도를 측정하였다. 다공성 연료극 지지체의 표면과 파단면의 미세구조를 분석하기 위해 SEM (Scanning Electron Microscope)을 이용하였다. 지지체의 가스투과도는 차압계를 이용하여 50, 100, 150 cc/min의 유량에서 측정하였으며, 기계적 강도는 만능 시험기를 이용하여 측정하였다. 마이크로 원통형 연료극 지지체의 기본적인 물성 평가 후 NiO-YSZ, YSZ, YSZ-LSM/LSM/LSCF로 구성된 마이크로 SOFC 단위전지를 제조하였으며, 반응온도와 연료 유량별로 성능평가를 수행하여 $800^{\circ}C$에서 $1095mW/cm^2$의 출력이 얻어짐을 확인하였다. 또한, 반응 온도에 따른 전기화학적 임피던스 특성평가를 통하여 온도가 높아질수록 전해질 이온전도도가 증가되어 ohmic 저항이 감소되고 그에 따라 마이크로 관형 SOFC 셀 성능이 증가함을 확인할 수 있었다.

Keywords

Acknowledgement

Grant : 250W 군용 SOFC 전원개발

Supported by : 민군겸용기술센터

References

  1. Tompsett, G. A., Finnerty, C., Kendall, K., Alston, T. and Sammes, N. M., "Novel Applications for Micro SOFCs," J. Power Sources, 86, 376(2000). https://doi.org/10.1016/S0378-7753(99)00418-8
  2. Singhal, S. C., "Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications," Solid State Ionics, 152, 405(2002).
  3. Wang, J., Lu, Z., Huanga, X., Chena, K., Ai, N., Hua, J. and Su, W., "YSZ Films Fabricated by a Spin Smoothing Technique and Its Application in Solid Oxide Fuel Cell," J. Power Sources, 163, 957(2007). https://doi.org/10.1016/j.jpowsour.2006.09.064
  4. Sammes, N. M., Du, Y. and Bove, R., "Design and Fabrication of a 100 W Anode Supported Micro-tubular SOFC Stack," J. Power Sources, 145, 428(2005). https://doi.org/10.1016/j.jpowsour.2005.01.079
  5. Gardner, F. J., Day, M. J., Brandon, N. P., Pashley, M. N. and Cassidy, M., "SOFC Technology Development at Rolls-Royce," J. Power Sources, 86, 122(2000). https://doi.org/10.1016/S0378-7753(99)00428-0
  6. Lawlor, V., Griesser, S., Buchinger, G., Olabi, A. G., Cordiner, S. and Meissner, D., "Review of the Micro-tubular Solid Oxide Fuel Cell Part I. Stack Design Issues and Research Activities," J. Power Sources, 193, 387(2009). https://doi.org/10.1016/j.jpowsour.2009.02.085
  7. O'Hayre, R., Cha, S. W., Colella, W. and Prinz, F. B., "Fuel Cell Fundamentals," John Wiley & Sons, New York, p. 161-194(2009).
  8. Momma, A., Kaga, Y., Takano, K., Nozaki, K., Negishi, A., Kato, K., Kato, T., Inagaki, T., Yoshida, H., Hosoi, K., Hoshino, K., Akbay, T., Akikusa, J., Yamada, M. and Chitose, N., "AC Impedance Behavior of a Practical-size Single-cell SOFC Under DC Current," Solid State Ion., 174, 87(2004). https://doi.org/10.1016/j.ssi.2004.06.014
  9. Winkler, W., "The Influence of the Mass Transfer on the Geometric Design of SOFC Stack," J. Power Sources, 86, 449(2000). https://doi.org/10.1016/S0378-7753(99)00452-8
  10. Cimenti, M., Birss, V. I. and Hill, M., "Distortions in Electrochemical Impedance Spectroscopy Measurements Using 3-elec- Trode Methods in SOFC. II. Effect of Electrode Activity and Relaxation Times," Fuel Cells, 7, 377(2007). https://doi.org/10.1002/fuce.200700020
  11. Wagner, N., Schnurnberger, W., Muller, B. and Lang, M., "Electrochemical Impedance Spectra of Solid-oxide Fuel Cells and Polymer Membrane Fuel Cells," Electrochim. Acta, 43, 3785(1998). https://doi.org/10.1016/S0013-4686(98)00138-8
  12. Lang, M., Franco, T., Schiller, G. and Wagner, M., "Electrochemical Characterization of Vacuum Plasma Sprayed Thin-film Solid Oxide Fuel Cells (SOFCs) for Reduced Operation Temperatures," J. Appl. Electrochem., 32, 871(2002). https://doi.org/10.1023/A:1020591323343
  13. Ostergard, M. J. L. and Mogensen, M., "Ac Impedance Study of the Oxygen Reduction Mechanism on $La_{1-x}Sr_xMnO_3$ in Solid Oxide Fuel Cells," Electrochim. Acta, 38, 2015(1993). https://doi.org/10.1016/0013-4686(93)80334-V
  14. Park, B. K., Lee, J. W., Lee, S. B., Lim, T. H., Park, S. J., Song, R. H., Im, W. B. and Shin, D. R., "$La-dopedSrTiO_3$ Interconnect Materials for Anode-supported Flat-tubular Solid Oxide Fuel Cells," Int. J. Hydrog. Energy, p. I-9(2012). https://doi.org/10.5229/JECST.2011.2.1.039
  15. Son, H. J., Lim, T. H., Lee, S. B., Shin, D. R., Song, R. H. and Kim, S. H., "Effect of Anode Support Thickness on the Performance of Tubular SOFCs," ECS Transactions, 7, 543(2007). https://doi.org/10.1149/1.2729134
  16. Shikazono, N., Sakamoto, Y., Yamaguchi, Y. and Kasagi, N., "Microstructure and Polarization Characteristics of Anode Supported Tubular Solid Oxide Fuel Cell With Co-precipitated and Mechanically Mixed Ni-YSZ Anodes," J. Power Sources, 193, 530(2009). https://doi.org/10.1016/j.jpowsour.2009.04.031
  17. Campana, R., Merino, R. I., Larrea, A., Villarreal, I. and Orera, V. M., "Fabrication, Electrochemical Characterization and Thermal Cycling of Anode Supported Microtubular Solid Oxide Fuel Cells," J. Power Sources, 192, 120(2009). https://doi.org/10.1016/j.jpowsour.2008.12.107