DOI QR코드

DOI QR Code

Measurement of Hydrogen Crossover During PEMFC Operation

고분자전해질 연료전지 구동 중 수소투과도 측정

  • Jeong, Jaejin (Department of Chemical Engineering, Sunchon National University) ;
  • Jeong, Jaehyeun (Department of Chemical Engineering, Sunchon National University) ;
  • Kim, Saehoon (HMC Eco Technology Research Institute) ;
  • Ahn, Byungki (HMC Eco Technology Research Institute) ;
  • Ko, Jaijoon (HMC Eco Technology Research Institute) ;
  • Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
  • Received : 2014.09.05
  • Accepted : 2014.10.02
  • Published : 2015.08.01

Abstract

To evaluate the performance and durability of membrane, measurement of hydrogen crossover is needed during PEMFC(Proton Exchange Membrane Fuel Cells) operation. In this work, concentration of hydrogen at cathode was analysed by gas chromatograph during operation suppling with air instead of inert gas into the cathode. The hydrogen permeated through membrane reacted with oxygen at cathode and then the concentration of hydrogen was lower than in case inert gas was supplied. Hydrogen concentration decreased as the flow rate of air increased at cathode. Increase of temperature, humidity and pressure of anode gas enhanced the hydrogen concentration at cathode. The hydrogen concentration was about 5.0 ppm at current density of $120mA/cm^2$ during general PEMFC operation.

고분자 막 성능 평가 및 내구성 평가에 이용하기 위해 고분자전해질 연료전지(PEMFC) 구동 중에 수소 크로스오버 측정이 필요하다. 수소 크로스오버 측정 시에 불활성 기체 대신에 공기를 cathode에 공급하면서 기체 크로마토그래프로 수소 농도를 cathode 출구에서 분석하였다. PEMFC 구동 중 고분자 막을 통과한 수소는 cathode에서 산소와 반응해 불활성 가스를 공급할 때에 비해 수소 농도가 감소하였다. cathode 공기 공급 유량이 증가하면 수소 농도가 감소했고, 셀의 온도와 습도, 압력이 증가하면 cathode의 수소 농도는 증가했다. 일반적인 PEMFC 구동 조건에서 $120mA/cm^2$ 전류밀도에서 수소농도는 약 5.0 ppm이었다.

Keywords

References

  1. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger, A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  2. Jung, C. Y., Kim, W. J. and Yi, S. C., "Computational Analysis of Mixed Potential Effect in Proton Exchange Membrane Fuel Cells," Int. J. Hydro. Ener., 37, 7654-7668(2012). https://doi.org/10.1016/j.ijhydene.2012.01.102
  3. Collier, A., Wang, Yuan, H., Zi, X., Zhang, J. and Wilkinson, D. P., "Degradation of Polymer Electrolyte Membranes," Int. J. Hydrog. Energy, 31, 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  4. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  5. Inaba, M., Kinumoto, T., Kiriake, M., Umebayashi, R., Tasaka, A. and Ogumi, Z., "Gas Crossover and Membrane Degradation in Polymer Electrolyte Fuel Cells," Electrochim. Acta, 51, 5746-5753(2006). https://doi.org/10.1016/j.electacta.2006.03.008
  6. Huang, B. T., Chatillon, Y., Bonnet, C., Lapicque, F., Leclerc, S., Hinaje, M. and Rae, S., "Experimental Investigation of Pinhole Effect on MEA/Cell Aging in PEMFC," Int. J. Hydrog. Energy, 38, 543-550(2013). https://doi.org/10.1016/j.ijhydene.2012.09.058
  7. Zhai, Y., Zhang, H., Zhang, Y. and Xing, D., "A Novel $H_{3}PO_{4}$/Nafion-PBI Composite Membrane for Enhanced Durability of High Temperature PEM Fuel Cells," J. Power Sources, 169, 259-264(2007). https://doi.org/10.1016/j.jpowsour.2007.03.004
  8. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  9. Jeong, J. J., Jeong, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Measurement of Hydrogen Crossover by Gas Chromatograph in PEMFC," Korean Chem. Eng. Res., 52(4), 425-429(2014). https://doi.org/10.9713/kcer.2014.52.4.425
  10. Broka, K. and Ekdunge, P., "Oxygen and Hydrogen Permeation Propertie and Water Uptake of Nafion 117 Membrane and Recast Film for PEM Fuel Cell," J. Appl. Electrochem., 27, 117-123(1997). https://doi.org/10.1023/A:1018469520562
  11. Teranishi, K., Kawata, K., Tsushima, S. and Hirai, S., "Degradation Mechanism of PEMFC under Open Circuit Operation," Electrochem. Solid-State Lett., 9(10), A475-A477(2006). https://doi.org/10.1149/1.2266163
  12. Weber, A. Z., "Gas-Crossover and Membrane-Pinhole Effects in Polymer-Electrolyte Fuel Cells," J. Electrochem. Soc., 155(6), B521-B531(2008). https://doi.org/10.1149/1.2898130
  13. Barbir, F., PEM Fuel Cells: Theory and Practice, Elsvier Academic Press, San Diego(2005).
  14. Bensmann, B., Hanke-Rauschenbach, R. and Sundmacher, K., "In-situ Measurement of Hydrogen Crossover in Polymer Electrolyte Membrane Water Electrolysis," Int. J. Hydrog. Energy, 39, 49-53(2014). https://doi.org/10.1016/j.ijhydene.2013.10.085